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ABSTRACT
Matching a set of agents to a set of objects has many real
applications. One well-studied framework is that of priority-
based matching, in which each object is assumed to have a
priority order over the agents. The Deferred Acceptance
(DA) and Top-Trading-Cycle (TTC) mechanisms are the
best-known strategy-proof mechanisms. However, in highly
anonymous environments, the set of agents is not known a
priori, and it is more natural for objects to instead have pri-
orities over characteristics (e.g., the student’s GPA or home
address). In this paper, we extend the model so that each
agent reports not only its preferences over objects, but also
its characteristic. We derive results for various notions of
strategy-proofness and false-name-proofness, corresponding
to whether agents can only report weaker characteristics or
also incomparable or stronger ones, and whether agents can
only claim objects allocated to their true accounts or also
those allocated to their fake accounts. Among other results,
we show that DA and TTC satisfy a weak version of false-
name-proofness. Furthermore, DA also satisfies a strong
version of false-name-proofness, while TTC fails to satisfy it
without an acyclicity assumption on priorities.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multi-agent systems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms
Algorithms, Economics, Theory

Keywords
Efficiency, fairness, matching

1. INTRODUCTION

1.1 Background
Matching a set of agents to a set of objects has many real

applications, such as school choice, hospital-resident match-
ing, and kidney exchange. One well-studied framework is
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that of priority-based matching, in which each object is as-
sumed to have a priority order over the agents, while each
agent also has a preference over the objects.

In this paper, we focus on matching problems in which
the objects are not strategic agents, such as student place-
ment [3] or house allocation [6]. For such problems, a mecha-
nism is a function that maps a profile of reported preferences
to an assignment of objects to agents, based on the priorities
of objects. We focus on mechanisms that are strategy-proof
(for the agents). The (agent-proposing) Deferred Accep-
tance (DA) and Top-Trading-Cycle (TTC) mechanisms are
the best-known strategy-proof mechanisms for these prob-
lems (and under some assumptions, there are no others).

In this paper, we focus on matching environments with
a high degree of anonymity. While our analysis may be of
interest even in traditional settings (e.g., traditional school
choice), clearer motivating examples come from Internet en-
vironments (for example, selective Massive Open Online
Courses, or even M.O.O. Schools, to which students must ap-
ply1). In such environments, the set of agents is not known
to the objects a priori. Instead, each object just has in-
formation about the set of possible characteristics that an
agent could have, e.g., the student’s GPA or home address.
In such environments, it is natural to assume that the ob-
jects have priorities over these characteristics rather than
over the agents themselves. Then, each agent is required to
report its characteristic, as well as its preference over the
objects, to the mechanism. Even in a mechanism that satis-
fies strategy-proofness in the traditional sense (misreporting
of preferences), an agent may misreport its characteristic in
a way that results in a better allocation. Intuitively, if an
agent reports a characteristic that is ranked higher than its
original one in the priority of each object, then it seems
likely that its assignment will become weakly better.

Furthermore, in such highly anonymous environments, an
agent may also have an incentive to use fake accounts (i.e.,
false-name accounts) to manipulate the outcome of the mech-
anism. Even if each agent does not want more than one
object—e.g., a student could not enter more than one school—
it is not obvious whether strategy-proof mechanisms neces-
sarily satisfy false-name-proofness. For example, a student
may represent him/herself differently to one school than to
another school, by using fake accounts, based on what these
schools consider important. Furthermore, people applying
for political asylum under multiple identities is a recognized
problem (here the countries take the roles of schools).

1One may question in what sense these would still be
“Open,” but we hope the reader understands our intent.



1.2 Our Contributions
First, we formalize the environment with arbitrarily mis-

reportable characteristics. We provide a necessary and suf-
ficient condition for the existence of strategy-proof match-
ing mechanisms that satisfy the mutual-best condition (if an
agent and an object prefer each other most, they should be
matched). This required condition on the relationship be-
tween possible misreports and objects’ priorities is rather
stringent and suggests that, without restricting misreports
on characteristics, almost all mechanisms are vulnerable to
strategic behavior by the agents.

Therefore, we introduce a natural restriction on agents’
misreports based on the idea of partial verification [9]. We
then define two natural notions of false-name-proofness in
this domain. We show that the two most prominent strategy-
proof mechanisms in the literature, DA and TTC, are both
false-name-proof in the weaker sense. Furthermore, DA also
satisfies the stronger version of false-name-proofness, while
TTC fails to satisfy it without an acyclicity assumption on
priorities.

Our matching model with partially-verifiable character-
istics can be applied to numerous situations. A natural
and important example is that of school choice problems
with several independent scores, such as GPA, TOEFL, etc.
These generate a lattice structure on the characteristics that
allows us to design mechanisms with desirable properties. It
is also quite natural for each object (school or college) to
have an order that is compatible with the lattice structure—
for example, perhaps the school ranks the applicants accord-
ing to a specific conical combination of their scores. The
standard hospital-resident matching problem is another ex-
ample. Prospective residents would benefit from overreport-
ing their characteristics, such as their United States Medical
Licencing Examination scores, if no verification schemes are
implemented.

1.3 Related Work
Matching. The DA mechanism was introduced by Gale

and Shapley [8], as a strategy-proof (on the agents’ side)
and fair matching mechanism. Crawford [5] showed that
in the agent-proposing DA, an arrival of a new agent never
makes other agents better off. Balinski and Sönmez [3] dis-
cussed the effect of a change of priorities in DA. They showed
that DA respects improvement in priority, i.e., no agent can
become worse off as the result of an improvement in that
agent’s priority for each object. Ergin [7] gives a necessary
and sufficient condition on priorities for DA to be Pareto ef-
ficient. There is also a significant amount of research on the
TTC mechanism [14]. Kesten [11] showed a necessary and
sufficient condition on priorities for TTC and DA to coin-
cide. The proposed condition, called acyclicity, seems quite
similar to the one proposed in Ergin [7]. Morrill [12] defined
the weak mutual-best condition mentioned above and gave
an alternative characterization of the TTC mechanism. Fi-
nally, Ehlers et al. [6] give a characterization of population
monotonic [15] matching mechanisms under the two addi-
tional axioms of strategy-proofness and Pareto efficiency.

