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Abstract. We study infinitely-repeated two-player zero-sum games with
one-sided private information and a persistent state. Here, only one of
the two players learns the state of the repeated game. We consider two
models: either the state is chosen by nature, or by one of the players.
For the former, the equilibrium of the repeated game is known to be
equivalent to that of a one-shot public signaling game, and we make this
equivalence algorithmic. For the latter, we show equivalence to one-shot
team max-min games, and also provide an algorithmic reduction. We
apply this framework to repeated zero-sum security games with private
information on the side of the defender and provide an almost complete
characterization of their computational complexity.
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1 Introduction

Private information can give one a strategic advantage over other players in
a game. However, if play is repeated, then taking advantage of one’s private
information through one’s actions risks leaking that information and thereby
the advantage. This is nicely illustrated in the movie The Imitation Game, in
which British intelligence, having cracked the Enigma code, strategically decides
not to act on some of its information, in order to preserve its informational
advantage [15]. Less dramatically, consider a buyer and a seller that interact
repeatedly. The seller has a higher-quality and a lower-quality version of the
item for sale, and offers these at different prices. The buyer may, at the current
prices, prefer the higher-quality version – but worry that choosing this option will
reveal her (persistently) high valuation/type, causing the seller to raise prices in
the future, and therefore choose the cheaper low-quality version instead.

In equilibrium, to what extent should a party with an informational advan-
tage refrain from acting on this information? This is the question we set out

? Supported by NSF Award IIS-1814056.
?? Supported by NSF CAREER Award CCF-1350900.



2 Conitzer et al.

to address in this paper. It is, in its most general form, a challenging question
to answer. The state of the game may change over time; there may be a mul-
tiplicity of equilibria; the discount factor matters; and so on. Thus, answering
the question in general would require us to simultaneously resolve a number of
fundamental questions in (algorithmic) game theory. In this paper, in order to
stay focused on the question at hand, we focus on the following special case:

– The state of the game is persistent, i.e., it does not change over time (the
game is repeated rather than stochastic).

– Only one player has private information, and it does not change.
– The game is two-player and zero-sum.
– Each agent cares about their long-term average payoff.

Even in this setting, it is easy to see that the optimal answer is in general not
one of the two extremes – either exploit information fully, or never use it. Some
information may not be actionable for the adversary so that one can simply take
advantage of it and not worry about revealing it. On the other hand, for other
information, it is possible that the adversary would be able to make even better
use of it than the initially better-informed player. In that case, the benefits of
getting to use the information for one round, without the adversary being able
to use it in that particular round, will be completely wiped out by the infinitely
many remaining rounds in which the adversary can use the information better.

The technical and conceptual foundations for the study of repeated games of
incomplete information with persistent state were laid by [2]. They consider a
persistent state of the game drawn by nature from a common prior, and agents
who receive private signals regarding this state. [17] provides an in-depth ac-
counting of the special case of this model with two players and zero-sum payoffs.
The aforementioned texts reveal that the even-more-special case we consider,
that of repeated two-player zero-sum games with one-sided private information,
admits an essentially-unique equilibrium (in the sense of payoff equivalence) with
an elegant, simple, and instructive characterization which is robust to modeling
assumptions. In particular, the equilibrium of the repeated two-player game is
equivalent, in a precise technical sense, to the equilibrium of a one-shot public
signaling game with three players. Moreover, this characterization is robust to
how one chooses to model long-term payoffs; say through using a discount factor,
taking the limit of the finite repeated game as the number of stages grows to in-
finity, or considering the infinite game directly. Even mild generalizations of this
special case, for example to more players, non-zero-sum payoffs, or incomplete
information on both sides, lead to the collapse of this characterization, and such
settings are not yet fully understood to the best of our knowledge. This further
cements our model as the timely choice for algorithmic study.

1.1 Our Contributions

We examine repeated two-player zero-sum games with one-sided private infor-
mation from the perspective of algorithmic game theory, both in general and as
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exemplified by application to the influential domain of security games [19]. We
consider both the case when the state is drawn by nature — this is the classical
model in [2, 17] — as well as a natural, and to our knowledge novel, variant in
which the (typically randomized) state is chosen by one of the players, who is
therefore the informed party. We refer to this variant as the allocation model.

The domain-agnostic part of the paper is organized as follows. For the clas-
sical model, where the game state is drawn by nature, we first provide (a) our
own exposition of the previously-described equilibrium characterization in terms
of one-shot public signaling games, one that is particularly tailored to an algo-
rithmic game theory audience and makes explicit the connection to recent work
on public signaling games (e.g., [6–8]). Then, we turn to our novel contribu-
tions. We provide (b) an efficient reduction to equilibrium computation in the
related one-shot public signaling game to make the equilibrium characterization
constructive. For the allocation model, where one of the players determines the
(persistent) state, we provide (a’) a characterization of the equilibrium of the
repeated game as equivalent, in a precise technical sense, to the equilibrium of
a one-shot three-player team max-min game, as first studied by [18]; (b’) an
efficient reduction to computing the equilibrium of the associated team max-
min game. We note that, in both (b) and (b’), the uninformed player’s strategy
is particularly nontrivial, and involves efficiently solving a related instance of
Blackwell’s approachability [1, 4]. We also note that the reductions in (b) and
(b’) are “reversible”, since both the repeated game and the associated one-shot
game share the same game value. Finally, we (c) show that the allocation model
is computationally easier than the classical model by way of a polynomial time
reduction. We note that this is not reversible, and the complexity relationship
is strict, as evidenced by our results for security games which we describe next.

We then examine repeated zero-sum security games with private information
on the side of the defender. In the security games we consider, the state is a
deployment of “treasures” to “locations”, a defender strategy is a deployment
of “defensive resources” to the locations, and the attacker’s strategy is a loca-
tion to attack. Such security games are particularly versatile exemplars for both
the classical and allocation models of repeated games with persistent state. The
classical model abstracts challenges faced in recent applications to environmental
protection [9, 20, 21], where the locations of environmental assets (the treasures)
are determined by nature and slow to change over time. The allocation model
can be applied to armed conflict scenarios in which supply-chain assets (the
treasures) must be deployed covertly to locations early on in the conflict, and
can not be easily moved from stage to stage. We show that the classical model
of repeated security games is strongly NP-hard even when treasures, locations,
and defensive resources are homogeneous. A more nuanced picture emerges for
the allocation model of repeated security games: the fully homogeneous case is
tractable, as is the case where only the treasures are heterogeneous. The fully
heterogeneous case is strongly NP-hard. Remaining cases are either weakly or
strongly NP-hard, and we provide an almost complete accounting of the com-
putational complexity of all combinations.
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2 Preliminaries

2.1 One-shot Games

A one-shot two-player zero-sum game of complete information is described by a
utility function U : S1 × S2 → R, where Si is the family of pure strategies for
player i, and U(s1, s2) is the utility of player 1 when player 1 plays s1 ∈ S1 and
player 2 plays s2 ∈ S2. Implicitly, the utility of player 2 is −U(s1, s2). A mixed
strategy for player i is si ∈ ∆(Si), where ∆(Si) is the set of distributions over Si.
A one-shot two-player Bayesian zero-sum game with incomplete information on

one side
(
Π,
{
Uθ
}
θ∈Θ

)
is given by: (1) pure strategy sets S1 and S2 for players 1

and 2 respectively; (2) a family Θ of states of nature; (3) for each state θ ∈ Θ, a
one-shot two-player zero-sum game of complete information Uθ; and (4) a prior
distribution Π over states of nature Θ.

In such a game, nature draws θ from Θ according to the prior Π and then
player 1 learns the state θ while player 2 is uninformed about the state. Both
players simultaneously choose their strategies si (while s1 can depend on θ but
s2 cannot), which results in a utility of Uθ(s1, s2) to player 1 and −Uθ(s1, s2) to
player 2. Moreover, given a distribution Π over Θ, we denote by UΠ the game
induced by Π such that player 1’s payoff is UΠ(s1, s2) =

∑
θ∈ΘΠ(θ) ·Uθ(s1, s2).

We restrict attention to games where Θ, S1, S2 are finite, or at least compact.
All mixed Nash equilibria of such a game are payoff equivalent to the Nash
equilibrium in which each player employs their maximin mixed strategy [14].

2.2 Bayesian Repeated Games

We now describe the classical model of Bayesian repeated games that we con-
sider, henceforth just Bayesian repeated games for convenience. Here, a Bayesian
zero-sum game is repeated infinitely many times, with incomplete information
on one side. We call the one-shot game the stage game, and refer to each iteration
as a stage. We replicate the standard assumptions made by [2, 17], as follows.
We assume that the state of nature is persistent : it does not change from stage
to stage.4 Moreover, we assume that players observe each others’ pure strategies
after each stage, but do not observe the payoffs directly. This assumption is nec-
essary for the model to be interesting: If players can observe the payoffs directly,
then the uncertainty in the game is superfluous, as players can eventually recon-
struct relevant entries of the game matrix and the state of nature. Obscuring
payoffs in this manner can be viewed as abstracting a situation where payoffs are
delayed till the end of the (long, many stage) game. Formally, given a two-player

Bayesian zero-sum stage game Grepeated =
(
Π,
{
Uθ
}
θ∈Θ

)
as described above,

the Bayesian repeated game proceeds as follows:

4 If the state of nature is drawn afresh at each stage, then repetition is superfluous
for a zero-sum game: the folk theorem and minimax theorem imply that repeating
the minimax equilibrium at each stage is the essentially unique equilibrium of the
repeated game (up to payoff equivalence).
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1. θ is drawn by nature from Π and player 1 learns θ while player 2 does not;
2. The stage game Uθ is repeated infinitely many times. After each stage, each

player observes the pure strategy played by the other player, but does not
directly observe the utility gained.

A history of play with T stages HT =
(
(s11, s

1
2), (s22, s

2
2), . . . , (sT1 , s

T
2 )
)

is a finite
sequence, where sti is player i’s pure strategy at stage t. For convenience, we
will use the vectorized form without superscript ~si = (s1i , · · · , sTi ) to represent
the strategy of player i. A pure strategy for player 1 in the repeated game is a
function which maps the state θ and an observed history H to player 1’s strategy
in the next stage of the repeated game, while a pure strategy for player 2 simply
maps the observed history H to player 2’s strategy in the next stage. A mixed
strategy is naturally a distribution over such functions.

2.3 Bayesian Allocation Games

In addition to classical Bayesian repeated games, we introduce a novel vari-
ant, the Bayesian allocation game, in which the distribution Π of the states is
determined by player 1 instead of the nature. Formally, given one-shot games

Galloc =
({
Uθ
}
θ∈Θ

)
, the Bayesian allocation game proceeds as follows:

1. Player 1 selects a prior Π over Θ that player 2 cannot observe;
2. θ is drawn by nature from Π and player 1 learns θ while player 2 does not;
3. The stage game Uθ is repeated infinitely many times. After each stage, each

player observes the pure strategy played by the other player, but does not
directly observe the utility gained.

In the Bayesian allocation game, in addition to choosing the actions to play
at each stage, player 1’s strategy also includes a choice of the prior Π ∈ ∆(Θ).

2.4 Utility and Equilibrium Model

We consider the utility/equilibrium models deduced from the infinitely-repeated
game perspective for agents that are interested in their long-term payoffs. Each
player’s expected utility is the limit, as T → ∞, of his average expected utility
over the first T stages alone. Though this limit may not exist in general, we can
nevertheless define a value and equilibrium as in [2, 17]. The max-min value of the
game is the supremum over all player 1’s mixed strategies, of the infimum over
player 2’s mixed strategies, of the limit infimum as T →∞ of player 1’s average
expected utility. Player 1’s max-min strategy is that attaining this supremum.
We can similarly define the min-max value of the game and Player 2’s min-max
strategy. When both the max-min and min-max values are equal we refer to them
as the value of the game, and the corresponding max-min and min-max strategies
form the equilibrium. For a Bayesian repeated game Grepeated and a Bayesian
allocation game Galloc, we denote their game value by νrepeated(Grepeated) and
νalloc(Galloc), respectively. Several other natural utility/equilibrium models are
equivalent to this one, and we defer the detailed discussions to the full version.
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Example 1. Consider a zero-sum security game with 3 identical locations (de-
noted by `A, `B , `C) and 2 identical treasures, in which the defender can defend
1 location. The defender determines how to allocate the treasures to the loca-
tions (once) and how to defend them (every round). The attacker earns one unit
of payoff if she attacks an undefended location with a treasure, and zero oth-
erwise. For comparison, in the one-shot Bayesian allocation game (i.e., if there
is only a single round), it is straightforward to verify that the optimal strategy
for the defender is to allocate two treasures uniformly at random, and for each
realization, defend each of the two locations with a treasure with probability 1

2 ,
leading to an expected payoff 1

3 for the attacker. However, it turns out that in
the infinitely-repeated version, an optimal strategy (unique up to symmetries)
to allocate the treasures for the defender is as follows:

– Allocate a treasure to `A with probability 1;

– Allocate the remaining treasure to `B with probability α =
√
5−1
2 ≈ 0.618

and to `C with probability 1− α = 3−
√
5

2 ≈ 0.382.

