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ABSTRACT
MC-nets constitute a natural compact representation scheme for co-
operative games in multiagent systems. In this paper, we study the
complexity of several natural computational problems that concern
solution concepts such as the core, the least core and the nucleolus.
We characterize the complexity of these problems for a variety of
subclasses of MC-nets, also considering constraints on the game
such as superadditivity (where appropriate). Many of our hard-
ness results are derived from a hardness result that we establish for
a class of multi-issue cooperative games (SILT games); we suspect
that this hardness result can also be used to prove hardness for other
representation schemes.
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1. INTRODUCTION
In settings with multiple self-interested agents, the agents can

often benefit from formingcoalitions, which allows them to ac-
complish tasks that they could not accomplish individually.Co-
operative game theoryprovides tools to answer several important
questions in this context, such as how the gains from such cooper-
ation are to be distributed among the agents. This has led to signif-
icant and sustained interest from multiagent systems researchers in
computational aspects of cooperative game theory. A book is now
available on this topic [2].

The most commonly studied model in cooperative game theory
specifies avaluev(S) for every subsetS ⊆ A, whereA is the
set of agents. This is the value that the agents inS can obtain and
distribute among themselves if they work (only) with each other.
v : 2A → R is known as thecharacteristic functionof the game.
Several assumptions are inherent in this model: for example, more
generally there may be restrictions on how agents can transfer util-
ity among themselves, or the agents may care about the actions of
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agents outside the coalition. Nevertheless, it is a broadly applicable
model and we will restrict attention to it in this paper.

The straightforward way to represent a cooperative game withn
agents requires listing2n numbers, one for each coalitionS ⊆ A.
This is generally not feasible. Usually, however, there is structure
in the game that allows us to represent it compactly. In this pa-
per, we focus on representations whose compactness relies on the
insight that the characteristic function is often a sum of multiple
functions—that is,v =

∑

t vt for multiple issuest—where eachvt
can be represented compactly. For example, if for each individual
issuet, many (for example, all but a constant number of) aredummy
agents(wherei is a dummy agent forvt if vt(S∪{i}) = vt(S) for
all S), then we can explicitly specify the value of the functionvt
for each subset of non-dummy agents [4]. Alternatively,Marginal
Contribution nets (MC-nets)[14] specify, for each issue, a logical
patternsuch that some constant value is obtained if the coalition
satisfies the pattern, and zero otherwise. Both of these represen-
tation schemes are fully expressive; necessarily, some games will
require exponential space to specify, but many interesting families
of games (e.g., graph games) can be specified compactly.

MC-nets in particular have received a significant amount of at-
tention in recent years. Which games can be specified compactly
using them depends on which logical operators are allowed in the
patterns. The original paper [14] focused on the case where only
conjunctions and negations (and no brackets) are allowed. More re-
cently, it was extended to also allow disjunctions and brackets [8].
Inspired by these papers, our main objective in this paper is to sys-
tematically characterize how the complexity of solving coopera-
tive games represented as MC-nets depends on what constraints
are imposed on patterns – specifically, which logical operators are
allowed and whether negative values are allowed. It turns out that a
key step is to first consider general multi-issue games in which all
issues but one concern only a small number of agents.

But what does it mean tosolvea game? There are many solu-
tion concepts in cooperative game theory, such as the Shapley value
[19], the kernel [6], the core [11], the least core [17] and the nucle-
olus [18]. Among these, the Shapley value and the core are partic-
ularly prominent. A key and defining property of the Shapley value
is its additivity: an agent’s Shapley value is the sum of its Shapley
values in the individual issues, so that having multiple issues (or
patterns) does not get in the way of computational tractability [4,
14, 8]. Therefore, in this paper, we focus on stability-based solution
concepts, including the core, the least core and the nucleolus.