False-name-proofness. Most research on false-name-
proof mechanism design has focused on combinatorial auc-
tions. Yokoo et al. [17] showed that the well-known VCG
mechanism is not false-name-proof in general combinatorial
auctions, and Iwasaki et al. [10] gave a low upper bound on
the worst-case efficiency that can be obtained using a false-

name-proof mechanism satisfying some additional assump-
tions. Conitzer [4] gave a very negative characterization
of false-name-proof voting rules. While these results have
shown the difficulty of designing false-name-proof mecha-
nisms for resource allocation with transfers (at least in suf-
ficiently general settings) and public decision making with-
out transfers, respectively, to our knowledge there has been
no earlier work on designing false-name-proof mechanisms
for resource allocation without transfers, including match-
ing problems. Finally, as discussed by Todo et al. [16], pop-
ulation monotonicity seems to have a strong connection to
false-name-proofness even in resource allocation problems.

2. PRELIMINARIES

2.1 Matching Model with Characteristics
In this section, we first define our model of matching with

characteristics. Let N be a set of potential agents (identi-
ties) and N ⊆ N be a set of attending agents. Let n := |N |
denote the number of attending agents and let each index
i, j, k ∈ N denote an agent. Let X = {x, y, z, . . .} be a set of
m objects (items) to be allocated to attending agents. That
is, m := |X|. Then, let a ∈ An be an allocation (assignment)
of the set of objects X to a set of attending agents N , where
An denotes the set of possible allocations to N . For a given
allocation a ∈ An, let ai ∈ X ∪ ∅ denote the assignment
to agent i ∈ N . Here ai = ∅ means that i is not allocated
any object (equivalently, is allocated the null object) under
allocation a. That is, for each agent i, an assignment to i is
either a single object or an empty set. We assume that for
every allocation a ∈ An, the feasibility condition is satisfied:
S

i∈N ai ⊆ X and ai ∩ aj = ∅ for all i and j with i 6= j.
We next introduce notation for each agent i ∈ N . Let θi ∈

Θ denote the type of agent i. Specifically, a type θi = (Ri, ci)
consists of a preference relation Ri and a characteristic ci ∈
C.2 A preference relation Ri ∈ R is a complete order of
X ∪ ∅, where R indicates the set of all possible preference
relations. Let Pi denote the strict part of Ri. Because we
assume preferences to be strict, given x, y ∈ X ∪ ∅, xRiy
and ¬xPiy implies x = y.

A characteristic ci ∈ C reflects the features of agent i,
where C indicates a set of all possible characteristics. Then,
Θ = R× C defines the domain of possible types.

Next, we consider a misreport θ′
i by an agent i with true

type θi = (Ri, ci). We assume that each agent can report
any preference R′

i in R, regardless of its true type θi. On the
other hand, for misreports of characteristics, we introduce a
directed graph model. Let �C denote a binary relation over
C, where G 3�C is the set of all possible such relations satis-
fying the following restrictions. We assume this relation �C

is transitive; for any d, e, f ∈ C, d �C e and e �C f implies
d �C f . Also, we assume the relation �C is reflexive; for
any d ∈ C, d �C d holds. Thus, any �C∈ G corresponds to
a directed graph, whose vertices are the set of all possible
characteristics C, which contains self-loops for every charac-
teristic, and which is transitive. G corresponds to the set of
all possible such directed graphs.

We now introduce two correspondences L, M : Θ → 2Θ

that map an agent’s true type to the set of types it can mis-

2Note that each agent has only a single characteristic, but
this characteristic can be a vector including all of (say) GPA,
TOEFL score, etc., so that this is without loss of generality.



report, based on a given directed graph �C. The misreport
correspondence M allows agents to misreport not only their
preferences, but also their characteristics in a way that is
consistent with �C , i.e., for all θi = (Ri, ci) ∈ Θ, M(θi) ⊆ Θ
is the set of all types θ′

i = (R′
i, c

′
i) ∈ Θ satisfying ci �C c′i

(while R′
i is arbitrary). When �G contains all ordered pairs

from C, all possible types are allowed by M for each type θi.
By the reflexivity, for any �C∈ G and any θi ∈ C, θi ∈ M(θi),
i.e., truth-telling is always possible. The non-existence of a
directed edge from characteristic e to characteristic d can be
interpreted as the existence of a partial verification scheme
that could detect a misreport of characteristic from e to d.
If we could detect any misreport of characteristics, then �C

contains no edges, and the problem coincides with tradi-
tional matching without characteristics.

On the other hand, the limited misreport correspondence
L never allows agents to misreport their characteristics, re-
gardless of �C ; i.e., for all θi = (Ri, ci) ∈ Θ, L(θi) ⊆ Θ is
the set of all types θ′

i = (R′
i, ci) ∈ Θ (where R′

i is arbitrary).
That is, L represents the misreports that are allowed in the
traditional matching model without characteristics.