In each stage of the repeated game, the defender defends `A with probability α
(so that the attacker’s utility of attacking this location is 1−α), and defends `B
with probability 1 − α (so that the attacker’s utility of attacking this location
is α2 = 1− α). The defender never defends `C (so that the attacker’s utility for
attacking this target is also 1− α).

The above example illustrates a fundamental difference between a one-shot
Bayesian allocation game and its infinitely-repeated counterpart. In the one-
shot version, the optimal strategy for the defender correlates the allocation and
the defensive strategy, and thus, the game is reduced to a two-player zero-sum
normal-form game so that the minimax theorem can be applied. However, in the
infinitely-repeated version, we will show that in the equilibrium, the allocation
of treasures and the defensive strategy are independent, as in the example above.
In other words, there exists no benefit for the defender to correlate the allocation
and the defensive strategy in the infinitely-repeated Bayesian allocation game.
Note that the attacker’s payoff is larger in the infinitely-repeated version as

1 − α = 3−
√
5

2 > 1
3 . Intuitively, this is because the attacker can observe the

defender’s historical defensive actions in the infinitely-repeated game. This is
disadvantageous for the defender: either the defensive actions over time give
away where the treasures are, or these actions have to be chosen in such a
way that they do not, which is a costly constraint. We also emphasize that the
game value is an irrational number, demonstrating that the infinitely-repeated
Bayesian allocation game cannot be solved by a linear program.

3 Reductions from Repeated Games to One-shot Games

In this section, we discuss the relationship between one-shot games and both our
models of infinitely repeated games, so that one can solve the infinitely repeated
game by first solving the corresponding one-shot game. The equivalence between
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classical Bayesian repeated games and public signaling games has already been
shown by [2] and [17]; for completeness, we will fully elaborate on this equivalence
first in Section 3.1. This will set the stage for our novel results on the equivalence
between Bayesian allocation games and team max-min games (Section 3.2), and
on the computational complexity of both models (Section 3.3). The omitted
proofs in this paper are deferred to the full version.

3.1 Equivalence between Bayesian Repeated Games and Public
Signaling Games (Reproducing Known Results)

We begin with reproducing the known result relating the classical model of
Bayesian repeated games to public signaling games [2, 17].

Definition 1 (Public Signaling Game [6–8]). Consider a one-shot two-

player zero-sum game Gsignal =
(
Π,
{
Uθ
}
θ∈Θ

)
where players a-priori know

nothing about θ besides its prior Π. We consider a credible principal who is
privy to the realization of θ. The principal designs a public signaling scheme: a
randomized function ϕ : Θ → ∆(Σ) mapping states of nature to an abstract set
of signals Σ. The order of events is as follows:

– The principal commits to ϕ;
– The nature draws θ ∼ Π and the principal learns θ;
– The principal invokes the signaling scheme to obtain a signal σ ∼ ϕ(θ);
– Both players learn σ, and update their beliefs about the state θ, denoted as

Πϕ,σ, according to the Bayes’ rule: Πϕ,σ(θ) = Pr[ϕ(θ)=σ]·Π(θ)∑
θ′∈Θ Pr[ϕ(θ′)=σ]·Π(θ′) .

– Players play the equilibrium strategies in the zero-sum game UΠϕ,σ .

We assume that the principal designs ϕ so as to maximize player 1’s expected
utility, the maximum value of which, denoted by νsignal(Gsignal), is the game
value of the public signaling game.

It turns out the equilibrium in Bayesian repeated games corresponds to the
solution of the above signaling problem in a precise sense, stated below [2, 17].

Theorem 1. νrepeated(Grepeated) = νsignal(Gsignal) when Grepeated = Gsignal.

We will prove Theorem 1 by constructing the equilibrium strategy ~s∗1, ~s∗2 for
player 1 and 2, respectively in the Bayesian repeated game Grepeated from the
solution of the public signaling game Gsignal. For convenience, in the Bayesian
repeated game, we will refer to player 1 (the informed player) as the leader and
player 2 (the uninformed player) as the follower.

In particular, we will show that in the Bayesian repeated game Grepeated, if
the leader plays strategy ~s∗1, then no matter how the follower reacts, the leader
can guarantee himself an average utility at least the game value νsignal(Gsignal)
in the public signaling game Gsignal over the first T stages as T → ∞. On the
other hand, if the follower plays strategy ~s∗2, then no matter how the leader reacts,
the follower can guarantee the leader an average utility at most νsignal(Gsignal)
over the first T stages as T →∞.
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Lemma 1. When Grepeated = Gsignal, in the Bayesian repeated game Grepeated,
consider the following strategy for the leader:

– upon learning the state θ of the nature, the leader invokes the optimal sig-
naling strategy ϕ of the public signaling game Gsignal to obtain σ ∼ ϕ(θ);

– the leader then discards all information other than σ, i.e., behaves as if
his belief is Πϕ,σ, and plays the maximin strategy in the game UΠϕ,σ , i.e.,
argmaxs1 mins2 UΠϕ,σ (s1, s2), repeatedly.

This strategy can guarantee the leader an average expected utility νsignal(Gsignal).

Although the strategy for the leader is easy to construct from the signaling
scheme of the public signaling game, the follower’s strategy is not so straight-
forward. The main difficulty is that there does not exist a credible principal in
the repeated game as in the public signaling game, and therefore, the follower is
uncertain about whether the leader exactly follows the scheme. In particular, the
leader might have incentive to deviate by sending a different signal: conditioned
on his type θ, choose σ∗ such that σ∗ = argmaxσ∈Σ Uθ (s∗1(σ), s∗2(σ)), where

s∗1(σ) = argmax
s1

min
s2
UΠϕ,σ (s1, s2) and s∗2(σ) = argmin

s2

max
s1
UΠϕ,σ (s1, s2).

In other words, the leader can send a signal σ∗ that gives himself the maximum
utility conditioned on θ. Therefore, the follower’s strategy cannot rely on the
possibly non-credible signaling scheme.

To circumvent this difficulty, we will construct an adaptive strategy for the
follower, which does not depend on the non-credible signal σ but only depends
on the prior Π and the history of play. Our approach relies on the solution of the
dual program of the public signaling game. For convenience, given a distribution
Π over Θ, let f(Π) = maxs1 mins2 UΠ(s1, s2) be the game value of the induced
game UΠ . The problem of computing the optimal public signaling scheme can be
formulated as the following linear program with infinitely many variables x(Π ′)
for Π ′ ∈ ∆(Θ) [6–8]:

max
∑
Π′∈∆(Θ) x(Π ′) · f(Π ′)

s.t.
∑
Π′∈∆(Θ) x(Π ′) ·Π ′(θ) = Π(θ) ∀θ ∈ Θ

x(Π ′) ≥ 0 ∀Π ′ ∈ ∆(Θ)

(1)

Intuitively, a signaling scheme can be viewed as a convex decomposition of the
prior Π into a collection of posteriors {Π ′} [8, 12]. Based on the primal, we can
construct its dual with |Θ| variables y(θ) for θ ∈ Θ as follows:

min
∑
θ∈Θ y(θ) ·Π(θ)

s.t.
∑
θ∈Θ y(θ) ·Π ′(θ) ≥ f(Π ′) ∀Π ′ ∈ ∆(Θ)

(2)

Let x∗ and y∗ be the solution of the primal and the dual, respectively. By strong
duality,

∑
Π′∈∆(Θ) x

∗(Π ′) · f(Π ′) =
∑
θ∈Θ y

∗(θ) · Π(θ) = νsignal(Gsignal). We

will interpret y and Π as vectors such that ~y =
(
y(θ1), · · · , y(θ|Θ|)

)
and ~Π =(

Π(θ1), · · · , Π(θ|Θ|)
)
. The inner product 〈~y, ~Π〉 is defined as

∑
θ∈Θ y(θ) ·Π(θ).

The next proposition directly follows the feasibility of ~y∗ and strong duality:
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Proposition 1. For any prior ~Π in the public signaling game, there exists ~y∗

such that 〈~y∗, ~Π〉 = νsignal(Gsignal) and ∀Π ′ ∈ ∆(Θ), 〈~y∗, ~Π ′〉 ≥ f(Π ′).

Hence, if the follower can ensure that for any strategy ~s1 deployed by the
leader, there exists an adaptive mixed strategy ~s2 for the follower such that,

∀θ ∈ Θ, limT→∞

∑T
t=1 U

θ(st1,s
t
2)

T ≤ y∗(θ), (3)

then the average utility of the leader as T →∞ would be

limT→∞
∑
θ∈ΘΠ(θ) ·

∑T
t=1 U

θ(st1,s
t
2)

T ≤
∑
θ∈ΘΠ(θ) · y∗(θ) = νsignal(Gsignal).

To prove (3), it is equivalent to show that R(~y∗) = {~v | ~v ≤ ~y∗} is approachable.

Definition 2 (Blackwell’s Approachability [4]). Given a convex set R of
vectors of utilities, we say R is approachable from the perspective of the follower,
if for any strategy of the leader ~s1, there exists an adaptive strategy ~s2 for the

follower such that limT→∞ dist
(

1
T

∑T
t=1

~U(st1, s
t
2),R

)
= 0 almost surely, where

~U(s1, s2) =
(
Uθ1(s1, s2), · · · ,Uθ|Θ|(s1, s2)

)
and dist(~u,R) = min~v∈R ‖~v − ~u‖.

Theorem 2 ([2, 17]). R(~y∗) = {~v | ~v ≤ ~y∗} is approachable.

To establish the approachability ofR(~y∗), we first consider a halfspaceH( ~Π ′, b)

such that ~v ∈ H( ~Π ′, b) if and only if 〈 ~Π ′, ~v〉 ≤ b.

Lemma 2. A halfspace H( ~Π ′, b) is approachable if f(Π ′) ≤ b.

Theorem 3 ([4]). A convex set R is approachable if and only if all halfspaces
containing R are approachable.

All that remains to show is that all halfspaces containingR(~y∗) are approachable.

Lemma 3. All halfspaces containing R(~y∗) = {~v | ~v ≤ ~y∗} are approachable.

Proof. Notice that any minimal halfspace containing R(~y∗) must cross ~y∗ by
the construction of R(~y∗). Therefore, such a halfspace can be represented by

H( ~Π ′, 〈 ~Π ′, ~y∗〉) with Π ′ ∈ ∆(Θ). By Proposition 1, f(Π ′) ≤ 〈 ~Π ′, ~y∗〉, and there-

fore, by Lemma 2, H( ~Π ′, 〈 ~Π ′, ~y∗〉) is approachable.

Combining Theorem 3 and Lemma 3, we finish the proof of Theorem 2. We
can then apply Blackwell’s construction [4] to obtain an adaptive strategy for
the follower that approaches R(~y∗) almost surely.

Intuitively, at stage t, if 1
t−1

∑t−1
τ=1

~U(sτ1 , s
τ
2) 6∈ R(~y∗), then the follower first

finds a halfspace H( ~Π ′, 〈 ~Π ′, ~y∗〉) that separates 1
t−1

∑t−1
τ=1

~U(sτ1 , s
τ
2) and R(~y∗).

Given such a Π ′, the follower plays the minimax strategy of UΠ′ at stage t, and
then the distance between the vector of average utilities and R(~y∗) will become
smaller after stage t. Observe that the follower’s strategy can be computed from
the prior Π, the game Grepeated, and the history of play. In doing so, it guarantees
that the expected average utility of the leader is at most νsignal(Gsignal) in the
limit, and Proposition 2 follows:
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Proposition 2. In a Bayesian repeated game Grepeated =
(
Π,
{
Uθ
}
θ∈Θ

)
, given

~y∗ satisfying Proposition 1 and an oracle to compute the minimax strategy of
the zero-sum game UΠ′ for all Π ′ ∈ ∆(Θ), there exists an efficient algorithm to
construct the follower’s optimal strategy.

We will elaborate the complexity of computing ~y∗ in Section 3.3.

3.2 Equivalence between Bayesian Allocation Games and Team
Max-min Games

Definition 3 (Team Max-min Game [18]). In a zero-sum team max-min

game Gteam =
({
Uθ
}
θ∈Θ

)
, in addition to player 1 and 2, there is a player 3

whose set of pure strategies is Θ. Player 1 and player 3 form a team and share
the same utility such that when player 1 plays s1 ∈ S1, player 2 plays s2 ∈ S2,
and player 3 plays θ ∈ Θ, the utility for both player 1 and player 3 is Uθ(s1, s2),
while the utility for player 2 is −Uθ(s1, s2). A team max-min equilibrium is a
Nash equilibrium that maximizes the team’s utility and we denote its game value
by νteam(Gteam): νteam(Gteam) = maxs1∈∆(S1),Π∈∆(Θ) mins2∈∆(S2) UΠ(s1, s2).

