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Abstract

In the societal tradeoffs problem, each agent perceives cer-
tain quantitative tradeoffs between pairs of activities, and the
goal is to aggregate these tradeoffs across agents. This is a
problem in social choice; specifically, it is a type of quanti-
tative judgment aggregation problem. A natural rule for this
problem was axiomatized by Conitzer et al. [AAAI 2016];
they also provided several algorithms for computing the out-
comes of this rule. In this paper, we present a significantly
improved algorithm and evaluate it experimentally. Our algo-
rithm is based on a tight connection to minimum-cost flow
that we exhibit. We also show that our algorithm cannot be
improved without breakthroughs on min-cost flow.

1 Introduction

In social choice, we take as input the preferences or opinions
of multiple agents and seek to aggregate them. This is a key
problem in multiagent systems, which has given rise to the
computational social choice research community (Brandt et
al. 2015). The paradigmatic setting in social choice is that of
voting, where each agent ranks a set of alternatives. How-
ever, a ranking of alternatives is not always a natural rep-
resentation of the preferences or opinions that must be ag-
gregated. For example, in a multi-issue setting (Lang and
Xia 2015), there are exponentially many alternatives, mak-
ing it infeasible to rank them all. In judgment aggregation
(in its standard form) (Endriss 2015), agents provide true-
or-false judgments on various propositions, and we must ag-
gregate these into judgments that are logically consistent. Al
researchers regularly deal with questions of how to represent
the world, so it is not surprising that these problems are re-
ceiving special attention from the AI/MAS community. And
indeed, entirely new problems in social choice are arising
from work done in this community.

One such problem is the societal tradeoffs prob-
lem (Conitzer, Brill, and Freeman 2015). In it, each agent
quantitatively compares pairs of activities. For example,
one agent may judge that using one liter of gasoline is
as bad as generating 2 bags of landfill trash; another may
judge that that number should be 3 instead of 2. One pos-
sible area of application for this framework is in automated
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moral decision making, where an Al system has to choose a
course of action based on data that it has about human judg-
ments in similar scenarios (see, e.g., Conitzer et al. (2017)).
This problem has already been considered in the specific
contexts of self-driving vehicles making life-or-death deci-
sions (Noothigattu et al. 2018) and kidney exchange algo-
rithms prioritizing certain patients over others (Freedman et
al. 2018). To fit this into the framework considered in this
paper, it may be that one human subject appears to value
(say) the life of a 20-year old at 1.5 times the life of a 50-
year old, and another appears to use a ratio of 1.1. We then
need to find an aggregate ratio.!

When only two activities are being compared, using the
median judgment as our aggregate satisfies many nice prop-
erties. Things become more complex when more than two
activities are compared. As observed by Conitzer, Brill, and
Freeman (2015), taking the median on each pair separately
can result in inconsistent tradeoffs. For example, the result-
ing aggregate tradeoffs may be that (one unit of) gasoline
is 2 times as bad as trash, trash is 4 times as bad as defor-
estation, and gasoline is 2 times as bad as deforestation; but
2 -4 = 8 # 2 (Figure 1).

Conitzer et al. [2016] take consistency as a hard constraint
and specify some axioms that a rule should satisfy. Some-
what unusually2 for a social choice context, instead of lead-
ing to impossibility, the axioms uniquely pin down a single
rule. This rule involves first taking the logarithm of each
tradeoff value. Hence, the consistency constraint changes
from a multiplicative one (a - b = c¢) to an additive one
(log a+1logb = log ¢), and the problem can be thought of as
follows. Each activity is to be assigned a number (its qual-
ity), and the agents express for pairs of activities what they
consider to be the ideal difference in quality between these
two activities. Then, aggregate qualities are chosen so that
the sum of the distances between the aggregate differences
and the ideal differences expressed by the voters is mini-
mized.

Conitzer et al. [2016] show that this problem can be for-

'In these contexts, the word “activities” is not very appropriate
to refer to the different types of people, but we will stick with this
word for the sake of consistency with prior literature.