Next, we consider objects’ priorities over characteristics.
For any object x ∈ X, let πx ∈ Π be a complete and strict
order of all possible characteristics C. For two characteristics
d, e ∈ C, dπxe indicates that object x with order πx orders
characteristic d prior to characteristic e. Let π ∈ Πm be a
profile of orders, where Πm is the set of all possible profiles
of orders. Let �x∈ PN be the priority that object x has over
the set of attending agents N , according to its own order πx

and the set of (reported) characteristics of attending agents
c = (c1, . . . , cn). That is, the priority �x is a function of
πx ∈ Π and c ∈ CN . Specifically, �x is derived from πx

and c as follows: ∀i, j ∈ N , i �x j if and only if ciπxcj . In
this case, we say agent i with characteristic ci has a higher
priority for object x than agent j with characteristic cj . To
avoid having to deal with tie-breaking, we assume that in
any individual run of the mechanism, no two agents can end
up reporting the same characteristic.3

2.2 Matching Mechanism
In this section, we formally define mechanisms for the

model of matching with characteristics. Since the number of
participating identities is not known ex ante, a mechanism
must be defined for any number of attending identities:

Definition 2.1 (Matching Mechanism). A matching
mechanism ϕ is a sequence of functions {ϕn}n=0,...,|N| such
that ϕn : Θn × Πm → An.

We require a mechanism to be defined for any possible
characteristics graph �C∈ G. This assumption takes an im-
portant role in some of our results. For example, if we can
restrict our attention to a restricted family G that contains
only one �C that has no arrow between any two characteris-
tics, then misreporting characteristics is impossible, and the
problem coincides with the traditional formulation of match-
ing (without characteristics). More generally, restricting G
may allow us to design a larger variety of false-name-proof
mechanisms, which could be an interesting future direction.

For a type profile θ and a profile of orders π, the mech-
anism determines an outcome ϕ(θ, π). Let ϕi(θ, π) denote

3We believe the assumption is quite natural in real environ-
ments. For example, part of the characteristic could be the
time at which the agent submitted its application.

the assignment to agent i. Given that we are motivated
by highly anonymous settings, we restrict our attention to
anonymous mechanisms, in which, if two agents swap their
types, their assignments must be also swapped.

2.3 Properties of Mechanisms
First, let us define a traditional notion of strategy-proofness,

which considers only misreporting of preferences, not char-
acteristics.

Definition 2.2. A mechanism ϕ is said to be strategy-
proof in the traditional sense (or to satisfy SP-) if ∀ �C∈ G,
∀π ∈ Πm, ∀N ⊆ N , ∀i ∈ N , ∀θ−i ∈ Θn−1, ∀θi ∈ Θ, and
∀θ′

i ∈ L(θi), it holds that ϕi((θi, θ−i), π)Riϕi((θ
′
i, θ−i), π).

However, in our model an agent can misreport both its
preference and its characteristic, demanding a stronger no-
tion of strategy-proofness:

Definition 2.3 (Strategy-proofness). A mechanism
ϕ is said to be strategy-proof (or to satisfy SP) if ∀ �C∈ G,
∀π = Πm, ∀N ⊆ N , ∀i ∈ N , ∀θ−i ∈ Θn−1, ∀θi ∈ Θ, and
∀θ′

i ∈ M(θi), it holds that ϕi((θi, θ−i), π)Riϕi((θ
′
i, θ−i), π).

We now consider two important and well-known criteria
in matching problems, fairness and efficiency. Fairness (also
called stability) requires that there exists no blocking pair,
i.e., there exists no pair of an agent and an object that both
prefer each other to the current assignment.

Definition 2.4 (Fairness). A mechanism ϕ is said to
satisfy fairness (FA) if ∀ �C∈ G, ∀π = Πm, ∀N ⊆ N ,
∀i ∈ N , and ∀θ ∈ Θn, there are no i, j ∈ N and x ∈ X such
that xPiϕi(θ, π), ciπxcj , and ϕj(θ, π) = x.

Pareto efficiency concerns the welfare of the society. It
requires that there exists no outcome that Pareto-dominates
the current outcome.

Definition 2.5 (Pareto Efficiency). A mechanism
ϕ is said to satisfy Pareto efficiency (PE) if ∀ �C∈ G, ∀π =
Πm, ∀N ⊆ N , and ∀θ ∈ Θn, there exists no allocation a ∈
An such that ∀i ∈ N , we have aiRiϕi(θ, π), and ∃j ∈ N
such that ajPjϕj(θ, π).

The following proposition shows that for a tiny economy,
there exists a mechanism that satisfies SP, PE, and FA si-
multaneously. In fact, the TTC mechanism is one such
mechanism. The proof is omitted, but the result can be
easily verified from Theorem 6.

Proposition 2.1. There always exists a matching mech-
anism that satisfies SP, PE, and FA if (i) |N | = 1 or (ii)
|N | = 2 and |C| = 2.

Thus, in the rest of the paper, we focus on cases where
|N | ≥ 2 and |C| ≥ 3.

The following weak mutual best axiom has been proposed
by, e.g., Morrill [12], as a minimal requirement for simul-
taneously satisfying fairness and efficiency. It requires that
any pair of an agent and an object that are each other’s first
choices must be matched.

Definition 2.6 (Mutual Best). A mechanism ϕ is
said to satisfy mutual best (MB) if ∀ �C∈ G, ∀π = Πm,
∀N ⊆ N , and ∀θ ∈ Θn, it holds that, for all i ∈ N and
x ∈ X,

[(∀j 6= i, ciπxcj) ∧ (∀y 6= x, xPiy)] ⇒ [ϕi(θ, π) = x].



MB is a natural, and quite weak, requirement. It is easy
to check that a mechanism that satisfies both FA and PE
must satisfy MB.

3. STRATEGY-PROOFNESS
In this section, we study the design of strategy-proof mech-

anisms in our model.

3.1 Impossibility of Strategy-proof Matching
We first show a rather negative result: if there exists at

least one cyclic conflict between a characteristics graph �C

and an order πx held by an object x ∈ X, then we cannot
design SP mechanisms satisfying the minor condition MB.
More precisely, there exists no mechanism that satisfies SP
and MB if ∃ �C , ∃x ∈ X, and ∃d, e, f ∈ C,

[dπxeπxf ] ∧ [f �C d]. (CC)

Interestingly, the opposite is also true. If there is no cyclical
conflict for any �C∈ G and any π ∈ Πm, there is at least
one mechanism that satisfies SP and MB. Thus, the non-
existence of cyclical conflicts is necessary and sufficient for
the existence of mechanisms that satisfy both SP and MB.