We emphasize that player 1’s strategy and player 3’s strategy are not allowed
to be correlated; otherwise, the team max-min game degenerates to a classic
two-player zero-sum game in which player 1 and 3 can be treated as a single
player. [18] show that a team max-min equilibrium always exists. It turns out
the equilibrium in Bayesian allocation games corresponds to the solution of the
above team max-min games in a precise sense, stated below.

Theorem 4. νalloc(Galloc) = νteam(Gteam) when Galloc = Gteam.

To prove Theorem 4, we will construct strategies for players in the Bayesian
allocation game from the equilibrium strategies in the team max-min game.

Lemma 4. When Galloc = Gteam, let s∗1, s
∗
2, Π

∗ be the equilibrium strategies for
the team max-min game Gteam. In the Bayesian allocation game Galloc, consider
the following strategy for the leader:

– set the prior Π to be Π∗; then repeatedly play strategy s∗1 for every stage.

This strategy can guarantee the leader an average expected utility νteam(Gteam).

In comparison to the Bayesian repeated games in which the follower knows
the prior, the follower does not even know the prior set by the leader in the
Bayesian allocation game. To overcome this obstacle, observe that in the Bayesian
repeated game, the approachability of a convex set is a property that only
depends on the collection of games

(
{Uθ}θ∈Θ

)
but independent of the prior.

Motivated by this observation, we show that R(νteam(Gteam) · ~1) = {~v | ~v ≤
νteam(Gteam) ·~1} is approachable where ~1 is a vector of all ones.

Lemma 5. R(νteam(Gteam) ·~1) is approachable.

It is straightforward to show that, when R(νteam(Gteam) ·~1) is approachable,
for any prior Π ∈ ∆(Θ), the average utility of the leader is at most νteam(Gteam).
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Fig. 1. The relationships of computational problems, assuming the minimax strategy
of UΠ can be computed efficiently for all Π ∈ ∆(Θ): the arrows point to problems that
are computationally easier.

3.3 Computational Complexity of the Follower’s Optimal Strategy

As demonstrated before, constructing the follower’s optimal strategy in Bayesian
repeated games requires a solution to the dual program (2). Hence, it is not
immediate that one can efficiently construct the follower’s optimal strategy if
the public signaling game is efficiently solvable. Here, we say an algorithm is
efficient if the running time of the algorithm is polynomial in terms of the number
of states |Θ|, and the number of pure strategies |S1|+ |S2|.

We manage to show that, when the minimax strategy of UΠ can be computed
efficiently for all Π ∈ ∆(Θ), in both Bayesian repeated games and Bayesian
allocation games, the follower’s optimal strategy can be efficiently constructed if
the corresponding game values are given. We further show that team max-min
game is computationally easier than the public signaling game, and therefore,
Bayesian allocation game is computationally easier than the Bayesian repeated
game. Figure 1 summarizes the relationships of the computational problems
discussed in this section, while the proofs are deferred to the full version.

4 Bayesian Repeated Security Games

In Section 3, we have shown that Bayesian repeated games can be reduced to
public signaling games, while Bayesian allocation games can be reduced to team
max-min games. However, it has been shown that both public signaling games
and team max-min games are computationally intractable for general zero-sum
games and even worse, no FPTAS is possible [5, 8]. Particularly, public signaling
games do not even admit PTAS [3, 16].

Motivated by the applications in the domain of repeated security games, we
will concern ourselves with repeated games where the stage game is a security
game of a particularly simple form. The one-shot complete-information security
games are described by a set L of locations, a set M of treasures, and a set R
of defensive resources. For convenience, we use ⊥ to denote a null treasure or a
null defensive resource. v : L× (M ∪⊥)→ R≥0 is a location-treasure importance
function such that v(`,m) characterizes the utility loss of the defender if location
` ∈ L with treasure m ∈ M allocated is attacked without defense. In addition,
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there is a defense-quality function q : L× (M ∪⊥)× (R∪⊥)→ {0, 1} such that
q(`,m, r) characterizes the effectiveness of allocating defensive resource r ∈ R to
defend location ` ∈ L that hosts treasure m. Note that in our setting, a defensive
resource is either 100% effective for a combination of location and treasure or
totally useless. For a null treasure, we have v(`,⊥) = 0 for all `, and for a null
defensive resource, we have q(`,m,⊥) = 0 for all ` and m.

A state of nature is a matching θ : L → M that maps the locations to
treasures such that for any i, j ∈ L with i 6= j, θ(i) 6= ⊥, and θ(j) 6= ⊥, we
have θ(i) 6= θ(j). A pure strategy for the defender is also a matching D : L→ R
that maps the locations to the defensive resources such that for any i, j ∈ L with
i 6= j, D(i) 6= ⊥, and D(j) 6= ⊥, we have D(i) 6= D(j). Finally, a pure strategy for
the attacker is a single location a ∈ L to attack. A mixed strategy is naturally a
distribution over such functions. The defender’s utility under θ when the defender
plays D and the attacker plays a is Uθ(D, a) = −

(
1−q

(
a, θ(a), D(a)

))
·v
(
a, θ(a)

)
,

while the attacker’s utility is simply −Uθ(D, a).
We say the treasures are homogeneous if for all m ∈ M , v(`,m) equals to

some constant for all ` ∈ L; the locations are homogeneous if for all ` ∈ L,
v(`,m) equals to some constant for all m ∈ M ; and the defensive resources are
homogeneous if q(`,m, r) = 1 for all ` ∈ L, m ∈ M , and r ∈ R. If the condition
of homogeneity is not satisfied, we say they are heterogeneous.

We analyze the complexity of repeated security games under the contexts
of both Bayesian repeated games and Bayesian allocation games. In Bayesian
repeated games, an algorithm is efficient if its running time is in polynomial
of |Θ|, |L|, |M |, and |R|; while in Bayesian allocation games, an algorithm is
efficient if its running time is in polynomial of |L|, |M |, and |R|.

Proposition 3. Given the marginals of Π, the optimal strategies for both the
defender and the attacker in the security game UΠ can be computed efficiently.

However, for our class of security games with a general prior Π, computing
the game value of the Bayesian repeated games is computationally intractable.

Theorem 5. It is strongly NP-hard to compute the game value of the Bayesian
repeated games with a security game as the stage game, even when all of trea-
sures, locations, and defensive resources are homogeneous. Moreover, no FPTAS
is possible. Consequently, it is strongly NP-hard to compute any representation
of the equilibrium which permits computing the game value.

5 Bayesian Allocation Security Games

We turn to Bayesian allocation games with a security game as the stage game.
It turns out that a Bayesian allocation game with a security game as the stage
game can be efficiently solved when only the treasures are heterogeneous.

Theorem 6. There exists an efficient algorithm to compute the game value and
the defender’s optimal strategy of a Bayesian allocation game with a security
game as the stage game, when only the treasures are heterogeneous.
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Fig. 2. The computational complexity of Bayesian allocation games with a security
game as the stage game: the arrows point to more general versions of the problem.

Moreover, the following lemma illustrates that one can efficiently construct
the attacker’s strategy when the game value is given.

Lemma 6. Given the game value of a Bayesian allocation game with a secu-
rity game as the stage game, there exists an efficient algorithm to compute the
attacker’s optimal strategy.

Therefore, one can efficiently construct both the defender’s optimal strategy
and the attacker’s optimal strategy when only the treasures are heterogeneous.
However, going beyond, the problem becomes computationally intractable.

Theorem 7. It is weakly NP-hard to compute the game value of the Bayesian
allocation games with a security game as the stage game, when only the locations
are heterogeneous. Moreover, there exists a pseudo-polynomial time algorithm
that can compute the game value.

Theorem 8. It is strongly NP-hard to compute the game value of the Bayesian
allocation games with a security game as the stage game, when only the defensive
resources are homogeneous, or only the locations are homogeneous.

There are three other settings that have not been discussed: (1) heterogeneous
everything; (2) only treasures are homogeneous; and (3) only defensive resources
are heterogeneous. For the setting in which everything is heterogeneous, it is
also strongly NP-hard to compute the game value since it is a more general
setting than the settings in which only defensive resources are homogeneous or
only locations are homogeneous. As for the setting in which only treasures are
homogeneous, it is at least weakly NP-hard to compute the game value since it is
a more general setting than the case in which only locations are heterogeneous.
We leave it as an open question to settle whether it is strongly NP-hard. Finally,
for the setting in which only defensive resources are heterogeneous, this setting
is not well-defined: since the locations and the treasures are homogeneous, a
defensive resource should be either effective or ineffective for any combination of
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the locations and the treasures. Consequently, the defender can simply eliminate
the ineffective defensive resources to focus on effective ones, which reduces the
problem to the case in which everything is homogeneous.
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Appendix

A Utility and Equilibrium Model

There are three main utility/equilibrium models when agents are interested in
their long-term payoffs. All three are equivalent for repeated two-player zero-sum
games with one-sided private information, whether in the classical or allocation
models.

– Asymptotic finitely-repeated game: Each player’s utility is the average of
his utilities from the first T stages of the game. Since the stage game is
finite/compact, so is the T -stage game, and there is an essentially unique
equilibrium (up to payoff equivalence): the minimax equilibrium. The value
of the game is therefore well defined. We take the limit of the equilibrium
and the game value as T →∞.

– Asymptotic time-discounted game: In the γ-discounted repeated game for γ ∈
(0, 1), each player’s (γ-discounted) utility is the sum, over all stages t = 1, . . .,
of his utility from the t-th stage game multiplied by (1 − γ)γt−1. Through
an appropriate choice of topology for each player’s mixed strategy space, the
γ-discounted game is a compact zero-sum game of incomplete information.
Again, the minimax equilibrium is the essentially unique equilibrium, and
the value of the game is well defined. We take the limit of the equilibrium
and the value of the game as the discount factor γ approaches 1.

– Infinitely-repeated game: Here, each player’s expected utility is the limit,
as T → ∞, of his average expected utility over the first T stages alone.
Though this limit may not exist in general, we can nevertheless sometimes
define a value and equilibrium as in [2, 17]. The max-min value of the game
is the supremum over all player 1’s mixed strategies, of the infimum over
player 2’s mixed strategies, of the limit infimum as T → ∞ of player 1’s
average expected utility. Player 1’s max-min strategy is that attaining this
supremum. We can similarly define the min-max value of the game and
Player 2’s min-max strategy. When both the max-min and min-max values
are equal we refer to them as the value of the game, and the corresponding
max-min and min-max strategies form the equilibrium.

The following theorem can be gleaned from a careful reading of [2, 17].

Theorem 9 ([2, 17]). Consider a two-player Bayesian repeated zero-sum game
with incomplete information on one side. The value of the asymptotic finitely-
repeated game, the value of the asymptotic time-discounted game, and both values
of the infinitely repeated game, are all equal. Moreover, the associated equilibria
for these three models coincide.

Though this theorem is stated for the classical model of repeated games, it is
easy to see that it applies equally well to the allocation model.



Bayesian Repeated Zero-Sum Games with Persistent State 17

B Omitted Materials in Section 3

B.1 Proof of Lemma 1

Proof. Note that after obtaining the signal σ, the leader’s strategy per stage
is non-adaptive, denoted by s∗1(σ). Therefore, the follower’s strategy can only
depend on the game Grepeated = Gsignal as well as the signal σ after observing
the leader’s strategy. Moreover, given each signal σ ∈ Σ, the follower’s belief is
exactly updated to Πϕ,σ. As a result, conditioned on a signal σ, to minimize the
leader’s utility, the follower’s optimal strategy is

s∗2(σ) = argmin
s2

max
s1
UΠϕ,σ (s1, s2).

By the minimax theorem, we have

UΠϕ,σ
(
s∗1(σ), s∗2(σ)

)
= max

s1
min
s2
UΠϕ,σ (s1, s2).

Thus, the expected utility of the leader is at least∑
θ∈Θ

Π(θ)
∑
σ∈Σ

Pr[ϕ(θ) = σ] · Uθ
(
s∗1(σ), s∗2(σ)

)
,

which equals to∑
σ∈Σ

(∑
θ∈Θ Pr[ϕ(θ) = σ] ·Π(θ)

)
· UΠϕ,σ

(
s∗1(σ), s∗2(σ)

)
= νsignal(Gsignal),

and concludes the proof.

B.2 Proof of Lemma 2

Proof. Let ~vt−1 = 1
t−1

∑t−1
τ=1

~U(sτ1 , s
τ
2) be the vector of the leader’s average util-

ities for the first (t − 1) stages. If ~vt−1 ∈ H( ~Π ′, b), then the follower may play

an arbitrary strategy at stage t. Otherwise, when ~vt−1 6∈ H( ~Π ′, b), we have

〈 ~Π ′, ~vt−1〉 > b. Recall that by minimax theorem,

f(Π ′) = min
s2

max
s1
UΠ

′
(s1, s2) = min

s2
max
s1
〈 ~Π ′, ~U(s1, s2)〉 ≤ b.