2. RELATED RESEARCH
Deng and Papadimitriou [7] proved that the CORE-EMPTINESS

problem (see Definition 2) is NP-complete in graph games where
agents are vertices and a coalition’s value is the sum of all edges’



weights in the subgraph induced by that coalition. As has been pre-
viously pointed out [14, 12], MC-nets can encode graph games effi-
ciently, so the problem is also hard for MC-nets. However, a natural
and extremely common constraint on the characteristic function is
for it to be superadditive, that is, forS ∩ S′ = ∅, we must have
v(S ∪ S′) ≥ v(S) + v(S′). The intuition is that one course of ac-
tion for any coalition is simply to further divide into two subcoali-
tions and take the sum of their values, so the (maximum) value the
coalition can achieve must be at least this sum. Graph games are
superadditive if and only if there are no negative edges, and if there
are no negative edges the graph game must be convex and its core
nonempty. So, if a superadditivity constraint is added, the CORE-
EMPTINESSproblem is trivial for graph games, and its complexity
is not clear for MC-nets.

Conitzer and Sandholm [5] introduced a compact representation
scheme that fundamentally relied on the game being superaddi-
tive. They proved that the CORE-EMPTINESS problem is coNP-
complete under their representation. However, they proved that this
hardness was strictly due to the hardness of computing the value
of the grand coalition (v(A)) under their representation, because
once that value is given, the CORE-EMPTINESS problem can be
solved in polynomial time. Hence this result cannot imply hardness
for MC-nets, wherev(A) is easy to compute. In other work [4],
Conitzer and Sandholm consider the multi-issue representation de-
scribed above (a constant number of non-dummy agents per issue)
and proved that the harder NOT-IN-CORE problem (see Defini-
tion 3) is NP-complete even with a superadditivity constraint. How-
ever, they did not settle the complexity of the CORE-EMPTINESS

problem under these conditions. In this paper, we prove that the
CORE-EMPTINESSproblem is in fact NP-complete under a multi-
issue representation (with a constant number of non-dummy agents
for all but one issue), even when requiring superadditivity. We
show that this also implies hardness for several, but not all, vari-
ants of MC-nets. The proof is quite involved; we will give some
intuition for why this might be necessary at the end of Section 3.2.

Note that our work is not the first to prove NP-hardness for the
CORE-EMPTINESS problem in cooperative games that are super-
additive. Greco et al. [13] proved such hardness for games that are
specified using “polynomial-time worth functions”. But their result
does not seem to apply to MC-nets and multi-issue games, as their
representation scheme is significantly more powerful. Specifically,
in their hardness proof, the coalition value switches to some value
once the coalition size exceeds|A|/2, and we do not see how this
can be expressed using MC-nets with only limited logical opera-
tors or using multi-issue games with small issues. On the other
hand, our result implies their hardness result, as SILT games are
polynomial-time worth function games. To the best of our knowl-
edge, no hardness results are known for CORE-EMPTINESSunder
MC-nets or multi-issue representations. Previous results left open
the possibility that these problems were polynomial-time solvable
under such representation schemes.

Although the core is a computationally challenging solution con-
cept in many cases, some positive results are known. For example,
the NOT-IN-CORE problem is in P for MC-nets if the treewidth of
the corresponding agent graph is bounded [14]. This problem is
also in P for graph (or hyper-graph) games if all the edges (or hy-
peredges) have non-negative values [7]. Those games correspond
to MC-nets with only∧ operators and non-negative pattern val-
ues. In fact, Deng and Papadimitriou [7] gave an efficient network
flow algorithm that can solve a harder problem: MOST-V IOLATED-
COALITION (see Definition 4).1 A similar network flow algorithm

1They do not explicitly state that their algorithm can solve this
problem, but it does. Specifically, the maximum violation isv(A)

can be found in Lawler [15, p. 125]. (The provisioning problem
there is identical to the MOST-V IOLATED-COALITION problem.)
Those algorithms can further be used to compute an element of
the least core, and, under certain conditions [9], the nucleolus, effi-
ciently. The nucleolus is a very attractive solution concept; among
other properties, it is unique and it lies within the core whenever
the core is nonempty.