Theorem 1. There exists a mechanism that satisfies both
SP and MB if and only if there exists no cyclical conflict
between any graph �C∈ G and any profile of orders π ∈ Πm.

Proof (Only If Part). Consider a characteristics graph
�C that has a cyclical conflict with an order πx held by an
object x, i.e, dπxeπxf and f �C d. Then, consider the
case where there are only two agents i, j, whose true char-
acteristics are e and f , respectively. Moreover, assume they
both have the same preference Ri = Rj , which ranks x first
among all objects, i.e., xRiy for all y 6= x. If the mechanism
is to satisfy the mutual best condition, x must be allocated
to agent i with characteristic e.

Next, consider the case where their types are given as
θi = (Ri, e) and θj = (Rj , d), respectively. Now, to satisfy
MB, x must be allocated to j with characteristic d. Now,
because f �C d holds, (Rj , d) ∈ M((Rj , f)), i.e., agent j
with characteristic f can pretend to have characteristic d.
Therefore, agent j has an incentive to misreport its char-
acteristic, from f to d, and get the object x. This violates
SP.

Proof (If Part). Consider the following simple object-
proposing mechanism: each object proposes to the agent
whose (reported) characteristic has the highest priority for
it among those of attending agents, and each agent receives
the object it most prefers among all objects proposing to it
and the null object. SP- and MB are obviously satisfied.

Now let us assume, for the sake of contradiction, that
when i changes its characteristic from ci to c′i, its allocation
changes from x to some y 6= x such that yPix. Since it can
misreport c′i, ci �C c′i holds in the characteristics graph �C .
Now, let j 6= i be the agent whose characteristic cj has the
highest priority in πy among those of all attending agents,
i.e., y proposes to j (when i does not misreport). Since y
proposes to j rather than to i, πy satisfies cjπyci. Also, since
i gets y when it reports c′i instead, c′iπycj holds. Thus, we
have c′iπycjπyci and ci �C c′i, which violates the assumption
that there exists no cyclical conflict.

We quickly note the independence of the two axioms. The
No-Allocation mechanism satisfies SP, but generally does

not satisfy MB. The DA (or TTC) mechanism satisfies MB
(and SP-), but generally does not satisfy SP, because an
agent can benefit from misreporting its characteristic to end
up with a higher priority for an object.

3.2 Restricting the Characteristics Structure
We now introduce a natural restriction on �C and π to

prevent such cyclical conflicts. In short, we focus on charac-
teristics graphs �C that contain no cycles (other than self-
loops) and profiles of orders π = (πx)x∈X that are compati-
ble with the characteristic graph.

To be more precise, let D ⊂ G be the set of all character-
istics graphs that have no cycles, other than the self-loops
needed for reflexivity. (We slightly abuse terminology and
refer to such graphs as DAGs.) For a given DAG �C∈ D, we
say characteristic e ∈ C is weaker than characteristic d ∈ C
if it holds that d �C e.

Next, let us discuss the assumption on the structure of
the orders that objects have over characteristics. We assume
that for the given DAG �C∈ D, for all x ∈ X, order πx is
compatible with �C , i.e.,

∀d, e ∈ C, [d �C e] ⇒ [dπxe]

Let ΠC ⊂ Π denote the set of all orders that are compatible
with a given DAG �C∈ D, and let π ∈ Πm

C denote a profile
of such compatible orders (one for every object). In what
follows, we refer to environments where the characteristics
graph is a DAG and the objects’ priorities are compatible
with this DAG as directed environments.

Our restriction can be motivated, for example, by a setting
where an agent’s characteristic corresponds to that agent’s
test scores, an agent can choose to score lower on any of
these tests but not higher, and objects (e.g., schools) prefer,
all other things being equal, agents with higher test scores.

Next, we define a monotonicity property, called respecting
improvement in priority, which requires that for each agent,
its assignment never strictly improves when its priority for
each object gets (weakly) worse.

Definition 3.1. A mechanism ϕ is said to satisfy
respecting-improvement-in-priority (RIP) if ∀ �C∈ D, ∀π ∈
Πm

C , ∀N ⊆ N , ∀i ∈ N , ∀θ = (R, c) ∈ Θn, and ∀π′ ∈ Πm
C

such that ∀x ∈ X and ∀j 6= i, (i) [cjπxci] ⇒ [cjπ
′
xci] and

(ii) [cjπxck] ⇔ [cjπ
′
xck] for any other k ∈ N \{i, j}, it holds

that ϕi(θ, π)Riϕi(θ, π′).

For our model of directed environments, we define a sim-
ilar monotonicity condition below, which we refer to as re-
specting improvement in characteristic (RIC).

Definition 3.2. A mechanism ϕ is said to satisfy
respecting-improvement-in-characteristic (RIC) if ∀ �C∈ D,
∀π = Πm

C , ∀N ⊆ N , ∀i ∈ N , ∀θ−i ∈ Θn−1, ∀θi = (Ri, ci) ∈
Θ, and ∀θ′

i = (Ri, c
′
i) such that ci �C c′i, it holds that

ϕi((θi, θ−i), π)Riϕi((θ
′
i, θ−i), π)

In words, RIC requires that when an agent’s characteris-
tic gets weaker, its assignment never gets better. This can
also be considered an incentive requirement, because if it
fails to hold, an agent can benefit from reporting a weaker
characteristic. RIP implies RIC (the proof is omitted due
to space limitations).

Now we show that achieving SP is equivalent to achieving
both SP- and RIC simultaneously. Since objects are not



strategic agents in our model, we omit π in the description
of mechanism ϕ’s outcome, i.e., ϕi(θ) = ϕi(θ, π), when there
is no risk of confusion.