Therefore, when the follower plays the minimax strategy for the game Π ′, i.e.,

s∗2 = argmins2 maxs1 UΠ
′
(s1, s2), we have

〈
~Π ′, ~U(s1, s

∗
2)
〉
≤ b for any strategy

s1 of the leader. Thus, the leader’s average utilities for the first t rounds will be
~vt = (1− 1

t )~v
t−1 + 1

t
~U(s1, s

∗
2), and we have the distance between ~vt and H( ~Π ′, b)

is closer than the distance between ~vt−1 and H( ~Π ′, b):

〈 ~Π ′, ~vt〉 − b = (1− 1

t
)〈 ~Π ′, ~vt−1〉+

1

t
〈 ~Π ′, ~U(s1, s

∗
2)〉 − b

< (1− 1

t
)(〈 ~Π ′, ~vt−1〉 − b).
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B.3 Proof of Lemma 4

Proof. Since the leader’s strategy is independent of the realization of the true
state, the follower can learn nothing about the states from the leader’s strategy.
Therefore, the follower has no information about the realized state (even the
prior of the states). Note that in a Nash equilibrium of the team max-min game,
fixing player 3’s strategy Π∗, player 1 must play the maximin strategy in game
UΠ∗ since UΠ∗ is a zero-sum game. Hence, for every stage, we have UΠ∗(s∗1, s2) ≥
maxs1 mins2 UΠ

∗
(s1, s2) = νteam(Gteam) for all s2 ∈ ∆(S2).

B.4 Proof of Lemma 5

Proof. To show R(νteam(Gteam) ·~1) is approachable, by Theorem 3, it suffices to
show that any halfspaces containingR(νteam(Gteam)·~1) is approachable. Note that
any minimal halfspace containing R(νteam(Gteam) ·~1) must cross νteam(Gteam) ·~1.
Therefore, such a halfspace can be represented by

H( ~Π, 〈 ~Π, νteam(Gteam) ·~1〉) = H( ~Π, νteam(Gteam)).

By Lemma 2, it is enough to show that for all Π ∈ ∆(Θ), f(Π) ≤ νteam(Gteam).
Recall that νteam(Gteam) is the game value of the team max-min game, and thus,

νteam(Gteam) = max
Π

[
max
s1

min
s2
UΠ(s1, s2)

]
= max

Π
f(Π). (4)

Thus, νteam(Gteam) ≥ f(Π) for any Π ∈ ∆(Θ), which concludes the proof.

B.5 Computational Complexity of the Follower’s Optimal Strategy

Given a prior Π ∈ ∆(Θ), let f̃(Π) = νsignal(Gsignal) with be the game value

of the public signaling game Gsignal =
(
Π,
{
Uθ
}
θ∈Θ

)
. We claim that the dual

program (2) is equivalent to the following linear program (5):

min 〈~y, ~Π〉
s.t. 〈~y, ~Π ′〉 ≥ f̃(Π ′) ∀Π ′ ∈ ∆(Θ)

(5)

in which we replace f(Π ′) with f̃(Π ′).

Lemma 7. f̃(Π) is concave in Π and the linear program (2) is equivalent to
the program (5).

Proof. First notice for all Π ′ ∈ ∆(Θ), we have f̃(Π ′) ≥ f(Π ′) because x(Π ′) =
1 and x(Π ′′) = 0 for any Π ′′ 6= Π ′ is a feasible solution to the primal (1)
corresponding to Π ′, i.e., player 1’s utility in the public signaling game Gsignal =(
Π ′,

{
Uθ
}
θ∈Θ

)
is at least f(Π ′) if the principal does not signal anything. Hence,
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any feasible solution of the program (5) is a feasible solution of the program (2).

On the other hand, according to the primal (1), f̃(Π ′) can be written as

f̃(Π ′) =
∑

Π′′∈∆(Θ)

xΠ′(Π
′′) · f(Π ′′) (6)

where
∑
Π′′∈∆(Θ) xΠ′(Π

′′) · Π ′′ = Π ′. Therefore, for any Π ′ and any feasible

solution ~y of the program (2), we have that

〈~y, ~Π ′〉 =
∑
θ∈Θ

y(θ) ·
∑

Π′′∈∆(Θ)

xΠ′(Π
′′) ·Π ′′(θ)

=
∑

Π′′∈∆(Θ)

xΠ′(Π
′′) · 〈~y, ~Π ′′〉

≥
∑

Π′′∈∆(Θ)

xΠ′(Π
′′) · f(Π ′′) = f̃(Π ′)

where the inequality follows that ~y is feasible to the program (2). Thus, any
feasible solution of the program (2) is a feasible solution of the program (5),
which concludes the proof of the lemma.

For the concavity of f̃ , notice that for any feasible solution ~xΠ′ and ~xΠ′′

of the primal (1) corresponding to prior Π ′ and Π ′′, respectively, we have that
α · ~xΠ′ + (1 − α) · ~xΠ′′ is a feasible solution of the primal (1) corresponding to

prior α ·Π ′+ (1−α) ·Π ′′; and therefore, f̃ (α ·Π ′ + (1− α) ·Π ′′) ≥ α · f̃(Π ′) +

(1− α) · f̃(Π ′′).

We are now ready to show that one can efficiently construct the follower’s
optimal strategy for the Bayesian repeated game if the corresponding public
signaling game is efficiently solvable.

Lemma 8. For a collection of games
{
Uθ
}
θ∈Θ, if the game value of the public

signaling game Gsignal =
(
Π,
{
Uθ
}
θ∈Θ

)
and the minimax strategy of the zero-

sum game UΠ can be computed efficiently for all Π ∈ ∆(Θ), then there exists an
efficient algorithm to compute the follower’s optimal strategy for the Bayesian

repeated game Grepeated =
(
Π,
{
Uθ
}
θ∈Θ

)
for any Π ∈ ∆(Θ).

Proof. We will show that (5) admits an efficient separation oracle, and thus,

it can be solved efficiently. Given a candidate solution ~y, f̃(Π ′) is concave in

Π ′ according to Lemma 7 while 〈~y, ~Π ′〉 is linear in Π ′, which implies that

h~y(Π ′) = 〈~y, ~Π ′〉 − f̃(Π ′) is a convex function in Π ′. The objective of the sepa-
ration oracle is to identify a Π ′ such that h~y(Π ′) is less than 0, which is indeed
a convex optimization problem. Therefore, to implement a separation oracle is
equivalent to minimize a convex function h~y with an access to an efficient eval-
uation oracle of h~y, which can be done efficiently (see [10, 13]). Thus, we can
obtain ~y∗ satisfying Proposition 1 efficiently. Combining with the condition that
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the minimax strategy of the zero-sum game UΠ′ can be computed efficiently
for any Π ′ ∈ ∆(Θ), we can construct the follower’s strategy efficiently due to
Proposition 2.

Lemma 8 suggests that the existence of an efficient algorithm for the pri-
mal (1) implies the existence of an efficient algorithm for the dual (2). As dis-

cussed in Section 3.2, for Bayesian allocation games, R
(
νteam(Gteam) ·~1

)
can

be constructed directly from the game value of the team max-min game, and
thus, we can then construct the follower’s optimal strategy efficiently once the
minimax strategy of the zero-sum game UΠ can be computed efficiently for all
Π ∈ ∆(Θ).

Proposition 4. For a collection of games
{
Uθ
}
θ∈Θ, if the game value of the

team max-min game Gteam =
({
Uθ
}
θ∈Θ

)
can be computed efficiently, and the

minimax strategy of the zero-sum game UΠ can be computed efficiently for all
Π ∈ ∆(Θ), then there exists an efficient algorithm to compute the follower’s

optimal strategy for the Bayesian allocation game Galloc =
({
Uθ
}
θ∈Θ

)
.

Our next lemma shows that team max-min games are in general computa-
tionally easier than public signaling games, and therefore, Bayesian allocation
games are in general computationally easier than Bayesian repeated games.

Lemma 9. For a collection of games
{
Uθ
}
θ∈Θ, if the game value of the public

signaling game Gsignal =
(
Π,
{
Uθ
}
θ∈Θ

)
and the minimax strategy of the zero-

sum game UΠ can be computed efficiently can be computed efficiently for all
Π ∈ ∆(Θ), then there exists an efficient algorithm to compute the equilibrium

strategies of the team max-min game Gteam =
({
Uθ
}
θ∈Θ

)
.

Proof. Recall that νteam(Gteam) = maxΠ f(Π) from (4) and moreover, we have

maxΠ f(Π) = maxΠ f̃(Π) since for Π∗ ∈ argmaxΠ f(Π), it is sub-optimal to
have a solution ~xΠ∗ in which there exists xΠ∗(Π

′) > 1 with f(Π ′) < f(Π∗) to
the primal (1) corresponding to Π∗. Therefore, to compute the game value of

the Bayesian allocation game is equivalent to maximize the concave function f̃
with an access to an efficient evaluation oracle of f̃ , which can be done efficiently
(see [10, 13]). Once Π∗ (the equilibrium strategy of player 3) is identified, the
equilibrium strategies of player 1 and 2 in the team max-min game are simply
the equilibrium strategies of game UΠ∗ .

C Omitted Materials in Section 4

C.1 Proof of Proposition 3

Before we delve into the computational complexity of repeated games, we first
illustrate, given a posterior Π, how to compute the equilibrium strategies of
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UΠ efficiently. A mixed strategy for the defender can be summarized by its
marginals, denoted by d`,r, the probability of defending location ` ∈ L with
defensive resource r ∈ R. The set of marginals of the defender’s strategies is
given by the bipartite matching polytope:

D =
{
~d ∈ [0, 1]|L|×|R| | ∀` ∈ L,

∑
r∈R d`,r ≤ 1 and ∀r ∈ R,

∑
`∈L d`,r ≤ 1

}
.

The marginals of a mixed strategy of the defender suffice to compute the payoffs.
Moreover, we can compute marginals and mixed strategies from each other [10].
Henceforth, we refer to the marginals and mixed strategies interchangeably. The
defender’s utility when he plays ~d ∈ D while the attacker plays a mixed strategy
~a ∈ A = ∆|L|−1 where ∆|L|−1 is the simplex with |L| − 1 dimensions (such that
a` indicates the probability of the attacker attacking `) can be computed as

−
∑
θ∈ΘΠ(θ) ·

∑
`∈L a` · v

(
`, θ(`)

)
·
(
1−

∑
r∈R d`,r · q

(
`, θ(`), r

))
.

As above, a posterior Π can be summarized by marginals ~g(Π) ∈ G where G is
a bipartite matching polytope

G =
{
~g ∈ [0, 1]|L|×|M | | ∀` ∈ L,

∑
m∈M g`,m ≤ 1 and ∀m ∈M,

∑
`∈L g`,m ≤ 1

}
between L and M , such that g`,m(Π) =

∑
θ:θ(`)=mΠ(θ). Therefore, the de-

fender’s utility can be written as

−
∑
`∈L

∑
m∈M g`,m(Π) · a` · v

(
`,m

)
·
(
1−

∑
r∈R d`,r · q

(
`,m, r

))
.

The bilinear nature of this expression in ~d and ~a, plus the tractability of polytopes
D and A, imply that the equilibrium can be computed efficiently given a fixed
posterior Π since the game UΠ is a tractable zero-sum dueling game [11].

C.2 Proof of Theorem 5

Definition 4 (3-Set Cover). In an instance of 3-SET COVER, we are given
a finite set of elements U with |U | = 3n and a family of Z subsets E1, . . . , EZ ⊆
U with |Ei| = 3 for all i ∈ [Z]. The task is to determine whether there exists a
family of n subsets Ek1 , . . . , Ekn such that ∪nj=1Ekj = U .

We reduce from 3-SET COVER. Given an instance of 3-SET COVER, we
construct a security game with one location for each subset Ei, and α·β locations
for each element e ∈ U , where α = Z5 and β = Z2 · n. Hence, there are totally
Z+α ·β ·3n locations. We denote by `Ei the location corresponding to subset Ei
and `e,α′,β′ with 1 ≤ α′ ≤ α and 1 ≤ β′ ≤ β one of α · β locations corresponding
to element e ∈ U . Moreover, let the number of treasures |M | = 1+β ·(3n−3) and
the number of defensive resources |R| = n. Since all of treasures, locations, and
defensive resources are homogeneous, by normalizing the importance function
to v(`,m) = 1 for all ` ∈ L and m ∈ M , a state of nature can be directly
represented by a function θ that maps a location to a binary such that θ(`) = 1
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if and only if there is a treasure allocated at location `. In such a security game,
the attacker’s utility is 1 if and only if the attacker attacks a location ` such
that θ(`) = 1 and ` is not defended (while the importance function v and the
defense-quality function q can be omitted).