As becomes apparent from the above discussion, the three prob-
lems CORE-EMPTINESS, NOT-IN-CORE, and MOST-V IOLATED-
COALITION are closely related to each other and to stability-based
solution concepts like the core, the least core and the nucleolus.
This makes it natural to study them all together, as we do in the rest
of this paper.

3. PRELIMINARIES
In this section, we define the computational problems that we

study, and review some basic results. We will not yet discuss how
games are represented; the definitions of the computational prob-
lems are valid for any representation scheme (though of course their
complexity depends on which scheme is used).

3.1 Problem Definitions
Given agentsA, we first formally define the core:

DEFINITION 1 (CORE). Let x : A → R denote a payment
vector and letx(S) =

∑

a∈S x(a) be the total payment to coalition
S ⊆ A. Thecoreis the set of payment vectors withx(A) = v(A)
that pay every coalition at least its value, i.e.,{x | x(A) = v(A)∧
(∀S ⊆ A)x(S) ≥ v(S)}.

We will study the following related decision problems:

DEFINITION 2. In theCORE-EMPTINESSproblem, we are given
a cooperative game. The instance has ayesanswer if and only if
the core of that game is empty.

DEFINITION 3. In theNOT-IN-CORE problem, we are given a
cooperative game and a payment vectorx (x(A) = v(A)). The
instance has ayesanswer if and only ifx is not in the core of that
game (that is, there exists ablocking coalition∅ ( S ( A such
thatv(S) > x(S)).

DEFINITION 4. In theMOST-V IOLATED-COALITION problem,
we are given a cooperative game, a payment vectorx (x(A) =
v(A)), and a violation goalγ ∈ R. The instance has ayesanswer
if and only if there exists∅ ( S ( A such thatv(S)− x(S) > γ.

In Definitions 3 and 4, when the answer isyes, we might also
like to find a coalition that proves that this is the case. Hence, the
reader might prefer a definition of the computational problem that
is more constructive. Fortunately, in both cases, we can use an al-
gorithm for the decision problem to actually construct the coalition
in question, shown as Algorithm 1.2 In the case of Definition 4, we
may also wish to find the maximumγ with answeryes; searching
for thisγ up to an arbitrarily good approximation is straightforward
by binary search.

(or equivalentlyv(N) = x(N) in their paper’s notation) minus the
value of the maximum flow/minimum cut.
2The algorithm is correct for the following reasons. If the decision
algorithm returnsyesafterx(a) is increased byM , there must be a
subsetS with a /∈ S that can prove theyesanswer; hence we can
safely excludea by not restoringx(a). If the decision algorithm
returnsnoafterx(a) is increased byM (but before that the answer
is yes), all S that can prove theyesanswer (without using what has
already been excluded) must includea; therefore we restorex(a)
(so the answer remains to beyes) and put thata intoC.



Algorithm 1 Given an algorithm that decides whether a coalition
S with v(S)−x(S) > 0 (or v(S)−x(S) > γ) exists, and a game
for which the answer isyes, construct a coalition with that property.

for all a ∈ A do
increasex(a) andv(N) byM = (maxS v(S))− γ
run the algorithm for the decision variant again;
if the answer isno then

restorex(a), v(N) to their original values
end if

end for
Output the coalitionC = {a ∈ A : x(a) < M}.

3.2 Basic Results
What could be a certificate for the core being empty? The well-

known Bondareva-Shapley theorem [1, 20] provides the answer.

THEOREM 1 (BONDAREVA-SHAPLEY THEOREM). For any
cooperative game with non-negative values (v(S) ≥ 0 for all S ⊆
A), the core is empty if and only if there exists a weight function
w : 2A \ {∅} → [0, 1] such that

∑

∅⊂S⊆A

w(S)v(S) > v(A) (1)

(∀a ∈ A)
∑

∅⊂S⊆A:a∈S

w(S) ≤ 1 (2)

The following lemma is also well-known (see, e.g., [16, 10]).