20f course, there are other results where a rule is uniquely
pinned down by axioms—for example, the Kemeny-Young rule
was uniquely axiomatized by Young and Levenglick (1978).
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Figure 1: An example where taking pairwise medians yields an inconsistent outcome. The three figures on the left are the votes,
and the right figure shows the (inconsistent) aggregate outcome. The numbers on edges show the multiplicative tradeoff factors
perceived by different agents, and the numbers in parentheses are obtained by taking the logarithm with base 2, representing
the additive tradeoff values—to be interpreted as ideal differences in quality. In the remainder of the paper we will focus only
on the numbers obtained after taking the logarithm, which are easier to work with; these can then be exponentiated to return to

the original interpretation.

mulated as a linear program, and also give a hill-climbing
heuristic that does not necessarily find an optimal solution.
In this paper, we show that the computational problem is in
fact closely related to minimum-cost circulation. Based on
this insight, we provide a significantly improved (and, bar-
ring breakthroughs on min-cost circulation, best possible)
algorithm for the problem and evaluate it experimentally.

2 Preliminaries

We first present the societal tradeoffs problem, which is the
problem of determining the aggregate tradeoffs according to
the rule defined by Conitzer et al. [2016]. Without loss of
generality and for presentational simplicity, we focus on the
additive model (i.e., we assume that logarithms have already
been taken). Also, we assume that each agent (voter) only
votes on one pair of activities; this is also w.l.o.g., because
a voter voting on multiple pairs can equivalently be split up
into multiple voters voting on one edge each.

Definition 1 (Societal Tradeoffs). Given a set V' of n activ-
ities and a set £ of m voters, each voter submits a vote of
the form (a;, b;, ¢;, w;). Voter i believes the difference be-
tween activities a;, b; € V should be ¢; > 0, and each voter
is associated with a weight w; > 0. The Societal Tradeoffs
Problem asks us to compute potentials z € RY, such that
the total loss L(V, E, x) is minimized:

L(‘/,E,Qi): Z wilmai — Ty, _Ci|'
(aisbisci w;)EE

Throughout this paper, we will use n for the number of
vertices (activities) and m for the number of edges (votes).

3 The Algorithm

We identify close connections between Societal Tradeoffs
and classic combinatorial problems. Based on these, we
give an algorithm for Societal Tradeoffs that is best possible
given what is currently known about these classic problems.

3.1 Formulating the Problem as a Linear
Program

Conitzer et al. (2016) showed how to formulate Societal
Tradeoffs as a linear program (LP). In this subsection, we
present an equivalent but slightly different linear program
that makes it easier to take the dual.

Recall that the problem asks to set z,, for every v € V to
minimize L(V, F, z). For any positive integer ¢, we denote
the set {1,2,...,t} by [t]. We can then formulate the prob-
lem as the following LP, where ¢;~ being positive means that
we deviate from the value ¢; in one direction, and /; being
positive means we deviate in the other direction.

Linear Program 1.
minimize Y ;e Wi e +6)
subject to EZ‘-" > Xa, — Xy, — i Vi € [m)
0 > i+ ap, — e, Vi€ [m]
>0, 6 >0 Vi € [m]
While we can solve this LP directly in polynomial time,

for larger instances with thousands of activities, we want an
algorithm faster than generic LP solvers.

3.2 Equivalence to Max-Cost Circulation
Consider the dual of Linear Program 1:
Linear Program 2.
Zie[m] ailfi — fi+)

subject to 0< f<w;, 0< f7 <w; Vie€[m]

Zi:m:v(fi_ - fz+) = Zi:b,i:'u(fi_ - fz—i_) YveV
Observe that for any 1, fi+ and f;~ only appear in the form

fi — fi. Let f; = f7 — f;". We obtain the following LP:
Linear Program 3.

maximize

maximize Y, Cifi
subjectto Y .. fi=ip—pfi Y0EV
—w; < fi Sw; Vi € [m]

This LP has the following combinatorial interpretation.
Consider each activity to be a vertex in a directed graph, and
each vote (a;, b;, ¢;, w;) to be an edge from a; to b; with
cost ¢; and capacity w;. We can interpret the f; variables as
flows, so that the objective of the LP corresponds to the to-
tal cost of the flows, and the two linear constraints reflect the
conservation and capacity constraints of circulations. (A cir-
culation is a flow such that the flow into each vertex is equal
to the flow out of it.) Societal Tradeoffs is therefore closely
related (via linear programming duality) to the Undirected
Max-Cost Circulation problem. See Figure 2 for a visualiza-
tion of the duality.