We construct α · Z states of nature in total such that there are α states of
nature for each subset Ei, each of which is denoted by θEi,α′ for 1 ≤ α′ ≤ α.
Note that in our construction, a requirement is that: for each state θEi,α′ , there
are exactly |M | = 1 +β · (3n− 3) locations ` with θEi,α′(`) = 1. The state θEi,α′

is defined as follows:

– θEi,α′(`Ei) = 1 and θEi,α′(`Ej ) = 0 for j 6= i.
– θEi,α′(`e,α′,β′) = 1 for all 1 ≤ β′ ≤ β if e 6∈ Ei;
– θEi,α′(`e,α′′,β′) = 0 for all 1 ≤ β′ ≤ β if e ∈ Ei or α′′ 6= α′.

Finally, we let the prior Π be the uniform distribution over all the states of
nature.

Lemma 10. If there exists a solution to the instance of 3-SET COVER, then
the game value of the constructed public signaling game is at least − 1

α ·
(
1− 1

Z

)
.

Proof. Let Ek1 , · · · , Ekn be such a 3-set cover and let C = {k1, · · · , kn}. It
suffices to exhibit a public signaling scheme which induces an expected utility of
the defender at least − 1

α ·
(
1− 1

Z

)
. The following is such a scheme ϕ:

– Deterministically announce a signal ⊥ for states θEi,α′ for all 1 ≤ α′ ≤ α if
i ∈ C;

– Deterministically announce a signal i for states θEi,α′ for all 1 ≤ α′ ≤ α if
i 6∈ C;

In other words, the signaling scheme groups together all the states related to the
subsets in the set cover, and separately signal the states related to other subsets.

Consider the signal ⊥, and the corresponding posterior is that Πϕ,⊥(θEi,α′) =
1
n·α for 1 ≤ α′ ≤ α if i ∈ C; otherwise, Πϕ,⊥(θEi,α′) = 0 for 1 ≤ α′ ≤ α. As a
result, the attacker’s expected utility of attacking an undefended location ` is 1

n
for ` ∈ {`Ei | i ∈ C} and is 0 for ` ∈ {`Ei | i 6∈ C}. As for the remaining locations
`e,α′,β′ , the attacker’s expected utility of attacking any of them if undefended
is at most 1

α ·
(
1− 1

n

)
. This is because (1) only a state θEi,α′′ with α′′ = α′

allocates a 1, and therefore, at most n states allocates a 1; (2) since {Ei}i∈C
forms a 3-set cover, there must exists a subset Ei with i ∈ C such that e ∈ Ei,
and therefore, the corresponding state θEi,α′ does not allocate a 1. As a result,
there are at most (n − 1) states allocating a 1 among n · α states. Therefore,
under the signal ⊥, the defender can allocate the n defensive resource to the n
locations from {`Ei | i ∈ C}, which limits the attacker’s utility to be at most
1
α ·
(
1− 1

n

)
.

For any signal i 6∈ C, a similar calculation can show that the attacker’s
expected utility of attacking an undefended location ` is 1 for ` = `Ei and is
0 for ` ∈ {`Ej | j 6= i}. As for the remaining locations `e,α′,β′ , the attacker’s
expected utility of attacking any of them if undefended is at most 1

α . Therefore,
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the defender can defend the sole location `Ei only, leaving the attacker with
locations whose importance is at most 1

α . To sum up, the attacker’s expected
utility conditioned on signal ⊥ is at most 1

α ·
(
1− 1

n

)
while conditioned on any

signal other than ⊥ is at most 1
α . Notice that the probability of ⊥ is n/Z, and

thus, the overall expected utility of the attacker is at most n
Z ·

1
α ·
(
1− 1

n

)
+(

1− n
Z

)
· 1α = 1

α ·
(
1− 1

Z

)
, which concludes the proof.

Lemma 11. When α = Z5 and β = Z2 · n, if there does not exist a solution to
the instance of 3-SET COVER, then the game value of the constructed public
signaling game is at most − 1

α ·
(
1− 2

Z2

)
.

Proof. We proceed to prove this lemma by showing that, if there does not exist a
solution to the instance of 3-SET COVER, then for any posterior Π, the game
value of the induced security game is at most − 1

α ·
(
1− 2

Z2

)
. We first claim that

for any posterior Π, there are at most n subsets Ei such that
∑α
α′=1Π(θEi,α′) >

1
Z3 . To prove this claim, notice that if a subset Ei satisfies

∑α
α′=1Π(θEi,α′) >

1
Z3 ,

it implies the attacker’s expected utility of attacking an undefended location
`Ei is more than 1

Z3 . Therefore, to limit the attacker’s utility to be at most 1
α ·(

1− 2
Z2

)
, the defender must allocate a defensive resource to `Ei with probability

d′ such that 1
Z3 · (1− d′) < 1

α ·
(
1− 2

Z2

)
, which indicates that d′ > 1− 1

Z when
α = Z5. Hence, for more than n subsets Ei satisfying

∑α
α′=1Π(θEi,α′) >

1
Z3 , the

defender needs at least (n+1) ·
(
1− 1

Z

)
> n defensive resources, which produces

a contradiction.
For convenience, let C =

{
i |
∑α
α′=1Π(θEi,α′) >

1
Z3

}
and we have |C| ≤ n.

Furthermore, we have∑
i∈C

∑α
α′=1Π(θEi,α′) = 1−

∑
i 6∈C

∑α
α′=1Π(θEi,α′) ≥ 1−

∑
i 6∈C

1
Z3 ≥ 1− 1

Z2 .

Hence, there exists a α∗ such that
∑
i∈C Π(θEi,α∗) ≥ 1

α ·
(
1− 1

Z2

)
. Since there

does not exist a 3-set cover, there exists an element e∗ that is not covered by
∪i∈CEi. As a result, for any β′ with 1 ≤ β′ ≤ β, the attacker’s expected utility of
attacking an undefended location `e∗,α∗,β′ is

∑
i∈C Π(θEi,α∗) ≥ 1

α ·
(
1− 1

Z2

)
. To

reduce the attacker’s expected utility among these β locations, the best possible
strategy of the defender is to evenly distribute n defensive resources among these
locations such that each location is defended with probability n

β . However, after

doing so, the attacker’s expected utility is still at least 1
α ·
(
1− 1

Z2

)
·
(

1− n
β

)
=

1
α ·
(
1− 1

Z2

)
·
(
1− 1

Z2

)
≥ 1

α ·
(
1− 2

Z2

)
.

Combining Lemma 10, Lemma 11, and Theorem 1, we finish the proof of
Theorem 5.

D Omitted Materials in Section 5

D.1 Proof of Lemma 6

For convenience, let the game value be ν. Recall the optimal strategy of the
attacker (i.e. the follower in Section 3) is an adaptive strategy that approaches
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R(ν ·~1), where ~1 is a |Θ|-dimensional vector. For our class of security games, |Θ|
is the number of possible matchings between L and M , which is exponential in
the number of treasures |M | and the number of locations |L|.

As described in Section 3, it suffices for the attacker to find a prior Π ′ such
that the halfspace H( ~Π ′, ν) separates 1

t−1
∑t−1
τ=1

~U(Dτ , aτ ) and R(ν ·~1) at stage
t. It is equivalent to find a prior Π ′ such that

∑
θ∈Θ

Π ′(θ) ·

(
1

t− 1
·
t−1∑
τ=1

Uθ(Dτ , aτ )

)
> ν,

while the left-hand side can be written as

∑
θ∈Θ

Π ′(θ) ·

(
− 1

t− 1
·
t−1∑
τ=1

(
1− q

(
aτ , θ(aτ ), Dτ (aτ )

))
· v
(
aτ , θ(aτ )

))

which equals to

∑
θ∈Θ

Π ′(θ) ·
∑
`∈L

v
(
`, θ(`)

)
·

− 1

t− 1
·

∑
τ :aτ=`,1≤τ≤t−1

(
1− q

(
`, θ(`), Dτ (`)

)) .

For convenience, let

v(`,m) = v
(
`,m

)
·

− 1

t− 1
·

∑
τ :aτ=`,1≤τ≤t−1

(
1− q

(
`,m,Dτ (`)

)) ,

and moreover, let

g`,m(Π ′) =
∑

θ:θ(`)=m

Π ′(θ)

be the marginals of Π ′. As a result, we have

∑
θ∈Θ

Π ′(θ) ·

(
1

t− 1
·
t−1∑
τ=1

Uθ(Dτ , aτ )

)
=
∑
`,m

g`,m(Π ′) · v(`,m).

Therefore, to find such a prior Π ′, the attacker can solve the a linear program
to maximize δ subject to

∑
`,m g`,m · v(`,m) ≥ ν + δ and ~g ∈ G. Finally, the

attacker deploys the minimax strategy of UΠ′ that can be computed efficiently
according to Proposition 3.

D.2 Warm-up: Homogeneous Everything

We provide a warm-up for the simplest case in a Bayesian allocation game with a
security game as the stage game, where all of treasures, locations, and defensive
resources are homogeneous.
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Note that when all of treasures, locations, and defensive resources are homo-
geneous, it suffices to describe the Bayesian allocation game with three integers:
the number of locations |L|, the number of treasures |M |, and the number of
defensive resources |R|. Moreover, the states of nature can be simply represented
by a function θ that maps a location to a binary such that θ(`) = 1 if and only
if there is a treasure allocated at location `. For convenience, given a posterior
Π, let the importance function valΠ(`) =

∑
θ∈ΘΠ(θ) · θ(`) be the attacker’s

expected utility of attacking ` if ` is not defended. In addition, note that the
mixed strategy of the defender can be summarized by a vector ~d ∈ [0, 1]L with∑
`∈L d` ≤ |R|, where d` is the probability that ` is defended.

According to Theorem 4 and Lemma 4, the defender’s optimal strategy is to
identify a prior Π∗ and then play the maximin strategy of UΠ∗ repeatedly. For
convenience, let νalloc be the negative of the game value of the Bayesian allo-
cation game. We will make use of Lemma 13, which provides a characterization
of the game value of UΠ for a given prior Π. We prove Lemma 13 in the main
body for the more general setting in which only the treasures are heterogeneous.

The next lemma provides characterization for the vector of the attacker’s
utilities valΠ

∗
. It is worth noticing that for any val′ with val′(`) ∈ [0, 1] for all `

and
∑
`∈L val′(`) = |R|, there exists a prior Π such that valΠ = val′.

Lemma 12. valΠ
∗

exhibits the following structure: for at least |L| − 1 locations

`, either valΠ
∗
(`) = νalloc or valΠ

∗
(`) = 1. Moreover, the remaining location, if

any, satisfies valΠ
∗
(`) ∈ (νalloc, 1).

Proof. We first show that for all ` ∈ L, valΠ
∗
(`) ≥ νalloc. For the sake of

contradiction, assume that there exists a location ` such that valΠ
∗
(`) < νalloc.

Notice that we can move a very small positive mass from every other location
`′ to ` to obtain val′, and it is clear that Def(νalloc, val

Π∗) > Def(νalloc, val
′),

which contradicts Lemma 13.

To complete the proof, assume that there exists two locations `′ and `′′ such
that νalloc < valΠ

∗
(`′) ≤ valΠ

∗
(`′′) < 1. Consider a sufficiently small δ > 0 such

that νalloc < valΠ
∗
(`′)− δ < valΠ

∗
(`′′) + δ < 1 and we construct val′ by moving

a mass of δ from location `′ to location `′′. Hence, we have

Def(νalloc, val
Π∗)− Def(νalloc, val

′)

= νalloc ·
(

1

valΠ
∗
(`′)− δ

+
1

valΠ
∗
(`′′) + δ

− 1

valΠ
∗
(`′)
− 1

valΠ
∗
(`′′)

)
> 0,

which contradicts to Lemma 13.

Intuitively, Lemma 12 suggests that the optimal strategy of the defender is to
always allocate some treasures to certain locations so that the attacker knows for
sure that these locations have treasures. As for the other treasures, the defender
should distribute them almost randomly to the remaining locations. See Figure 3
for an illustration.
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Fig. 3. An illustration of the optimal scheme for homogeneous everything

To efficiently compute valΠ
∗
, we can first enumerate the number of locations

K in which valΠ
∗
(`) = 1, and therefore there are (|L| −K − 1) locations with

valΠ
∗
(`) = νalloc. For the remaining location, we must have valΠ

∗
(`) = |M | −

K − (|L| −K − 1) · νalloc to allocate |M | units of treasures in total. As a result,
according to Lemma 13, the following equation must be satisfied:

K · (1− νalloc) +

(
1− νalloc
|M | −K − (|L| −K − 1) · νalloc

)
= |R| (7)

which is a quadratic equation for νalloc that can be solved efficiently.

Example 2. Consider a security game with 3 locations, 2 treasures, and 1 defen-
sive resource. The following is the allocation strategy of the defender:

– Choose one of the locations and allocate a treasure to it.
– For the remaining two locations, allocate the remaining treasure to one loca-

tion with probability α =
√
5−1
2 ≈ 0.618 and allocate it to the other location

with probability 1− α ≈ 0.382.