LEMMA 1. If the value of any coalitionv(S) can be computed
in polynomial time, then theCORE-EMPTINESS, NOT-IN-CORE,
andMOST-V IOLATED-COALITION problems are in NP.

An efficient algorithm for one of the problems sometimes leads
to one for another. The NOT-IN-CORE problem is the special case
of the MOST-V IOLATED-COALITION problem whereγ = 0. Mean-
while, if NOT-IN-CORE is in P, then so is CORE-EMPTINESS, be-
cause the former is the separation oracle problem for the latter (see
also the discussion in [14]). Summarizing in a proposition:

PROPOSITION 1. TheCORE-EMPTINESS, NOT-IN-CORE and
MOST-V IOLATED-COALITION problems have nondecreasing com-
plexity. That is, if a problem is in P, so are the problems on its left;
if a problem is NP-hard, so are the problems on its right.3

Hence, the most difficult hardness results to obtain are those
for CORE-EMPTINESS. Moreover, it appears even more difficult
to prove that this problem is hard if we require the game to be
superadditive, for the following reason. We recall that a natural
certificate for CORE-EMPTINESS consists of the right values for
w(S) in the Bondareva-Shapley theorem (or at least a specifica-
tion of which ones are positive). It is natural to attempt reductions
to CORE-EMPTINESS where, if the answer isyes, there exists a
subsetS such that settingw(S) = 1 andw(A \ S) = 1 (and ev-
erything else to0) is a certificate. Indeed, this is the case for the
proof by Deng and Papadimitriou [7]. However, this approach can-
not work in superadditive games, because there we would obtain
∑

S w(S)v(S) = v(S) + v(A \ S) ≤ v(A). More generally, any
reduction where, if the answer isyes, there is a certificate where
all thew(S) take value either0 or 1—and this would seem to be
the natural approach if we rely on reductions that involve finding a
subset or partition of the agents with some property—cannot work
if the game is superadditive; we fundamentally need to consider
fractional values for thew(S), as we do in what follows.
3The hardness direction requires a Turing (Cook) reduction.

4. SMALL-ISSUES-LARGE-TEAM GAMES
We recall that one family of games that can be represented com-

pactly consists of those games whose characteristic functions are
the sum of multiple individual issues, each of which concerns only
a constant number of agents [4]. In this section, we consider a
slightly more general class of games that, in addition to the small
issues, allow a single issue that has nonzero value only for the grand
coalition. This value may represent various efficiencies that could
result from having all agents in the same coalition. We call these
gamesSmall-Issues-Large-Team (SILT)games. Besides being of
interest in their own right, these games will help us prove hardness
results for MC-nets. Specifically, we show that CORE-EMPTINESS

is NP-hard in SILT games, even under the constraint of superaddi-
tivity (which also implies monotonicity because all the values are
nonnegative). We then (in Section 5.1) show that some (though not
all) important subclasses of MC-nets can compactly represent all
SILT games, thereby proving hardness for them as well.

DEFINITION 5 (SILT GAME). A SILT game is defined by a
triplet (A, T, gA) whereA is the set of agents,T is the set of small
issues, andgA is the marginal contribution of the grand coali-
tion. A small issuet ∈ T is described by(vt, Ct): a relevant
agent setCt ⊆ A (where|Ct| is bounded by a constant) and a
characteristic functionvt : 2Ct → R. vt is extended to the do-
main 2A by letting vt(S) = vt(S ∩ Ct). Furthermore there is
the single large issue whose characteristic functiong : 2A → R

is given byg(A) = gA and g(·) is zero everywhere else. The
game’s characteristic function overallv : 2A → R is given by
v(S) = g(S) +

∑

t∈T vt(S ∩ Ct).