Definition 2 (Undirected Max-Cost Circulation). Given ver-
tices V' = [n] and edges F = {(ay, b;, ¢;, w;) }, the Undi-
rected Max-Cost Circulation problem seeks a flow f € R™
that satisfies
(1) Flow conservation: » ;.. fi =, _, fi, Vv, and
(2) Capacity constraints: for any ¢ € [m], |f;| < w;,
such that the total cost of the flow, Zie[m] ¢; fi, 1S maxi-
mized.

ZZJ1:0 P —— 1 > ZC2:1

Figure 2: Illustration of the primal and dual LPs based on
activities and votes in Figure 1. All votes/edges have unit
weight/capacity. The cost of the edges (the c;) are the val-
ues submitted by the three voters in Figure 1 (after taking
log,). Optimal potentials (the x,) are associated with the
activities; the differences between these values necessarily
constitute a solution that is consistent, unlike the one at the
right of Figure 1. Specifically, the bottom-edge comparison
between gasoline and trash becomes —1 instead of the 1 in
parentheses at the right of Figure 1 (and the other aggregate
differences are the same as in that figure). The flows on the
edges from the dual LP (the f;) are always 1 and their direc-
tions are indicated by the red/dashed arrows; note that the
flows form a circulation. These flows are obtained by solv-
ing the dual LP. The total cost of these flows is 12, which is
equal to the loss of the primal solution, which proves both to
be optimal by weak LP duality.

Strong duality immediately gives the following theorem.

Theorem 1. Fix V = [n], E = {(a;, b;, ¢;,w;)}™ . The
following problems have the same optimal objective value:

(1) Societal Tradeoffs with activities V and votes E.
(2) Max-Cost Circulation with vertices V' and edges E.

3.3 Translation between Primal/Dual Solutions

Theorem 1 implies that, in order to find the value of an opti-
mal solution to the Societal Tradeoffs problem, it suffices to
solve Max-Cost Circulation. Nevertheless, we are generally
not so much interested in this value, but rather in the solu-
tion itself. While some LP algorithms solve for primal and
dual solutions simultaneously, our goal is to avoid the use of
general LP algorithms. We next show that there are more ef-
ficient ways to translate optimal solutions between Societal
Tradeoffs (primal) and Max-Cost Circulation (dual).

Algorithm 1: Translation from an Undirected Max-Cost
Circulation optimum to a Societal Tradeoffs optimum.

Input : A circulation { f;} that maximizes the total
cost on graph (V, E).
Qutput: Potentials x that minimize the loss of Societal
Tradeoffs with activities V' and votes E.
Let S = (V,0) be an empty system of difference
constraints with variables z € RV .
for i € [m] do
if f; > —w; then
| Add constraint x,,
if f; < w; then
| Add constraint x,, — xp, > c; into S.

—ap, < c;into S.

Solve S by running Single-Source Shortest Path from
an arbitrary vertex in V', and return the distance labels
€.

From dual optima to primal optima. Algorithm 1 com-
putes an optimal primal solution by solving a system of dif-
ference constraints. The difference constraints come from
the complementary slackness conditions of LP 2—for dual
constraints that are not tight (which correspond to unsatu-
rated edges), we require the corresponding primal variables
(i.e., € or ¢; for edge i) to be 0.

Theorem 2. Given an optimal solution to Undirected Max-
Cost Circulation, Algorithm 1 runs in time

O(m +n+ Tsssp(n, m, W)),

and returns an optimal solution of the corresponding Soci-
etal Tradeoffs instance. Tsssp (n, m, W) is the time required
to solve Single-Source Shortest Path with negative weights
(SSSP) on a graph with n vertices, m edges, and maximum
absolute distance W.

Proof. The time complexity follows from Algorithm 1 and
fact that systems of difference constraints can be efficiently
solved using SSSP oracles (Pratt 1977; Aspvall and Shiloach
1979). We focus on the correctness of the algorithm.

First observe that .S in Algorithm 1 is feasible, because
no negative cycle exists in the graph representation of S.
Otherwise, flowing backward along the cycle increases the
total cost of the circulation, contradicting the optimality of

7

Next we show that the loss incurred by « is exactly the
cost of f. The optimality of x then follows from weak du-
ality. For ¢ € [m] where |f;| < wj;, the corresponding
loss w;|x,, — xp, — ¢;| in the primal LP is zero, because
Algorithm 1 added both constraints z,, — xp, < ¢; and
Za;, — Xy, > ¢;. Therefore, if we consider votes F' =
{(ai,bi, c;,wl)} where w, = |f;], the total loss of z on E
and E’ are the same.