Note that this leads to an importance function of the form (1 − α, α, 1). Then
in each stage of the repeated game, the defender defends the location with im-
portance 1 with probability α (so that the attacker’s utility of attacking this
location is 1− α), and defends the location with importance α with probability
1−α (so that the attacker’s utility of attacking this location is α2 = 1−α). The
defender never defends the location with important 1− α.

Example 3. Consider a security game with a large number |L| of locations, |L|/2
treasures, and |L|/4 defensive resources. As |L| → ∞, the following scheme of
the defender approaches optimality:

– Choose |L|/3 locations and allocate |L|/3 treasures to these locations.
– For the remaining 2|L|/3 locations, allocate a treasure to each location with

probability 1
4 .

Note that this leads to an importance function in which |L|/3 of the locations
have expected importance 1, and the remaining locations have expected im-
portance 1

4 . In each stage, the defender defends locations with importance 1
probability 3

4 each, and never defends locations with importance 1
4 .
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D.3 Only Treasures are Heterogeneous

We focus on the setting in which only the treasures are heterogeneous.
When only the treasures are heterogeneous, the importance function v can

be simplified as v(m) representing the utility loss of the defender if a location
with treasure m ∈ M allocated is attacked without defense. For convenience,
let M = {1, · · · , |M |} and L = {1, · · · , |L|}, and we assume v(m) ≤ v(m + 1)
for all m. Given a prior Π, let its marginals be g`,m(Π) =

∑
θ:θ(`)=mΠ(θ),

and moreover, let valΠ(`) =
∑
m∈M g`,m(Π) · v(m) be the attacker’s utility of

attacking ` if ` is undefended. Since the defensive resources are homogeneous,
the mixed strategy of the defender can still be summarized by a vector ~d ∈ [0, 1]L

with
∑
`∈L d` ≤ |R|.

According to Theorem 4 and Lemma 4, the defender’s optimal strategy is to
identify a prior Π∗ and then play the maximin strategy of UΠ∗ repeatedly. For
convenience, let νalloc be the negative of the game value νalloc of the Bayesian
allocation game. The following lemma provides a characterization of the game
value of UΠ for a given prior Π. Let (x)+ = max(x, 0).

Lemma 13. For a prior Π, Def(λ, valΠ) =
∑
`∈L

(
1− λ

valΠ(`)

)+
≤ |R| if and

only if the game value of UΠ is at least −λ. Moreover, Def(νalloc, val
Π∗) =

minΠ Def(νalloc, val
Π) = |R|.

Proof. Notice that given a defender’s strategy ~d, the optimal strategy of the
attacker is to attack a location from argmax`∈L(1− d`) · valΠ(`). As a result, to

achieve utility −λ for the defender, for a location ` with valΠ(`) ≤ λ, there is
no need to defend it. As for the location ` with valΠ(`) > λ, the defender must
defend it with probability at least 1− λ

valΠ(`)
. Therefore, we can conclude that the

game value of UΠ is at least −λ if and only if Def(λ, valΠ) ≤ |R|. Moreover, for

the prior Π∗ in the defender’s optimal strategy, Def(νalloc, val
Π∗) = |R| because

the game value of UΠ∗ is exactly νalloc. Finally, note that the game value of UΠ
for any Π is at most νalloc, which implies that for any Π, Def(νalloc, val

Π) ≥ |R|.
Thus, Def(νalloc, val

Π∗) = minΠ Def(νalloc, val
Π).

In order to design our algorithm, we provide structural results for the optimal
prior Π∗, particularly for ~g(Π∗) and valΠ

∗
. Without loss of generality, assume

valΠ
∗
(`) ≤ valΠ

∗
(`+1) for all `. We partition the locations into two sets: High ={

` ∈ L | valΠ
∗
(`) > νalloc

}
and Low =

{
` ∈ L | valΠ

∗
(`) ≤ νalloc

}
. Notice that

the defender needs to allocate defensive resource to a location ` if and only if
valΠ

∗
(`) > νalloc, i.e., d` > 0 if and only if ` ∈ High.

We start with showing that there exists an optimal prior Π∗ such that the
treasures are allocated to locations in High in a decreasing order of their impor-
tance.

Lemma 14. There exists an optimal prior Π∗ such that for ` ∈ High, it satisfies
that if g`,m(Π∗) > 0, then g`′,m′(Π

∗) = 0 for all `′ < ` and m′ > m.
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Proof. For an optimal prior Π∗, if there exists `′ < ` and m < m′ such that
g`′,m′(Π

∗) > 0 and g`,m(Π∗) > 0, consider the following ~g(Π ′) that is the same
as ~g(Π∗) except that we swap a sufficiently small δ > 0 of the allocation of
treasure m′ and m to location `′ and `:

– g`′,m′(Π
′) = g`′,m′(Π

∗)− δ and g`′,m(Π ′) = g`′,m(Π∗) + δ;
– g`,m′(Π

′) = g`,m′(Π
∗) + δ and g`,m(Π ′) = g`,m(Π∗)− δ.

As a result, valΠ
′

is the same as valΠ
∗

except for location ` and `′ such that

valΠ
′
(`′) = valΠ

∗
(`′)− δ ·

(
v(m′)− v(m)

)
while

valΠ
′
(`) = valΠ

∗
(`) + δ ·

(
v(m′)− v(m)

)
.

Hence,

Def(νalloc, val
Π∗)− Def(νalloc, val

Π′)

=
νalloc

valΠ
∗
(`′)− δ ·

(
v(m′)− v(m)

) +
νalloc

valΠ
∗
(`) + δ ·

(
v(m′)− v(m)

)
− νalloc

valΠ
∗
(`′)
− νalloc

valΠ
∗
(`)

≥ 0,

where the inequality uses the facts that v(m′) − v(m) ≥ 0 and valΠ
∗
(`′) ≤

valΠ
∗
(`). According to Lemma 13, either Π∗ is not an optimal prior (when the

above formula is a strict inequality) or Π ′ is also an optimal prior (when the
above formula is an equation).

We now focus on Low =
{
` ∈ L | valΠ

∗
(`) ≤ νalloc

}
. Note that we must have∑

`∈Low

∑
m∈M g`,m(Π∗)·v(m) ≤ |Low|·νalloc,

∑
`∈Low

∑
m∈M g`,m(Π∗) ≤ |Low|;

(8)

or otherwise, either there exists a location ` ∈ Low in which valΠ
∗
(`) > νalloc

or there does not exist enough space to fulfill these treasures. On the other
hand, when (8) is satisfied, the defender can simply allocate these treasures
uniformly to the locations in Low: concretely, consider ~g(Π ′) that is the same as
~g(Π∗) except that g`,m(Π ′) =

∑
`′∈Low

∑
m∈M g`′,m(Π∗)/|Low| for all ` ∈ Low

and m ∈ M . Hence, we denote by gLow,m(Π∗) =
∑
`′∈Low

∑
m∈M g`,m(Π∗) for

simplicity. In addition, note that at least one of the inequalities in (8) must be
tight; or otherwise, the defender can allocate more treasures to Low without
suffering additional utility loss.

Proposition 5. For the optimal prior Π∗, it satisfies,∑
m∈M

gLow,m(Π∗) · v(m) ≤ |Low| · νalloc



Bayesian Repeated Zero-Sum Games with Persistent State 29

and ∑
m∈M

gLow,m(Π∗) ≤ |Low|.

Moreover, at least one of these two inequalities is tight.

The next lemma provides a finer characterization of gLow,m(Π∗).

Lemma 15. There exists an optimal prior Π∗ such that, if gLow,m(Π∗) < 1,
then for any pair (m′,m′′) with m′ < m and m′′ > m, either gLow,m′(Π

∗) = 0
or gLow,m′′(Π

∗) = 0.

Proof. For an optimal prior Π∗, if there exists m′ < m < m′′ such that they
satisfy gLow,m(Π∗) < 1, gLow,m′(Π

∗) > 0, and gLow,m′′(Π
∗) > 0, consider the

following ~g(Π ′) that is the same as ~g(Π∗) except for treasures m, m′, and m′′

in Low and a location ` ∈ High where g`,m(Π∗) > 0:

– g`,m(Π ′) = g`,m(Π∗)− δ and gLow,m(Π ′) = gLow,m(Π∗) + δ;
– g`,m′(Π

′) = g`,m′(Π
∗) + c · δ and gLow,m′(Π

′) = gLow,m′(Π
∗)− c · δ;

– g`,m′′(Π
′) = g`,m′′(Π

∗)+(1−c)·δ and gLow,m′′(Π
′) = gLow,m′′(Π

∗)−(1−c)·δ;

for a sufficiently small δ > 0 and 0 ≤ c ≤ 1 such that v(m) = c · v(m′) +
(1 − c) · v(m′′). It is straightforward to verify that

∑
m∈M gLow,m(Π∗) · v(m) =∑

m∈M gLow,m(Π ′) · v(m) and
∑
m∈M gLow,m(Π∗) =

∑
m∈M gLow,m(Π ′). More-

over, valΠ
′
(`) = valΠ

∗
(`) for all ` ∈ High, and therefore, Def(νalloc, val

Π′) =

Def(νalloc, val
Π∗) so that Π ′ is also an optimal prior according to Lemma 13.

Lemma 15 suggests that for an optimal prior Π∗, there exists two cut-off
treasures mc1 and mc2 such that such that for any treasure m with m < mc1

or m > mc2, we have gLow,m(Π∗) = 0. Moreover, for mc1 < m < mc2, we have

gLow,m(Π∗) = 1. Combining with Lemma 14, we conclude that Def(νalloc, val
Π∗)

is fully characterized by ~gLow(Π∗). See Figure 4 for an illustration of the structure
of the optimal scheme.

Fig. 4. An illustration of the optimal scheme for only treasures are heterogeneous

To efficiently compute the optimal scheme, the defender first applies binary
search for νalloc and checks whether there exists a scheme that can achieve
−νalloc. Given νalloc, the defender enumerate |Low|, the size of locations with
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importance at most νalloc, and the (left) cut-off treasuremc1. Note that the value
of gLow,mc1 uniquely determines {gLow,m}m∈Low that satisfies both Proposition 5
and Lemma 15 (unless there is no feasible solution). Given {gLow,m}m∈Low, the
defender then allocates the remaining treasures according to Lemma 14 and
computes the game value. Therefore, for fixed νalloc and mc1, the defender’s
task is to optimize the game value via gLow,mc1 , which is a single parameter
optimization problem that can be solved efficiently.

D.4 Only Locations are Heterogeneous

When only the locations are heterogeneous, the treasure-location importance
function such that v can be simplified as v(`) representing the utility loss of
the defender if location ` with a treasure allocated is attacked without defense.
Given a prior Π, let γ`(Π) =

∑
θΠ(θ) ·1{θ(`) 6= ⊥} be the expected number of

treasures allocated at location `. Note that any ~γ ∈ [0, 1]|L| with
∑
` γ` ≤ |M |

can be induced by a prior Π. As a result, the importance function is valΠ(`) =
γ`(Π)·v(`). Since the defensive resources are homogeneous, the mixed strategy of

the defender can still be summarized by a vector ~d ∈ [0, 1]L with
∑
`∈L d` ≤ |R|.

Let νalloc be the negative of the game value of the Bayesian allocation game and
Lemma 13 applies.

Before presenting the hardness reduction, we first provide a structural result
of ~γ(Π∗). Note that for a location ` with v(`) < νalloc, it is always optimal to
allocate a unit of treasure to ` without defense. Hence, we assume that v(`) ≥
νalloc for all ` for the rest of the discussion.

Lemma 16. ~γ(Π∗) exhibits the following structure: for at least |L|−1 locations
`, either γ`(Π

∗) = 1 or γ`(Π
∗) = νalloc/v(`). Moreover, for the remaining

location `, if any, satisfies γ`(Π
∗) ∈

(
νalloc/v(`), 1

)
.

Proof. First note that for all ` ∈ L, γ`(Π
∗) ≥ νalloc/v(`); or otherwise, the de-

fender can allocate more treasures to location ` without defense up to νalloc/v(`).

Assume that there exists two locations `′ and `′′ such that νalloc/v(`) <
γ`(Π

∗) < 1. Consider ~γ(Π ′δ) that is the same as ~γ(Π∗) except for location `′ and
`′′ such that γ`′(Π

′
δ) = γ`′(Π

∗) + δ and γ`′′(Π
′
δ) = γ`′′(Π

∗)− δ, for some δ ∈ ∆
such that ∆ = [L,R] where

L = −min

{
γ`′(Π

∗)− νalloc
v(`′)

, 1− γ`′′(Π∗)
}
,

and

R = min

{
γ`′′(Π

∗)− νalloc
v(`′′)

, 1− γ`′(Π∗)
}
.
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Hence, valΠ
′
δ is the same as valΠ

∗
except that valΠ

′
δ(`′) = valΠ

∗
(`′) + δ · v(`′)

and valΠ
′
δ(`′′) = valΠ

∗
(`′′)− δ · v(`′′). Then, we have

h(δ)

= Def(νalloc, val
Π′δ)− Def(νalloc, val

Π∗)

= νalloc ·
(

1

valΠ
∗
(`′)

+
1

valΠ
∗
(`′′)

− 1

valΠ
∗
(`′) + δ · v(`′)

− 1

valΠ
∗
(`′′)− δ · v(`′′)

)
.