Proposition 3.1. In directed environments, a mechanism
ϕ satisfies SP if and only if it satisfies SP- and RIC.

Proof. SP clearly implies SP- and RIC, which corre-
spond to misreporting only one’s preferences, and only one’s
characteristic, respectively. Next, we show the opposite di-
rection, that the combination of SP- and RIC implies SP. If
ϕ satisfies RIC, ϕi(θi, θ−i)Riϕi(θ

′
i, θ−i) holds for any θ′

i ∈
M(θi) s.t., R′

i = Ri. Furthermore, SP- guarantees that
ϕi(θ

′
i, θ−i)Riϕi(θ

′′
i , θ−i) for any θ′′

i ∈ L(θ′
i). Moreover, for

any θi and θ′′
i ∈ M(θi), we can find a θ′

i such that θ′
i ∈

M(θi), R′
i = Ri, and θ′′

i ∈ L(θ′
i). Hence, we obtain

ϕi(θi, θ−i)Riϕi(θ
′
i, θ−i)Riϕi(θ

′′
i , θ−i), establishing SP.

4. FALSE-NAME-PROOFNESS
We now move on to study false-name-proofness.

4.1 Two Varieties of False-name-proofness
In this section, we define two notions of false-name-proofness.

Roughly speaking, a mechanism is false-name-proof if no
agent ever has an incentive to use fake accounts, but the ex-
act definition depends on what the agent is able to do with
such fake accounts.

In the first notion, called strong false-name-proofness (S-
FNP), we assume that an agent can create fake accounts
with any characteristics. That is, in the definition of S-
FNP, an agent i with true type θi can create fake identities
with any possible type, including ones outside M(θi). How-
ever, the agent will only be able to claim the object allocated
to its true identity. For example, an agent can apply to a
school under a fake account, but if the agent attempts to
actually enroll in the school under this fake account, the
manipulation will be immediately detected. Hence, our pre-
vious negative result for strategy-proofness with unrestricted
misreporting does not apply. Nevertheless, this type of ma-
nipulation can be helpful to an agent if the additional fake
accounts result in the agent’s true identity getting a better
allocation.

Definition 4.1 (Strong False-name-proofness). A
mechanism ϕ is said to satisfy strong false-name-proofness
(S-FNP) if ∀ �C∈ D, ∀π = Πm

C , ∀N ⊂ N , ∀i ∈ N ,
∀θ−i ∈ Θn−1, ∀θi ∈ Θ, ∀θ′

i ∈ M(θi), ∀j ∈ N \ N , and
∀θj ∈ Θ, it holds that ϕi(θi, θ−i)Riϕi(θ

′
i, θ−i, θj).

In the next notion, simply called false-name-proofness, we
assume that an agent can create fake accounts, but only
report characteristics for these accounts that it could also
have reported for its true identity. That is, in the definition
of FNP, an agent i with true type θi can create fake identities
but only with (reported) types in M(θi). On the other hand,
we do now allow such a manipulating agent to claim the
object allocated to one of its fake accounts rather than the
one allocated to its true account. (We assume unit-demand
agents, i.e., an agent cannot claim more than one object—
e.g., the agent can enroll at at most one school.)

Definition 4.2 (False-name-proofness). A mecha-
nism ϕ is said to satisfy false-name-proofness (FNP) if ∀ �C∈

D, ∀π = Πm
C , ∀N ⊂ N , ∀i ∈ N , ∀θ−i ∈ Θn−1, ∀θi ∈ Θ,

∀θ′
i ∈ M(θi), ∀j ∈ N \ N , and ∀θj ∈ M(θi), it holds that

[ϕi(θi, θ−i)Riϕi(θ
′
i, θ−i, θj)] ∧ [ϕi(θi, θ−i)Riϕj(θ

′
i, θ−i, θj)].

In these definitions, we considered only false-name manip-
ulations in which only a single fake identity was used. It is
not difficult to see that this is without loss of generality.4

It may not be immediately clear that S-FNP is actually
stronger than FNP, because only under the latter notion
is a manipulating agent free to claim an object allocated
to a fake identity. Nevertheless, the following proposition
establishes that S-FNP is in fact stronger than FNP.

Proposition 4.1. In directed environments, a mechanism
ϕ satisfies FNP if it satisfies S-FNP. However, the opposite
is not true.

Proof. Assume, for the sake of contradiction, that we
have an instance where a strongly false-name-proof mech-
anism ϕ does not satisfy false-name-proofness: ∃ �C∈ D,
∃π = Πm

C , ∃N ⊂ N , ∃i ∈ N , ∃θ−i ∈ Θn−1, ∃θi ∈ Θ,
∃θ′

i ∈ M(θi), ∃j ∈ N \ N , and ∃θj ∈ M(θi),

[ϕi(θ
′
i, θ−i, θj)Piϕi(θi, θ−i)] ∨ [ϕj(θ

′
i, θ−i, θj)Piϕi(θi, θ−i)].

If the first condition in the final disjunction held, it would
clearly violate the assumption that ϕ satisfies S-FNP. Thus
we can assume the second condition holds, and let x =
ϕj(θ

′
i, θ−i, θj), with xPiϕi(θi, θ−i), be the object assigned to

j. Then, consider the following alternative manipulation for
agent i: report θ′′

i = θj ∈ M(θi) for i’s true identity and θ′
j =

θ′
i as a fake account. By the anonymity of the mechanism, we

have x = ϕi(θ
′′
i , θ−i, θ

′
j), so that ϕi(θ

′′
i , θ−i, θ

′
j)Piϕi(θi, θ−i).

But this contradicts that ϕ satisfies S-FNP.
On the other hand, we will show later that the the TTC

mechanism is FNP, but, in general, not S-FNP.

Proposition 4.2. In directed environments, a mechanism
ϕ satisfies SP if it satisfies FNP. However, the opposite is
not true.