We then decompose f into sum of flows around directed
cycles. Foracycle C = (u§, . .. 7ulc(vc)) of length [(C') with

flow f€ > 0, let d’ be the cost of edge (u’,uf, ) where
uﬁc)+1 = u§. The cost of fc units of flow along C' is



Algorithm 2: Translation from a Societal Tradeoffs op-
timum to an Undirected Max-Cost Circulation optimum.

Input : Potentials x that minimize the ¢;-loss of
Societal Tradeoffs with activities V' and votes
E.
Output: A circulation { f;} that maximizes the total
cost on graph (V) E).
Let f; + Oforall ¢ € [m]. for i € [m] do
if x,, — 23, — ¢; < 0 then
L fi & w;.
if z,, — xp, — ¢; > 0 then
L fi & —w;.

Let Vo < V U {s,t}, (Eo, Es, Et) < (0,0,0).
forv e V do
Zi:ai:v fl

dv = Zi:bi:v fl -
if d, > 0 then

L Es < Es U{(s,v,dy)}
if d, < 0 then

L Et <— Ef, U {(U,t, —dv)}
for i € [m] do

if x,, — 23, — ¢; = 0 then
| Eo + EoU{(a;,bi,w;), (b, a;,w;)}.

Compute a maximum s-¢ flow f’ on
Go = (Vo, Eo U Es U Ey).
Return f + f/|g,.

>, df. Note that we consider the edges in the direction
of the flow, and we always have

Tye =Ly, — d¥ = £(xq —xp — ).

Moreover, the fact that f© > 0 means there are constraints
of form x,c — Ty, > df in S. Therefore,

cost(f) =D f7 Y df
C

i€l(C)]

= Z fC Z (dlc —T,o + qu{»l)
c i€[l(C)]
= Zc:fcz Tyg — Tug,, diC

> > e =z —

e=(a,b,c,w’)EE’ C:eeC
/
E W'z —xp — ¢
(a,b,c,w’)EE’

= L(V,E',z) = L(V,E, ). O

From primal optima to dual optima. For completeness,
we show that we can also efficiently translate primal (So-
cietal Tradeoffs) optima to dual (Max-Cost Circulation)
optima. Algorithm 2 first constructs a partial flow based
on votes/edges with non-zero primal costs, and then tries

to balance the surplus at each activity/vertex using only
votes/edges with 0 primal costs.

Theorem 3. Given any optimum of a Societal Tradeoffs in-
stance, Algorithm 2 runs in

O(m +n+ TMaXFlow (na m, U))

time and returns an optimum of the corresponding Undi-
rected Max-Cost Circulation instance. TitaxFiow (1, m, U)
is the time complexity of Undirected s-t Max-Flow on a
graph with n vertices, m edges, and maximal capacity U.

Proof. The time complexity follows from the description of
Algorithm 2. We focus on the correctness of the algorithm.

We first show that Algorithm 2 does output a circulation.
In the first step, we assign a positive saturating flow f; = w;
to an edge (a;, b;, ¢;, w;) if x4, —xp, —¢; < 0, and a negative
saturating flow f; = —w; if 24, — xp, — ¢; > 0. The surplus
of each vertex v is

do=> fi— Y fu

i:bj=v ia;=v

The algorithm then tries to route the remaining surpluses on
the edges

EO - {(ai’bi’ci’wi) | Lo, — Tp; — Ci = O}a

i

which have not been assigned any flow. This attempt suc-
ceeds if the max flow f’ on graph G saturates every edge
from s (and every edge to t). We now show this always hap-
pens when x is optimal.

Suppose the flow computed is not saturating. That is, there
exists a cut C whose size is smaller than .., - d,. Let
S, T C V be the vertices on the s-side and ¢-side of C. Let
A = Ey N C be the edges/votes between S and 7" with 0
primal cost. The cut C includes edges in A, as well as edges
from S to ¢t and s to T'. From the assumption on the size of
C', we know that

> d

Z Wi — Z dv + Z dv <

(as,bi,ciw; )EA vES:d, <0 vET:dy, >0 vEV:d, >0
Rearranging the terms gives
D .= E dy — E w; > 0.

veS (ai,bi,ciw;)EA

Note that by the construction of f in the beginning,

dv = Z w; — Z W;

i:aizv,xai—xbi—ci>0 i:aiz’u,xai—mbi—ci<0

+ Z w; — Z w; .

