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Recent deployments in security

• Tambe’s TEAMCORE group at USC• Tambe s TEAMCORE group at USC

• Airport security
• Where should checkpoints, canine units, etc. be deployed?

• Deployed at LAX and another US airport, being evaluated for p y p , g
deployment at all US airports

• Federal Air MarshalsFederal Air Marshals

• Coast Guard

• …
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“Chicken”
• Two players drive cars towards each other

• If one player goes straight that player wins• If one player goes straight, that player wins

• If both go straight, they both die
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• A profile (= strategy for each player) so that no 
player wants to deviateplayer wants to deviate

D S
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• This game has another Nash equilibrium in g q
mixed strategies – both play D with 80%
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The presentation 
game

Pay attention 
(A)

Do not pay 
attention (NA)

Put effort into 
presentation (E) 2, 2 -1, 0

Do not put effort into 
presentation (NE) -7, -8 0, 0

• Pure-strategy Nash equilibria: (E, A), (NE, NA)

• Mixed-strategy Nash equilibrium: 

((4/5 E 1/5 NE) (1/10 A 9/10 NA))((4/5 E, 1/5 NE), (1/10 A, 9/10 NA))
– Utility -7/10 for presenter, 0 for audience
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“Together with factoring, the complexity of 
finding a Nash equilibrium is in my opinion 
th t i t t t tithe most important concrete open question 

on the boundary of P today.”

Christos Papadimitriou, 
STOC’01

• PPAD complete to compute one Nash equilibrium even in a

STOC’01
[’91]

• PPAD-complete to compute one Nash equilibrium, even in a 
two-player game [Daskalakis, Goldberg, Papadimitriou 
STOC’06 Ch & D FOCS’06]STOC’06; Chen & Deng FOCS’06] 
• still holds for FPTAS / smoothed poly [Chen, Deng, Teng FOCS‘06]

• Is one Nash equilibrium all we need to know?



A useful reduction (SAT → game)     
[C & Sandholm IJCAI’03 Games and Economic Behavior ‘08][C. & Sandholm IJCAI 03, Games and Economic Behavior 08]

(Earlier reduction with weaker implications: Gilboa & Zemel GEB ‘89)
Formula: (x1 or -x2) and (-x1 or x2)
Solutions: x =true x =trueSolutions: x1=true,x2=true

x1=false,x2=false



A useful reduction (SAT → game)     
[C & Sandholm IJCAI’03 Games and Economic Behavior ‘08][C. & Sandholm IJCAI 03, Games and Economic Behavior 08]

(Earlier reduction with weaker implications: Gilboa & Zemel GEB ‘89)
Formula: (x1 or -x2) and (-x1 or x2)
Solutions: x =true x =trueSolutions: x1=true,x2=true

x1=false,x2=false
Game: x1 x2 +x1 -x1 +x2 -x2 (x1 or -x2) (-x1 or x2) default

x1 -2,-2 -2,-2 0,-2 0,-2 2,-2 2,-2 -2,-2 -2,-2 0,1
x2 -2,-2 -2,-2 2,-2 2,-2 0,-2 0,-2 -2,-2 -2,-2 0,1

+x1 -2,0 -2,2 1,1 -2,-2 1,1 1,1 -2,0 -2,2 0,1
-x1 -2,0 -2,2 -2,-2 1,1 1,1 1,1 -2,2 -2,0 0,1
+x2 -2,2 -2,0 1,1 1,1 1,1 -2,-2 -2,2 -2,0 0,1
-x2 -2,2 -2,0 1,1 1,1 -2,-2 1,1 -2,0 -2,2 0,1

(x or -x ) 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 2 0 1(x1 or -x2) -2,-2 -2,-2 0,-2 2,-2 2,-2 0,-2 -2,-2 -2,-2 0,1
(-x1 or x2) -2,-2 -2,-2 2,-2 0,-2 0,-2 2,-2 -2,-2 -2,-2 0,1
default 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 ε, ε



A useful reduction (SAT → game)     
[C & Sandholm IJCAI’03 Games and Economic Behavior ‘08][C. & Sandholm IJCAI 03, Games and Economic Behavior 08]

(Earlier reduction with weaker implications: Gilboa & Zemel GEB ‘89)
Formula: (x1 or -x2) and (-x1 or x2)
Solutions: x =true x =trueSolutions: x1=true,x2=true

x1=false,x2=false
Game: x1 x2 +x1 -x1 +x2 -x2 (x1 or -x2) (-x1 or x2) default

x1 -2,-2 -2,-2 0,-2 0,-2 2,-2 2,-2 -2,-2 -2,-2 0,1
x2 -2,-2 -2,-2 2,-2 2,-2 0,-2 0,-2 -2,-2 -2,-2 0,1

+x1 -2,0 -2,2 1,1 -2,-2 1,1 1,1 -2,0 -2,2 0,1
-x1 -2,0 -2,2 -2,-2 1,1 1,1 1,1 -2,2 -2,0 0,1
+x2 -2,2 -2,0 1,1 1,1 1,1 -2,-2 -2,2 -2,0 0,1
-x2 -2,2 -2,0 1,1 1,1 -2,-2 1,1 -2,0 -2,2 0,1