Proof. The implication is straightforward. To prove that
the opposite does not hold, consider the following (anony-
mous) mechanism: when |N | ≤ 5, run the TTC mechanism,
and when |N | ≥ 6, run the DA mechanism. The mecha-
nism inherits its strategy-proofness from TTC and DA, but
does not satisfy FNP, because an agent can benefit from
using fake accounts to switch the mechanism from TTC to
DA.

4.2 Connection to Solidarity Conditions
We now propose two solidarity conditions that turn out

to have a strong connection to our two respective notions of
false-name-proofness. They are closely related to population
monotonicity, which requires that the arrival of a new agent
affects all agents originally present in the same way (see

4If there exists a false-name manipulation for i that uses k
fake identities, but not one that uses only k − 1 additional
identities, then we can consider a modified profile in which
k − 1 of the additional identities have been added, in which
case agent i has an incentive to add the single remaining
identity. Note that for this argument to work in the case
of FNP, agent i must not have been planning to take the
allocation of one of those k − 1 identities, but this can al-
ways be ensured because by unit demand, agent i takes the
allocation of at most one of the k additional identities.



e.g., Thomson [15]). Some papers, including Crawford [5],
Ehlers et al. [6], and Kesten [11], discussed similar properties
in matching.

We first introduce a stronger condition, called downward
population monotonicity, which requires that a new arrival
never improves the allocation of one of the original agents.

Definition 4.3 (DPM). A mechanism ϕ is said to sat-
isfy downward population monotonicity (DPM) if ∀ �C∈ D,
∀π = Πm

C , ∀N ⊂ N , ∀θ ∈ Θn, ∀j ∈ N \ N , and ∀θj ∈ Θ, it
holds that ∀i ∈ N, ϕi(θ)Riϕi(θ, θj).

The second condition, called downward population mono-
tonicity for weaker types, is a slight modification of down-
ward population monotonicity. It requires the downward
population monotonicity condition to hold only for those
agents originally present whose characteristics are stronger
than that of the new arrival.

Definition 4.4 (DPM for Weaker Types). A mech-
anism ϕ is said to satisfy downward population monotonic-
ity for weaker types (DPM-W) if ∀ �C∈ D, ∀π = Πm

C ,
∀N ⊂ N , ∀θ ∈ Θn, ∀j ∈ N \ N , and ∀θj ∈ Θ, it holds
that ∀i ∈ N such that M(θi) 3 θj , ϕi(θ)Riϕi(θ, θj).

We next show that these two solidarity conditions are nec-
essary and sufficient conditions for a strategy-proof mecha-
nism to satisfy, respectively, S-FNP and FNP.

Proposition 4.3. In directed environments, a mechanism
satisfies S-FNP if and only if it satisfies SP and DPM.

Proof. It is straightforward that S-FNP implies SP. Also,
if ϕ fails DPM, then there exists a situation where a new ar-
rival of some agent j raises some agent i’s utility. Then,
agent i can increase its utility by adding j as a fake identity.
Hence, S-FNP implies DPM.

Now, we show that the combination of SP and DPM im-
plies S-FNP. From DPM, ∀ �C∈ D, ∀π = Πm

C , ∀N ⊂
N , ∀θ ∈ Θn, ∀j ∈ N \ N , and ∀θj ∈ Θ, it holds that
∀i ∈ N, ϕi(θ)Riϕi(θ, θj). Furthermore, considering θ−i ∪ θj

as the type profile of agents (identities) other than i, we
have ϕi(θi, θ−i, θj)Riϕi(θ

′
i, θ−i, θj) for any θ′

i ∈ M(θi), by
SP. Combining the two preference relations results in the
condition for S-FNP.

Proposition 4.4. In directed environments, a mechanism
satisfies FNP if and only if it satisfies SP and DPM-W.

Proof. It is straightforward that FNP implies SP. Also,
if ϕ fails DPM-W, there exists a situation where a new ar-
rival of some agent j raises some agent i’s utility, where
θj ∈ M(θi). Then, agent i can increase its utility by adding
j as a fake identity. Hence, FNP implies DPM-W.

Now, we show that the combination of SP and DPM-W
implies FNP. From DPM-W, ∀ �C∈ D, ∀π = Πm

C , ∀N ⊂ N ,
∀θ ∈ Θn, ∀j ∈ N \ N , and ∀θj ∈ Θ, it holds that ∀i ∈
N such that M(θi) 3 θj , ϕi(θ)Riϕi(θ, θj). Furthermore, from
SP, we have ϕi(θi, θ−i, θj)Riϕi(θ

′
i, θ−i, θj) for any θ′

i ∈ M(θi).
Combining the two preference relations, we obtain the first
condition of FNP.

Moreover, because both θ′
i ∈ M(θi) and θj ∈ M(θi) hold,

agent i with true type θi can report θ′′
i = θj from its true

identity i, and θ′
j = θ′

i from the fake identity j. Thus,
ϕi(θi, θ−i)Riϕi(θ

′′
i , θ−i, θ

′
j) still holds. By the mechanism’s

anonymity, ϕi(θ
′′
i , θ−i, θ

′
j) = ϕj(θ

′
i, θ−i, θj) holds, and thus,

ϕi(θi, θ−i)Riϕj(θ
′
i, θ−i, θj), the second condition of FNP.

We can now combine these results with those in the previ-
ous section to obtain necessary and sufficient conditions for
a mechanism to satisfy S-FNP/FNP.

Theorem 2. In directed environments, a mechanism sat-
isfies S-FNP if and only if it satisfies SP-, RIC, and DPM.

Theorem 3. In directed environments, a mechanism sat-
isfies FNP if and only if it satisfies SP-, RIC, and DPM-W.