i:bi:U,ZEai —xp, —¢;<0 i:bi:v,zaifwbifci>0

We will show D is exactly the rate of improvement if we
decrease z,, for all v € S simultaneously. Hence, D > 0
contradicts the optimality of = so f’ must saturate all edges
from s. To see why this is true, observe that the rate at which
the loss changes consists of two parts: the change on nonzero
edges across C' and the change on zero edges across C'. De-
creasing x, slightly for v € S may decrease the loss on



some nonzero edges, and increase the loss on other nonzero
edges. The total rate of this part of the change is exactly
— > _ves dv- On the other hand, changing ., in any way in-
creases the loss on zero edges across C, and the total rate
of this part is simply the total weight of zero edges across
C, namely » (ai, A W;. The sum of the two parts is
exactly D.

Finally, we show that the cost of the constructed circula-
tion is equal to the loss in the Societal Tradeoffs instance.
For any unsaturated edge i € F (i.e. |f; + f!| < w;), the
corresponding primal cost is 0 (i.e., 4, — p, — ¢; = 0).
Hence, setting w} = |f; + f/| for these edges does not affect
the primal or the dual cost. Let E’ be the edges after this
transformation. A similar cycle-decomposition argument to
that in the proof of Theorem 2 yields

cost(f) = L(V,E',z) = L(V, E, x).
The optimality follows from weak duality. O

bi,ci,wi)€

3.4 Implications on the Time Complexity of
Societal Tradeoffs

A solid connection between Societal Tradeoffs and classic
combinatorial problems has been established in the forego-
ing sections. Based on this connection, we give a signifi-
cantly improved algorithm for Societal Tradeoffs, and prove
that improving our algorithm would give a faster algorithm
for Min-Cost Circulation.

First, we review the state of the art for Min-Cost Circu-
lation and Single-Source Shortest Path (SSSP) algorithms.
Maximum Flow, Shortest Path, and other related graph prob-
lems are core combinatorial optimization problems that have
been studied extensively (see, e.g., (Edmonds and Karp
1972; Gabow and Tarjan 1989; Madry 2013; Cohen et al.
2017) and the references therein).

In this section, we will use n for the number of ver-
tices (activities), m for the number of edges (votes), U for
the maximum capacity, and W for the maximum absolute
value of the cost (for Min-Cost Circulation) or distance (for
SSSP).

Lemma 1 ((Gabow and Tarjan 1989)). There is an algo-
rithm for Min-Cost Circulation and SSSP which runs in time
O(m'? log(nW)).
Lemma 2 ((Cohen et al. 2017)). For unit-capacity graphs,
there is an algorithm for Min-Cost Circulation and SSSP
which runs in time O(m'®/7log W).?

We can now state our main results. Theorem 4 follows
immediately from Theorem 2 and Lemmas 1 and 2.

Theorem 4 (Better Algorithms for Societal Tradeoffs). So-
cietal Tradeoffs can be solved in time O(m!log(nW)),
where W is the maximum difference suggested by the vot-
ers. If all voters have the same weight, then Societal Trade-
offs can be solved in time O(m'%/" log W).

We further show (in Theorem 5) that the above algorithm
cannot be significantly improved without giving faster Min-
Cost Circulation algorithms. More specifically, any algo-
rithm whose dependency on m has a smaller exponent is

3We use O(f(n)) as a shorthand for O(f(n)log®® f(n)).

considered significantly faster. We first show that directed
and undirected Min-Cost Circulations are essentially equiv-
alent.

Lemma 3 (Folklore). Directed Min-Cost Circulation with n
vertices, m edges and maximum absolute cost W can be re-
duced to Undirected Min-Cost Circulation with parameters
(n+ 1,3m,nW). The reduction takes O(m + n) time.

Proof. We construct an Undirected Min-Cost instance G’ =
(V U{wvo}, E’) which preserves the solution to any Directed
Min-Cost Circulation instance G = (V, E'). Without loss of
generality, we assume each capacity w; is an even integer.
Otherwise, we first multiply all capacities by 2, which does
not change the nature of the instance. For each (directed)
edge (a;, b;, ¢, w;) € E, we add 3 (undirected) edges into
E"

e (aj,vo, —nW,w;/2),
[ ] (UO, bi, 77LVV, U}l/2), and
e (a;,bi,ci,wi/2).
Note that in any minimum cost circulation of G’, all edges

with cost —nW must be saturated. In other words, the opti-
mum is a combination of two parts:

(1) a circulation consisting of w;/2 units of flow

along directed cycles (b;,a;,v9), one for each edge
(az, biy ci,w;) € E; and

(2) a Min-Cost Circulation on the residual graph. Observe

that the residual graph is exactly G.