Taking the second order derivative of h(δ) with respect to δ, we have

h′′(δ) = −νalloc ·

 2 ·
(
v(`′)

)2(
valΠ

∗
(`′) + δ · v(`′)

)3 +
2 ·
(
v(`′′)

)2(
valΠ

∗
(`′′)− δ · v(`′′)

)3
 ≤ 0,

which implies that h(δ) is a concave function with its minimum obtained at the
boundary of ∆. Let δ∗ = argminδ∈∆ h(δ) and since δ∗ is at the boundary of ∆, we
have either γ`′(Π

′
δ∗) ∈ {νalloc/v(`′), 1} or γ`′′(Π

′
δ∗) ∈ {νalloc/v(`′′), 1}. Finally,

according to Lemma 13, either Π∗ is not an optimal prior (when minδ∈∆ h(δ) <
0) or Π ′δ∗ is also an optimal prior (when minδ∈∆ h(δ) = 0).

As suggested by Lemma 16: in the optimal scheme, the defender should
either allocate a unit of treasure to location ` and defend it with probability
1 − νalloc/v(`), or allocate νalloc/v(`) treasure without defense, for at least
|L| − 1 locations.

Hardness Reduction We reduce from SUBSET SUM.

Definition 5 (Subset Sum). In an instance of SUBSET SUM, we are given
a set of n numbers {w1, · · · , wn} with 0 < wi < 1 for all i ∈ [n] and a target
W . The task is to determine whether there exists a subset C ⊆ [n] such that∑
i∈C wi = W . Without loss of generality, we assume both

∑
i∈[n] wi and W are

integral.

Given an instance of SUBSET SUM, we construct a security game with
|L| = n locations with L = [n], |M | = n+W −

∑
i∈[n] wi treasures, and |R| = W

defensive resources. Finally, for location i ∈ [n], v(i) = 1/(1−wi). The team max-
min game is directly induced from this security game. We finish the reduction
by showing that there exists a solution to the instance of SUBSET SUM if and
only if the game value of the constructed team max-min game is at least −1.

Lemma 17. If there exists a solution to the instance of SUBSET SUM, then
the game value of the constructed team max-min game is at least −1.

Proof. Let C be the solution of the instance of SUBSET SUM. Consider the
following ~γ(Π):

– For location i ∈ C, γi(Π) = 1;
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– For location i 6∈ C, γi(Π) = 1/v(i).

Note that the total units of allocated treasure is

∑
i∈[n]

γi(Π) = |C|+
∑
i 6∈C

1

v(i)
= |C|+

∑
i6∈C

(1− wi)

= n+
∑
i∈C

wi −
∑
i∈[n]

wi = n+W −
∑
i∈[n]

wi = |M |.

Moreover, we have valΠ(i) = v(i) for i ∈ C and valΠ(i) = 1 for i 6∈ C.

Def(1, valΠ) =
∑
i∈[n]

(
1− 1

valΠ(i)

)
=
∑
i∈C

(
1− 1

v(i)

)
=
∑
i∈C

wi = W = |R|.

According to Lemma 13, we can conclude that the game value is at least −1.

Lemma 18. If the game value of the constructed team max-min game is at least
−1, then there exists a solution to the instance of SUBSET SUM.

Proof. Suppose the game value is −κ with 0 ≤ κ ≤ 1. Then according to
Lemma 16, we have that for n − 1 locations, we have either γi(Π

∗) = 1 or
γi(Π

∗) = κ/v(i) = κ · (1−wi). Denote the remaining location by i∗. For conve-
nience, let A = {i 6= i∗ | γi(Π∗) = 1} and B = {i 6= i∗ | γi(Π∗) = κ · (1− wi)}.
Then, for the remaining location i∗, we have

γi∗(Π
∗) = n+W −

∑
i∈[n]

wi − |A| −
∑
i∈B

κ · (1− wi)

= W −
∑
i∈A

wi + (1− wi∗) +
∑
i∈B

(1− κ) · (1− wi)

and κ/v(i∗) ≤ γi∗(Π∗) ≤ 1. Moreover, we have that

Def(κ, valΠ
∗
) =

∑
i∈[n]

(
1− κ

γi(Π∗) · v(i)

)

=
∑
i∈A

(
1− κ · (1− wi)

)
+

(
1− κ · (1− wi∗)

γi∗(Π∗)

)
≥
∑
i∈A

wi +

(
1− κ · (1− wi∗)

γi∗(Π∗)

)
,
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where the inequality uses the fact that 0 ≤ κ ≤ 1. Plugging in the expression of
γi∗(Π

∗), we have

Def(κ, valΠ
∗
)

≥
∑
i∈A

wi +

(
1− κ · (1− wi∗)

W −
∑
i∈A wi + (1− wi∗) +

∑
i∈B(1− κ) · (1− wi)

)
=
∑
i∈A

wi +
W −

∑
i∈A wi + (1− κ) · (1− wi∗) +

∑
i∈B(1− κ) · (1− wi)

W −
∑
i∈A wi + (1− wi∗) +

∑
i∈B(1− κ) · (1− wi)

≥ W + (1− κ) · (1− wi∗) +
∑
i∈B

(1− κ) · (1− wi)

≥ W,

where the second inequality uses the fact that γi∗(Π
∗) ≤ 1 and the last inequality

uses the fact that 0 ≤ κ ≤ 1. However, since there are |R| = W defensive
resources, both inequalities must be equalities, which implies that γi∗(Π

∗) = 1
and κ = 1. Recall the formula of γi∗(Π

∗), and when γi∗(Π
∗) = 1 and κ = 1, we

have
γi∗(Π

∗) = 1 = W −
∑
i∈A

wi + (1− wi∗)

which implies that W = wi∗ +
∑
i∈A wi. Thus, {i∗} ∪ A is the solution to the

SUBSET SUM problem.

Combining Lemma 17, Lemma 18, and Theorem 4, we finish the proof of
the hardness result in Theorem 7. We next present our pseudo-polynomial time
algorithm.

Pseudo-polynomial Time Algorithm Our algorithm is based on the struc-
tural results of ~γ(Π∗) in Lemma 16. The defender first applies a binary search on
the negative of the game value νalloc to check whether the game value is achiev-
able. The defender then enumerates a location i∗ and without loss of generality,
we label the remaining n− 1 locations as {1, · · · , n− 1}.

We consider a dynamic program that solves OPT(j,m), which indicates the
minimum units of defensive resources needed to defend locations {1, · · · , j} when
at most m units of treasures have been allocated. Then, the transition function
is as follows: OPT(j,m) is computed as

min

{
OPT(j − 1,m− 1) +

(
1− νalloc

v(j)

)
,OPT

(
j − 1,m− νalloc

v(j)

)}
since the defender will either allocate 1 unit of treasures at location j and de-
fend it with probability (1− νalloc/v(j)) or allocate νalloc/v(j) units of trea-
sures without defense according to Lemma 16. The boundary conditions are
OPT(0, 0) = 0 and OPT(0,m) = −∞ for m > 0. Finally, the defender searches
whether there exists OPT(n − 1,m) with |M | − 1 ≤ m ≤ |M | − νalloc/v(i∗)



34 Conitzer et al.

such that the defender has sufficient defensive resource to defend location i∗ al-
located with the remaining |M |−m units of treasures, i.e., whether the following
inequality holds:

OPT(n− 1,m) +

(
1− νalloc

(|M | −m) · v(i∗)

)
≤ |R|.

D.5 Only Defensive Resources are Homogeneous

We will reduce from 3-SET COVER (see Definition 4). For ease of presentation,
we assume that both n and Z are even integers. Given an instance of 3-SET
COVER, we construct a security game with |L| = |U | · Z + |U | = 3n · Z + 3n
locations, |M | = |U | · Z + n + (Z − n)/2 = 3n · Z + (Z + n)/2 treasures, and
|R| = n/2 defensive resources.

In particular, for each pair of e ∈ U and Ei for i ∈ [Z], we construct a
location denoted by `e,Ei , and for each Ei for i ∈ [Z], we construct a location
denoted by `Ei . Moreover, for each e ∈ U , we construct a treasure denoted by
me and for each Ei with i ∈ [Z], we construct a treasure denoted by mEi . In
addition, we add Q = |M | − |U | − Z = 3n · Z + (Z + n)/2 − 3n − Z units of
identical treasures, denoted by m∗k for k ∈ [Q]. The location-treasure importance
function v is given as follows:

– v(me, `e,Ei) = 1 if e ∈ Ei; and v(me, `e′,Ei) =∞ if e 6= e′ or e 6∈ Ei;
– v(mEi , `e,Ei) = 6n for all e ∈ U ; and v(mEi , `e,Ej ) = ∞ for all e ∈ U and
j 6= i;

– v(m∗k, `e,Ej ) =∞ for all k ∈ [Q], e ∈ U , j ∈ [Z].

Moreover, for the remaining locations:

– v(me, `Ei) =∞ for all e ∈ U and i ∈ [Z];
– v(mEi , `Ei) = 2 and v(mEi , `Ej ) =∞ for all j 6= i and j ∈ [Z];
– v(m∗k, `Ei) =∞ for all k ∈ [Q] and i ∈ [Z].

Since the defensive resources are homogeneous, the mixed strategy of the
defender can still be summarized by a vector ~d ∈ [0, 1]L with

∑
`∈L d` ≤ |R|.

Moreover, recall that we can represent any prior Π with its corresponding frac-
tion matching ~g(Π).

The team max-min game is directly induced from this security game. We
finish the reduction by showing that there exists a solution to the instance of
3-SET COVER if and only if the game value of the constructed team max-min
game is at least −1.

Lemma 19. If there exists a solution to the instance of 3-SET COVER, then
the game value of the constructed team max-min game is at least −1.

Proof. Let Ek1 , · · · , Ekn be such a 3-set cover and let C = {k1, · · · , kn}. It
suffices to exhibit a scheme which induces an expected utility of the defender
at least −1. Consider the following prior Π and the corresponding strategy of
allocating defensive resources for the defender:



Bayesian Repeated Zero-Sum Games with Persistent State 35

– For i ∈ C, gmEi ,`Ei = 1 and d`Ei = 1/2;
– For i 6∈ C, gmEi ,`Ei = 1/2 and gmEi ,`e,Ei = 1/(6n) for all e ∈ U ;
– For any pair of (e, Ei) with i ∈ C and e ∈ Ei, gme,`e,Ei = 1.

Note that since Ek1 , · · · , Ekn is a 3-set cover, for each e, there exists a unique Ei
with i ∈ C that contains e. Therefore, we have allocated all treasures except m∗k
for k ∈ [Q] and moreover, we have exhausted the defensive resources. Observe
that for locations other than `Ei for i ∈ [Z], we have allocated totally (Z −
n)/2 + 3n units of treasures to 3n · Z locations. Hence, we can still allocate
3n ·Z − (Z −n)/2− 3n = Q more units to these locations, which means that we
can allocate all treasures m∗k for k ∈ [Q]. Finally, it is straightforward to verify
that under such a scheme, the attacker’s utility of attacking any location is at
most 1.

Lemma 20. If the game value of the constructed team max-min game is at least
−1, then there exists a solution to the instance of 3-SET COVER.

Proof. For convenience, let L = {`e,Ei}e∈U,i∈Z . We first claim that it is without
loss of generality to focus on ~g(Π∗) such that gm∗k,`(Π

∗) = 0 for all k ∈ [Q] and

` 6∈ L. Because if there exists k∗ and i∗ such that gm∗
k∗ ,`

∗(Π∗) > 0 for `∗ 6∈ L,
notice that the importance of `∗ is ∞ if m∗k∗ is allocated, while v(m∗k∗ , `) = 0
for all ` ∈ L. Therefore, moving m∗k∗ to L if there is still space left or switching
m∗k∗ with any treasure from {me}e∈U ∪ {mEj}j∈Z that is allocated to L would
not cause the defender to suffer additional utility loss.

As a result, there are 3n · Z − Q = 3n + (Z − n)/2 = |U | + (Z − n)/2
space left among L. However, notice that we still have |U | + Z treasures from
{me}e∈U ∪{mEj}j∈Z to be allocated. Therefore, there are at least n+(Z−n)/2

treasures that must be allocated to locations in L \ L. For convenience, let
η(Ei) = gmEi ,`Ei (Π

∗).

Proposition 6. There exists Π∗ such that there are exactly n subsets Ei sat-
isfying η(Ei) = 1 while for any other subset Ej, η(Ej) = 1/2, which results
in ∑

i∈[Z]

η(Ei) = n+ (Z − n)/2.