(x or -x ) 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 2 0 1(x1 or -x2) -2,-2 -2,-2 0,-2 2,-2 2,-2 0,-2 -2,-2 -2,-2 0,1
(-x1 or x2) -2,-2 -2,-2 2,-2 0,-2 0,-2 2,-2 -2,-2 -2,-2 0,1
default 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 ε, ε

• Every satisfying assignment (if there are any) corresponds 
to an equilibrium with utilities 1, 1

• Exactly one additional equilibrium with utilities ε, ε that 
always exists
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Nash is not optimal if one 
player can commit

1, 1 3, 0
U i N h

0, 0 2, 1
Unique Nash 
equilibrium

• Suppose the game is played as follows: von Stackelberg

– Player 1 commits to playing one of the rows,

– Player 2 observes the commitment and then chooses a columnPlayer 2 observes the commitment and then chooses a column

• Optimal strategy for player 1: commit to Down
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0 1

1, 1 3, 0.49 , ,

0, 0 2, 1.51

– Sometimes also called a Stackelberg (mixed) strategy
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Observing the defender’s 
distribution in security

BCN terminal 2A

BCN terminal 2B

observe
Mo Tu We Th Fr Sa

This argument is not uncontroversial… [Pita, Jain, Tambe, Ordóñez, Kraus 
AIJ’10; Korzhyk, Yin, Kiekintveld, C., Tambe JAIR’11; Korzhyk, C., Parr AAMAS’11]



Computing the optimal mixed 
strategy to commit to

[C & Sandholm EC’06 von Stengel & Zamir GEB’10][C. & Sandholm EC 06, von Stengel & Zamir GEB 10]

 

 

 

 

 

Slide 7



Computing the optimal mixed 
strategy to commit to

[C & Sandholm EC’06 von Stengel & Zamir GEB’10][C. & Sandholm EC 06, von Stengel & Zamir GEB 10]

• Separate LP for every column c*:p y

 

 

 

 

Slide 7



Computing the optimal mixed 
strategy to commit to

[C & Sandholm EC’06 von Stengel & Zamir GEB’10][C. & Sandholm EC 06, von Stengel & Zamir GEB 10]

• Separate LP for every column c*:p y

maximize Σr pr uR(r, c*)

subject tosubject to

for all c, Σr pr uC(r, c) ≤ Σr pr uC(r, c*)

Σr pr = 1

Slide 7



Computing the optimal mixed 
strategy to commit to

[C & Sandholm EC’06 von Stengel & Zamir GEB’10][C. & Sandholm EC 06, von Stengel & Zamir GEB 10]

• Separate LP for every column c*:p y

maximize Σr pr uR(r, c*)

subject tosubject to

for all c, Σr pr uC(r, c) ≤ Σr pr uC(r, c*)

Σr pr = 1 distributional constraint

Slide 7



Computing the optimal mixed 
strategy to commit to

[C & Sandholm EC’06 von Stengel & Zamir GEB’10][C. & Sandholm EC 06, von Stengel & Zamir GEB 10]

• Separate LP for every column c*:p y

maximize Σr pr uR(r, c*)

subject tosubject to

for all c, Σr pr uC(r, c) ≤ Σr pr uC(r, c*) follower optimality

Σr pr = 1 distributional constraint

Slide 7



Computing the optimal mixed 
strategy to commit to

[C & Sandholm EC’06 von Stengel & Zamir GEB’10][C. & Sandholm EC 06, von Stengel & Zamir GEB 10]

• Separate LP for every column c*:p y

maximize Σr pr uR(r, c*)

subject to

leader utility

subject to

for all c, Σr pr uC(r, c) ≤ Σr pr uC(r, c*) follower optimality

Σr pr = 1 distributional constraint

Slide 7



Other nice properties of 
commitment to mixed strategies



Other nice properties of 
commitment to mixed strategies

0, 0 -1, 1

• Agrees w. Nash in zero-sum games
0, 0 1, 1

-1, 1 0, 0



Other nice properties of 
commitment to mixed strategies

0, 0 -1, 1

• Agrees w. Nash in zero-sum games
0, 0 1, 1

-1, 1 0, 0

• Leader’s payoff at least as good as p y g
any Nash eq. or even correlated eq. 
(von Stengel & Zamir [GEB ‘10]; see also C

≥
(von Stengel & Zamir [GEB 10]; see also C. 

& Korzhyk [AAAI ‘11], Letchford & C. [draft])



Other nice properties of 
commitment to mixed strategies

0, 0 -1, 1

• Agrees w. Nash in zero-sum games
0, 0 1, 1

-1, 1 0, 0

• Leader’s payoff at least as good as p y g
any Nash eq. or even correlated eq. 
(von Stengel & Zamir [GEB ‘10]; see also C

≥
(von Stengel & Zamir [GEB 10]; see also C. 

& Korzhyk [AAAI ‘11], Letchford & C. [draft])

• No equilibrium selection problem
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• Set of security resources available to the defender (leader)

• Set of schedules• Set of schedules

• Resource  can be assigned to one of the schedules in

• Attacker (follower) chooses one target to attack
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In summary: AI pushing at some 
of the boundaries of game theory

learning in games

behavioral 
(humans 

game theory

playing 
games)

AI work in game theory
computation

AI work in game theory

representation
conceptual

(e.g., equilibrium selection)

representation
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