Thus, a Min-Cost Circulation of G can be recovered from a
Min-Cost Circulation of G’, by subtracting the first part of
the flow. This can be done in O(m + n) time. O

Theorem 5 is a direct corollary of Theorem 1 and
Lemma 3.

Theorem 5 (Improvement Gives Faster Flow Algorithms).
Let U denote the maximum weight of any voter (and max-
imum capacity), and let W denote the maximum difference
between activities (and maximum absolute cost).

Let Tyicc denote the time it takes to compute a circulation
that minimizes the total cost.

Tyce(n,m, U, W)
S TSocietalTradeofTs (n + 17 3m7 U7 TLW)
+ TMaxFlow(n + 1, 3m, U) + O(m + n)

In other words, if one can solve Societal Tradeoffs signif-
icantly faster, then either (1) there is a faster algorithm that
computes a Min-Cost Circulation, or (2) Min-Cost Circula-
tion is no harder than Max-Flow. Either result would be a
breakthrough on the computation of min-cost flow.



4 Limitations of Hill-climbing

In this section, we provide some insights to the hill-climbing
algorithm proposed in Conitzer et al. (2016). The hill-
climbing heuristic works by picking one activity at a time
and setting its potential to a value that minimizes the loss
given other potentials. It repeats this until no further such
local improvements are possible. Conitzer et al. (2016) ob-
served that hill-climbing can get stuck at local optima. We
give a simple example where hill-climbing gets stuck. In ad-
dition, we show that even when the algorithm converges to
optimality, sometimes this can take a very long time.

Hill-climbing can get stuck in a local optimum. Con-
sider an example with 6 activities, and one complete vote
(or equivalently, a vote for each pair of activities with unit
weight). For ¢ € {1,2,3}, the difference between z; and
z;+3 should be 1, and the difference between any other pair
should be 0. The optimal solution is to assign every activity
the same value, say 0, with total loss 3.

Consider an initial value configuration (1,1,1,0,0,0).
This is a local optimum for hill-climbing with loss 6, since
changing the value of any single vertex cannot reduce the
total loss. To see this, consider activity 1. At this local opti-
mum, its differences to activities xs, x3, and x4 align with
the vote, so 3 out of the 5 remaining activities prefer x; to
stay the same. Similar arguments hold for other activities.

Hill-climbing can take arbitrarily long to terminate.
Consider the same example except that the voter now thinks
the value of activity 1 should be € higher than that of activ-
ity 2. Again, we start from (1,1, 1,0, 0, 0). First we move x5
to 1 — ¢, because this improves the comparison with z1, x4,
and x¢ (but moving it any further would hurt the comparison
with x1). Then, we move z3 to 1 — € because this improves
the comparison to zs, x4, and x5. After that, we move z; to
1 — £ to improve the comparison to x3, x5, and x4. Now we
are back to a similar configuration to where we started, i.e.,
(1—¢,1—¢,1-2¢,0,0,0). Following this pattern, it takes
Q(1/e) time for hill-climbing to terminate. For arbitrarily
small ¢, this time can be arbitrarily large.

5 Experiments

All experiments were done on a laptop computer with 8§GB
of memory and a 2.6 GHz Intel Core i5 CPU. Results are
obtained by averaging over 10 runs with different seeds.

5.1 Experimental Setup

For empirical evaluation, we implemented our algorithm
based on the network simplex algorithm from LEMON (an
open-source library of graph algorithms). We evaluate our
flow-based algorithm against

1. an LP solver based on the GNU Linear Programming Kit
(GLPK),

2. an LP solver based on CPLEX, which is generally consid-
ered one of the best general-purpose LP solvers, and

3. ahill-climbing heuristic.

(1) and (3) were studied experimentally by Conitzer et
al. (2016). We generate input using 4 different distributions:

1. Uniform. For each voter and each pair of activities (u, v),
we draw a number = € [—1, 1] uniformly at random, and
let the voter’s tradeoff between u and v be x.