5. FALSE-NAME-PROOF MATCHING
In this section, we discuss specific false-name-proof match-

ing mechanisms. First, we introduce two mechanisms well-
studied in the literature: the (agent-proposing) Deferred-
Acceptance (DA) and Top-Trading-Cycle (TTC) mechanisms.

Definition 5.1 (Deferred Acceptance [8]). Each
agent i ∈ N proposes to its first-ranked object, and each
object x ∈ X rejects all agents proposing to it, except for the
one whose reported characteristic has the highest priority for
it among them. Each rejected agent then proposes to its next
most favored object, and each object again rejects all agents
including the one previously not rejected (if any), except for
the one whose reported characteristic has the highest priority
for it among them. This procedure is repeated until no agent
is rejected. Each object is allocated to the agent who is not
rejected when the procedure terminates.

Definition 5.2 (Top Trading Cycle [14]). Each
agent i ∈ N points to its first-ranked object, and each object
x ∈ X points to the agent whose reported characteristic has
the highest priority for that object. All resulting cycles are
removed, and each agent included in such a cycle receives
the object to which it is pointing. Each remaining agent
then points to its most favored object among the remain-
ing ones, and each remaining object points to the remaining
agent whose reported characteristic has the highest priority
for that object. This procedure is repeatedly applied until all
agents are removed, or all objects are removed.

5.1 Fair Matching
We first discuss fair mechanisms. It is known that DA sat-

isfies FA, while TTC does not. Furthermore, Balinski and
Sönmez [3] proved that in the traditional matching model
without characteristics, DA is the only fair mechanism that
satisfies both strategy-proofness and RIP. We now prove
that DA also satisfies S-FNP.

Theorem 4. In directed environments, DA satisfies S-
FNP.

Proof. DA is known to be strategy-proof in the tradi-
tional model, which easily implies that it satisfies SP- in our
model. Also, it was proven by Balinski and Sönmez [3] that
DA satisfies RIP. Thereby, it also satisfies RIC. Together,
these results imply that DA satisfies SP in our model. Fur-
thermore, Crawford [5] proved that DA satisfies DPM. Thus,
by Theorem 2, DA satisfies S-FNP.

5.2 Efficient Matching
We next focus on Pareto efficient mechanisms. TTC is

known to satisfy PE, while DA does not satisfy it. Also,
Morrill [12] showed that in the traditional matching model
without characteristics, TTC is the only mechanism that



satisfies strategy-proofness, PE, MB, and a natural condi-
tion called independence of irrelevant rankings. We now
show that TTC is false-name-proof.

Theorem 5. In directed environments, TTC satisfies FNP.

Proof. TTC is known to satisfy SP-, i.e., for each agent
i, misreporting only its preference Ri is not beneficial. By
Theorem 3, all that remains to show is that TTC also sat-
isfies both RIC and DPM-W.

We first show that TTC satisfies RIC, i.e., for any i, mis-
reporting a weaker characteristic c′i (with ci �C c′i) cannot
make i strictly better off. 5 Let t be the round in which i
is assigned object x when i reports ci. Also, let N t and Xt

be the sets of agents and objects that have been matched
before t when i reports its characteristic truthfully. Then we
can observe, from the definition of TTC and the fact that
i is assigned x at t, that at round t, there is no remaining
object y ∈ X \ Xt such that yPix when i reports ci.

Lemma A.1 in Appendix shows that if i reports the weaker
characteristic c′i instead, N t and Xt would still be matched
before round t, in the same way. Hence, i will not be allo-
cated an object in Xt; but we already know that there is
no object y ∈ X \ Xt such that yPix, so the manipulation
cannot make i strictly better off. This establishes RIC.

Finally, we show that TTC satisfies DPM-W. Assume an
agent j with type θj = (Rj , cj) is added to the original
economy with N agents, and consider the allocation to an
arbitrary agent i whose type θi = (Ri, ci) satisfies M(θi) 3
θj , i.e., ci �C cj . From the definition of TTC, no agent
points to a different object from the original one due to j’s
participation. Furthermore, since ciπxcj holds for all x ∈ X
and for all agents i such that ci �C cj , no object points to j
until all such i are removed. In other words, the allocations
made by TTC do not change until all such i are removed.
Thus, for any agent i satisfying ci �C cj , its allocation does
not change due to the joining of agent j. This establishes
DPM-W.

However, the following example, based on a proof by Ehlers
et al. [6], shows that TTC in general is not downward pop-
ulation monotonic, and thus, not strongly false-name-proof.

Example 5.1. Suppose there are two objects x, y and three
possible agents 1, 2, and 3. Also suppose there are only three
characteristics, c1, c2, and c3. Consider a DAG �C∈ D
such that there is only one (non-self-loop) arrow, from c1

to c2, i.e., c1 �C c2. The agents’ true types are given as
θ1 = (R1, c1), θ2 = (R2, c2), and θ3 = (R3, c3), respec-
tively. Then, consider the following priority order for each
object: c1πxc2πxc3 and c3πyc1πyc2. Also, consider the fol-
lowing preferences for the agents: yP1∅P1x, xP2yP2∅, and
xP3yP3∅.

First, consider the case where agents 2 and 3 attend. Be-
cause a trading cycle x → 2 → x is constructed, the outcome
is (∅, x, y). Next, consider the case where all three agents
attend. Since a trading cycle x → 1 → y → 3 → x is
constructed, the outcome is (y, ∅, x). Now we can see that
the arrival of agent 1 makes agent 2 strictly worse off, but
agent 3 strictly better off. Thus, TTC violates population
monotonicity in this case.

5Others have claimed that TTC satisfies RIP (e.g., [1]).
However, we were not able to find a proof of this in the
literature.

We note that this example does not exhibit a violation
of FNP. Agent 3, with true characteristic c3, would become
strictly better off due to agent 1’s joining, but cannot create
agent 1 as a fake identity, because there is no arrow from
c3 to c1 in the characteristics DAG �C. In fact, the only
possible false-name manipulation in this example is the one
by agent 1 adding agent 2 as a fake identity when originally
there are only agents 1 and 3. However, agent 1 originally
gets y, since a cycle x → 1 → y → 3 → x is constructed.
Thus, this manipulation is not beneficial to agent 1.