Moreover, for any Ej, we have gme,`Ej (Π∗) = 0 for all e ∈ U and gmEi ,`Ej (Π∗) =

0 for all i 6= j.

Proof. First, notice that for a location `Ej with gme,`Ej (Π∗) > 0 for some e ∈ U
or gmEi ,`Ej (Π∗) > 0 for some i 6= j, its importance is ∞ and the defender must

defend it with probability 1. As a result, it is beneficial to allocate a unit of
treasure in total to such a location. Let C be the set of the indices of these
locations.

For location `Ei with i 6∈ C, we need to defend it with probability at least(
1− 1

2·η(Ei)

)+
to limit the attacker’s utility to be at most 1. Hence, it is always
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optimal to have η(Ei) ≥ 1/2 for i 6∈ C. Moreover, since there are n/2 − |C|
defensive resources available, we have∑

i∈[Z]\L

(
1− 1

2 · η(Ei)

)+

≤ n

2
− |C|.

Similar to the function h(δ) discussed in the proof of Lemma 16, it can be
shown that the left-hand side of the above inequality, subject to a constraint
that

∑
i η(Ei) = c where c is a constant, is minimized at the boundary where

all but one i ∈ Z satisfy that η(Ei) ∈ {1/2, 1}. Moreover, notice that it is
beneficial to have η(Ei) = 1. As a result, to maximize

∑
i η(Ei), there are exactly

n − 2|C| subsets Ei satisfying η(Ei) = 1 while for other subset Ej with j 6∈ C,
η(Ej) = 1/2, which results in exactly

∑
i 6∈C η(Ei) = n− 2|C|+ (Z − n+ |C|)/2.

Combining with the |C| units of treasures to locations {`Ej}j∈C , the total

units of treasures is n+ (Z − n)/2− |C|/2 ≤ n+ (Z − n)/2. The equality holds
only if |C| = 0. Thus, there are exactly n subsets Ei satisfying η(Ei) = 1.

Since there are exactly n subsets Ei satisfying gmEi ,`Ei = 1, the defender must
defend each such `Ei with probability 1/2, and thus, the defensive resources are
exhausted. Let C = {i ∈ [Z] | η(Ei) = 1}. We claim that ∪i∈CEi = U . For the
sake of contradiction, assume that there exists e∗ ∈ U such that e∗ 6∈ Ei for all
i ∈ C. Observe that for i 6∈ C with e ∈ Ei, the remaining 1/2 units of treasure
mEi can only be distributed uniformly among the locations {`e,Ei}e∈U . As a
result, the treasure me∗ cannot be allocated to any location `e,Ei for all e ∈ Ei
and i 6∈ C. However, once the treasure me∗ is allocated to any other location
`, the attacker’s utility to attack ` would be ∞ since the defender has already
exhausted the defensive resources, which produces a contradiction.

Combining Lemma 19, Lemma 20, and Theorem 4, we finish the reduction.

D.6 Only Locations are Homogeneous

We will again reduce from 3-SET COVER (see Definition 4). Given an instance
of 3-SET COVER, we construct a security game with |L| = |U |+n+Z locations,
|M | = |U |+ n+ Z treasures, and |R| = |U |+ Z defensive resources.

When the locations are homogeneous, the location-treasure importance func-
tion such that v can be simplified as v(m) representing the utility loss of the
defender if a location with treasure m ∈M allocated is attacked without defense.
Moreover, the defense-quality function q can be simplified as q(m, r) characteriz-
ing the effectiveness of defending treasure m with defensive resource r. Let ~g(Π)
be the fractional matching between L and M corresponding to the prior Π, and
let ~d be the fractional matching between L and R corresponding to a defender’s
mixed strategy of allocating defensive resources. Then, the attacker’s utility of
attacking location ` is given by∑

m∈M
g`,m(Π) · v(m) ·

(
1−

∑
r∈R

d`,r · q(m, r)

)
.
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For each e ∈ U , we construct a treasure denoted by me, and a defensive
resource denoted by re. For each Ei with i ∈ [Z], we construct a defensive
resource denoted by rEi . In addition, we construct n treasures, each of which
denoted by mfix

k for k ∈ [n], and Z treasures, each of which denoted by mbad
k for

k ∈ [Z]. The treasure importance function v is given by

– v(me) =∞ for all e ∈ U ;
– v(mfix

k ) = 1 for all k ∈ [n];
– v(mbad

k ) = Z/(4n) for all k ∈ [Z].

Moreover, the defense-quality importance function is given by

– q(me, re′) = 1 if e = e′; otherwise, q(me, re′) = 0;
– q(me, rEi) = 1 if e ∈ Ei; otherwise, q(me, rEi) = 0;
– For k ∈ [n], q(mfix

k , re) = 0 for all e ∈ U and q(mfix
k , rEi) = 0 for all i ∈ [Z];

– For k ∈ [Z], q(mbad
k , re) = 0 for all e ∈ U and q(mbad

k , rEi) = 1 for all i ∈ [Z].

The team max-min game is directly induced from this security game. We finish
the reduction by showing that there exists a solution to the instance of 3-SET
COVER if and only if the game value of the constructed team max-min game
is at least −1/4.

Lemma 21. If there exists a solution to the instance of 3-SET COVER, then
the game value of the constructed team max-min game is at least −1/4.

Proof. Let Ek1 , · · · , Ekn be such a 3-set cover. It suffices to exhibit a scheme
which induces an expected utility of the defender at least −1/4. For convenience,
let C = {k1, · · · , kn} and the set of locations be L = {`e}e∈U ∪ {`Ei}i∈C ∪
{`bad
k }k∈[n]. Consider the following prior Π

– For each e ∈ U , g`e,me(Π) = 3/4 and g`Ei ,me = 1/4 for e ∈ Ei and i ∈ C;
– For each k ∈ [Z], g`bad

k ,mbad
k

(Π) = 1;

Notice that there are n units of treasures from {mfix
k }k∈[n] that have not been

allocated while for each location in {`e}e∈U ∪ {`Ei}i∈C , there is 1/4 space left,
resulting in 1/4 · (|U | + |C|) = n space left. Therefore, we can simply allocate
n units of treasures from {mfix

k }k∈[n] to fill the locations in {`e}e∈U ∪ {`Ei}i∈C .
Moreover, the mixed strategy of defending is as follows:

– For each e ∈ U , d`e,re = 1;
– For each i ∈ C, d`Ei ,rEi = 1;

Notice that there are Z−n units of defensive resources from {rEi}i 6∈C that have
not been allocated and for each location `bad

k for k ∈ [Z], we allocate (1− n/Z)
units of defensive resources from {rEi}i6∈C to defend it. It is now straightforward
to verify that for any location, the attacker’s utility of attacking is exactly 1/4.

Lemma 22. If the game value of the constructed team max-min game is at least
−1/4, then there exists a solution to the instance of 3-SET COVER.
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Proof. For convenience, let d` =
∑
e∈U d`,re +

∑
i∈[Z] d`,rEi be the total proba-

bility that a location ` is defended. Moreover, let L = {` ∈ L | d` < 1}. We first
observe that for a location ` ∈ L, if g`,me(Π

∗) > 0, then we must have ` 6∈ L; or
otherwise the attacker’s utility of attacking ` would be ∞. Hence, for ` ∈ L, the
defender can only allocate treasures from {mfix

k }k∈[n] and {mbad
k }k∈[Z].

Since the number of treasures equals to the number of locations, we must
allocate a unit of treasure in total to each location. Assume that for ` ∈ L, the
defender can allocate κ units of treasures from {mfix

k }k∈[n] and (1 − κ) units of

treasures {mbad
k }k∈[Z]. Recall that the defensive resources are not effective to

defend treasures from {mfix
k }k∈[n]. Therefore, to achieve a game value −1/4, we

have

κ+ (1− κ) · Z
4n
· (1− d`) ≤

1

4
,

which implies that

d` ≥ 1−
(

4− 3

1− κ

)
· n
Z
, (9)

which implies that, for any ` ∈ L, we have d` ≥ 1− n/Z.

Proposition 7. |L| = Z. Moreover, locations in L only host the treasures from
{mbad

k }k∈[Z], and there is no treasure from {mfix
k }k∈[n] that is allocated to lo-

cations in L. Consequently, the defender allocates (1 − n/Z) units of defensive
resources from {rEi}i∈[Z] to defend each location in L.

Proof. First, if |L| = Z − K for K > 0, then recall that for ` 6∈ L, d` = 1.
Therefore, we have∑

`∈L

d` ≥ |L \ L|+ |L| ·
(

1− n

Z

)
= 3n+ Z +K · n

Z
> 3n+ Z = |R|,

which produces a contradiction.
On the other hand, if |L| = Z + K for K > 0. Since there are Z units of

treasures from {mbad
k }k∈[Z] in total, the defender must allocate at least K units

of treasures from {mfix
k }k∈[n] to locations in L. Assume that there are κ` units

of treasures from {mfix
k }k∈[n] in total that are allocated to a location ` ∈ L. Note

that we have κ` ∈ [0, 1/4] for all ` ∈ L and
∑
`∈L κ` ≥ K, which implies that

K ≤ 1/4 · |L|. From (9), we have:

∑
`∈L

d` ≥
∑
`∈L

1−
(

4− 3

1− κ`

)
· n
Z

≥ |L| ·

(
1−

(
4− 3

1−
∑
`∈L κ`/|L|

)
· n
Z

)

≥ (Z +K) ·
(

1 +

(
3K

Z
− 1

)
· n
Z

)
,
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where the second inequality follows the Jensen’s inequality. However, this results
in∑
`∈L

d` =
∑
`∈L

d`+
∑
` 6∈L

d` ≥ (Z+K)·
(

1 +

(
3K

Z
− 1

)
· n
Z

)
+(4n−K) > 3n+Z = |R|,

because we have

(Z +K) ·
(

1 +

(
3K

Z
− 1

)
· n
Z

)
+ (4n−K) > 3n+ Z

⇔ (Z +K) ·
(

1 +

(
3K

Z
− 1

)
· n
Z

)
> Z +K − n

⇔ (Z +K) ·
(

3K

Z
− 1

)
· n
Z
> −n

⇔ (Z +K) · (3K − Z) > −Z2

⇔ 3K2 + 2KZ > 0.

Therefore, we must have |L| = Z. When |L| = Z, from (9), we have∑
`∈L

d` ≥ |L \ L|+ |L| ·
(

1− n

Z

)
= 3n+ Z = |R|,

while the equality is obtained only if there is no treasure from {mfix
k }k∈[n] that

is allocated to locations in L.

According to Proposition 7, all treasures from {mbad
k }k∈[Z] have been allo-

cated. Moreover, notice that the treasures from {mfix
k }k∈[n] can only be allocated

to the remaining locations in L\L where |L\L| = 4n. In addition, each location
can host at most 1/4 units of treasures from {mfix

k }k∈[n] while there are n units

in total, and therefore, we have that each location in L \ L hosts exactly 1/4
units of treasures from {mfix

k }k∈[n].
For convenience, let L̃ = {` ∈ L\L | ∃e 6= e′, g`,e(Π

∗) > 0 and g`,e′(Π
∗) > 0}

be the set of locations in L \ L that host at least two different treasures from
{me}e∈U .

Proposition 8. |L̃| = n. Moreover, for each ` ∈ L̃, the defender must allocate
a unit of treasure from {rEi}i∈[Z] to defend it.

Proof. We first argue that |L̃| ≥ n. Because if not, then there are at least 3n+ 1
locations ` ∈ L \ L in which there exists e ∈ U with g`,e(Π

∗) = 3/4. Since there
are |U | = 3n elements in total, by the Pigeonhole principle, there exists e ∈ U
such that

∑
`∈L\L g`,e(Π

∗) ≥ 3/2. A contradiction.

Next, by Proposition 7, there are n units of defensive resources from {rEi}i∈[Z]

left. For a location ` ∈ L̃ hosts two different treasures, the defender must allocate
a unit of treasure from {rEi}i∈[Z] to defend it; or otherwise, the attacker’s utility
of attacking ` is ∞.
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Proposition 8 implies that for the remaining 3n locations ` ∈ L \ (L ∪ L̃),
each location hosts 3/4 units of a unique treasure. Since |U | = 3n, consequently,
for each treasure me for e ∈ U , there are 1/4 units left. Observe that for loca-

tion ` ∈ L̃, it cannot host more than 3 different treasures from {me}e∈U since
there is no defensive resource that is effective for more than 3 different trea-
sures from {me}e∈U . Hence, for each ` ∈ L̃, it hosts exactly 3 different treasures
me1 ,me2 ,me3 ∈ {me}e∈U , each of which with 1/4 units. Moreover, to achieve
a game value −1/4, there must exist a subset Ei = {e1, e2, e3} so that the de-
fender can defend such a location with a unit of defensive resource rEi . Thus,
there exists a solution to the instance of 3-SET COVER.

Combining Lemma 21, Lemma 22, and Theorem 4, we finish the reduction.