2. Spanning. For each voter, we sample a random spanning
tree of the activities. For each edge (u, v) of the spanning
tree, we draw the voter’s tradeoff x uniformly at random
from [—1, 1]. We then fill in the voter’s tradeoff between
other pairs of activities by consistency.

3. Noise. We first draw a potential for each activity p, from
[—10, 10] uniformly at random. For each voter ¢ and each
pair of activities (u, v), let the voter’s tradeoff between u
and v be p, — p, + x¢,, where 2!, € [~1,1] is drawn
independently uniformly at random.

4. Random-graph-uniform. For each voter, we draw exactly
one pair of activities (u,v) and a number z from [—1, 1]
uniformly at random. We then let the voter’s tradeoff be-
tween v and v be x.

The first three distributions generate instances where each
voter expresses a preference on every pair of activities (i.e.,
the voting graph is a clique). The spanning tree distribution
generates consistent votes; the others generally do not.*

5.2 Results and Evaluation

As can be seen from Figure 3, GLPK is consistently slow,
particularly on instances from the spanning distribution.
CPLEX is faster than GLPK, but still significantly slower
than the other two methods.

Hill-climbing works reasonably well as a heuristic al-
gorithm. As Table 1 shows, its accuracy improves as the
voting graph becomes denser. In particular, the solutions
hill-climbing generates are usually indistinguishable from
the optimal solution when voters give complete votes (i.e.,
tradeoffs between all pairs of activities).

In terms of runtime, hill-climbing beats our flow-based
algorithm on the uniform and spanning distributions. How-
ever, its runtime is worse under the noise model, when there
is an underlying ground truth. During our experiments, we
sometimes observe instances on which hill-climbing takes
significantly more time than the flow-based algorithm. In
contrast, the flow-based algorithm shows remarkable robust-
ness regardless of the distribution of the input.

In general, our flow-based algorithm is robustly fast with
a strong upper bound on running time, and is guaranteed to
produce an optimal solution. In contrast, the formerly stud-
ied algorithms have notable flaws: LP-based methods (i.e.,
GLPK and CPLEX) produce optimal solutions but almost
never terminate on our large instances, and hill-climbing, at
the cost of producing suboptimal solutions, is not too much
faster and its runtime is extremely sensitive to the structure
of the input. These factors make our flow-based algorithm
preferable both in theory and in practice.’

*We consider inconsistent votes here in order be consistent with
prior experimental practice on this topic (Conitzer et al. 2016).
51t is worth noting that when computing the outcomes of a rule
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Figure 3: Runtime of the 3 algorithms on inputs from different distributions. The left 3 figures plot the growth of running times
when the number of votes grows, and the right 3 figures show the running times when the number of activities grows.

Number of edges 100 | 200 | 300 | 400 | 500
Approximation ratio | 2.04 | 1.20 | 1.06 | 1.04 | 1.02

Table 1: Approximation ratio of hill-climbing vs. density of
the voting graph (random-graph-uniform distribution with
100 nodes).

6 Discussion

Our algorithm for societal tradeoffs scales much better than
the previously known linear programming approach. Given
the tight connection to min-cost circulation that we have ex-
hibited, it appears that there is little left to be done to im-

in a social choice setting, computing only an approximate solution
is likely to lose the desirable properties of the rule, and it may raise
concerns about whether the outcome is legitimate.

prove this algorithm as far as exact approaches go. Even
when comparing to the previously known heuristic hill-
climbing approach, our algorithm is sometimes significantly
faster in experiments—and of course it comes with the ben-
efits of exactness and provable running time guarantees.

The faster algorithm will allow us to scale to much
larger sets of activities. In some contexts, this will be crit-
ical for the methodology to succeed. For example, in the
autonomous vehicles and kidney exchanges examples dis-
cussed in the introduction, where “activities” corresponds to
different types of people, we face a combinatorial explosion
in V if many attributes are taken into account (e.g., in Freed-
man et al. [2018], one possible type is a young person who
drinks little alcohol but has skin cancer in remission). Of
course even our improved algorithm can only go so far in
addressing such combinatorial explosions; at some point, we
will no longer be able even to enumerate V' and a different



representation scheme will be needed. What scheme is ap-
propriate, do we need a different rule for it, and are there
efficient algorithms for that rule? These are exciting ques-
tions for future research.
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