We now introduce a condition on a profile of priority or-
ders over characteristics, called acyclicity [11], that is neces-
sary and sufficient for TTC to satisfy DPM and S-FNP.

Definition 5.3 (Acyclicity). A profile of orders π =
(πx)x∈X ∈ Πm

C is said to be acyclic (or to satisfy acyclicity)
if for any three characteristics d, e, f ∈ C and any two objects
x, y ∈ X, it always holds that [dπxeπxf ] ⇒ [dπyf ].

When there is only one copy of each object (as we assume
in this paper), this acyclicity condition coincides with two
other properties, weak acyclicity as proposed by Ergin [7]
and a separability condition discussed by Ehlers et al [6].
The proof is omitted due to space limitations.

We now prove that TTC satisfies S-FNP if and only if we
restrict our attention to acyclic profiles of priority orders.

Theorem 6. In directed environments, TTC satisfies S-
FNP if and only if any π ∈ Πm

C satisfies acyclicity.

Proof. Kesten [11] showed that TTC satisfies popula-
tion monotonicity if and only if acyclicity holds. Also, TTC
is known to satisfy PE. Furthermore, it is easy to show that
under the condition of PE, satisfying population monotonic-
ity is equivalent to satisfying DPM. Thus, TTC satisfies
DPM if and only if acyclicity holds. Furthermore, from The-
orem 5, TTC satisfies RIC. Thus, if and only if acyclicity
holds, TTC satisfies SP-, RIC, and DPM, which is equiva-
lent to saying that TTC satisfies S-FNP by Theorem 2.

Furthermore, analogously to a result by Kesten [11], we
have the following on the relationship between DA and TTC.
The proof quickly follows from Kesten’s result.

Proposition 5.1. In directed environments, TTC is equiv-
alent to DA if and only if any π ∈ Πm

C satisfies acyclicity.

6. CONCLUSIONS
In this paper, motivated by matching in highly anony-

mous domains, we proposed an, in our opinion realistic,
model of matching with characteristics. We showed that no
mechanism satisfies strategy-proofness and the mutual-best
condition if (and only if) there is a cyclic conflict between
the directed characteristics graph and the priority of an ob-
ject. We then introduced a natural restriction on agents’
misreports of characteristics and objects’ priorities, allowing
agents only to misreport weaker characteristics and requir-
ing objects to always prefer stronger characteristics. Under
this restriction, both DA and TTC satisfy a version of false-
name-proofness in which an agent can only report weaker
types for all of her identities. Furthermore, DA also satisfies
a stronger version of false-name-proofness where an agent
can report any characteristics for its fake identities, while
TTC fails to satisfy this without an acyclicity assumption
on priorities.



We are encouraged by these positive results on the de-
sign of false-name-proof mechanisms in this domain, espe-
cially as false-name-proofness often leads to negative results
in other domains. The model could be generalized in several
directions. In this paper, we have focused only on one-to-
one matching, where there is only one copy of every object,
with strict preferences of agents and responsive priorities of
objects. A natural direction is to extend to one-to-many
matching [11], where there can be more than one copy of
an object. Also, allowing indifferences on preferences [13, 2]
seems to be an important extension. Finally, we may ask
what the essential elements of the model here are that allow
us to obtain positive results on false-name-proofness, and
see if we can use these to obtain similar positive results on
false-name-proofness in other domains.
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APPENDIX
A. PROOF OF THEOREM 5

Lemma A.1. Consider directed environments. For any
�C∈ D, any π ∈ Πm, any N ⊆ N , any θ ∈ Θn, and any
i ∈ N , let t be the round in TTC when i, truthfully reporting
ci as its characteristic, is allocated object x ∈ X. Also, let
N t and Xt be the sets of agents and objects, respectively,
that are matched before round t when i reports ci. Then, for
any c′i ∈ C such that ci �C c′i, if i reports c′i instead of ci,
N t and Xt are still matched in the exact same way.

Proof. We note that since i is assigned x at t, i 6∈ N t

and x 6∈ Xt. We also note that, when i reports ci, in the
first t−1 rounds, no agent in N t ever points outside Xt, and
no object in Xt ever points outside N t. This is because if an
agent/object points to an object/agent, the former cannot
be allocated before the latter is allocated.

We now prove by induction on round s (from s = 1 to
t − 1) that

1. any cycle constructed in round s when i reports ci is
also constructed in round s when i reports c′i;

2. any agents and objects in N t and Xt that have not yet
been allocated in round s when i reports ci have also
not yet been allocated in round s when i reports c′i.

Suppose this is true for all s < k ≤ t − 1; we will prove it
for s = k. At the beginning of this round, by the induction
assumption, the set of remaining agents and objects in N t

and Xt is the same, regardless of whether i reports ci or c′i.
Moreover, as we observed above, if i reports ci, then at the
beginning of round s = k, all remaining agents and objects
in N t and Xt point to other objects and agents in Xt and
N t. But then, in the alternative world where i reports c′i, all
remaining agents and objects in N t and Xt must point to
the same objects and agents at the beginning of this round,
because (1) by the induction assumption any agent or ob-
ject that is still available in this alternative world is also still
available at this point in the original world, (2) agents’ pref-
erences are the same in both worlds, and (3) object priori-
ties are the same in both worlds, with the possible exception
that i may be ranked lower in the alternative world—but no
object in Xt points to i in this round even in the original
world. It immediately follows that all the cycles formed in
the original world in this round (which are all contained in
N t and Xt) are also formed in the alternative world, and no
other agents and objects in N t and Xt are matched in this
round in the alternative world. This completes the proof by
induction.