Next, we give a reduction to SILT games from the NP-complete
VERTEX-COVER problem, in which we are given a graphG and a
numberk and are asked whether there exists a subset of at mostk
vertices such that every edge includes a vertex in the subset.

DEFINITION 6 (VERTEX-COVER SILT GAME). Let(G, k) be
a VERTEX-COVER instance, whereG = (V,E) and |V | = n. We
define the corresponding Vertex-Cover SILT game(A, T, gA) as
follows. The agent set isA = A0∪V whereA0 = {a0, a1, . . . , a4}
is a set of5 auxiliary agents. The set of issues isT = V ∪ E. A
vertex issuei ∈ V ⊆ T concerns only agents inCi = A0 ∪ {i}
and an edge issuee = {i, j} ∈ E ⊆ T concerns only agents in
Ce = A0 ∪ {i, j}.

For a coalitionS and a vertex issuei ∈ V , vi(S) = 1
n(n+1)

if
i∧ [(a1∧a2∧ ((¬a3∧¬a4)∨¬a0))∨ (a3∧a4∧ ((¬a1∧¬a2)∨
¬a0))] andvi(S) = 0 otherwise. Here, a positive literalz in the
boolean expression means that agentz ∈ S, and a negative literal
¬z meansz /∈ S. Similarly, for a coalitionS and an edge issue
e = {i, j}, ve(S) = 1 if (i ∨ j) ∧ a0 ∧ ((a1 ∧ a3) ∨ (a2 ∧ a4))
andve(S) = 0 otherwise.

Intuitively, if we arrange the5 auxiliary agents as in Figure 1, a
vertex issuei contributes non-zero value if and only if (1)i ∈ S,
(2) no diagonal{a1, a0, a3} or {a2, a0, a4} is completely included
in S, and (3) either the left column{a1, a2} or the right column
{a3, a4} (or both) is completely included inS. An edge issue
e = {i, j} contributes non-zero value if and only if (1){i, j} in-
tersects withS and (2) either diagonal{a1, a0, a3} or diagonal
{a2, a0, a4} (or both) is included inS.

Finally, the grand coalition’s marginal contribution isgA =
n−k

n(n+1)
× 2n+1

2n+2
.

LEMMA 2. The VERTEX-COVER instance(G, k) has yes as
its answer if and only if its correspondingVERTEX-COVER SILT
game in Definition 6 has an empty core.



One of the diagonals (red)

is required for edge issue

contributions.
One of the columns (blue)

is required for vertex issue

contributions. Meanwhile,

a diagonal (red) excludes

vertex issue contributions.

Figure 1: How auxiliary agents in Definition 6 determine
whether an issue contributes non-zero value or not.

PROOF. First, we show that the existence of a vertex cover of
size at mostk implies that the core is empty. We can handle this
direction quite easily thanks to the Bondareva-Shapley Theorem.
Let S ⊆ V be a vertex cover of size at mostk. We construct the
following weight functionw : 2A → [0, 1]:

w({a0, a1, a3} ∪ S) = w({a0, a2, a4} ∪ S) = 1/2

w({a1, a2} ∪ (V \ S)) = w({a3, a4} ∪ (V \ S)) = 1/2

andw = 0 everywhere else. It is straightforward to check that for
all a ∈ A,

∑

S⊆A:a∈S w(S) ≤ 1. We havev({a0, a1, a3} ∪ S) =

v({a0, a2, a4} ∪ S) = |E|: these coalitions will get all of the
edge contributions (becauseS is a vertex cover), none of the vertex
contributions (because they contain a diagonal), and they will not
get gA. Also, we havev({a1, a2} ∪ (V \ S)) = v({a3, a4} ∪
(V \ S)) ≥ n−k

n(n+1)
: these coalitions will get none of the edge

contributions (because they do not containa0), at leastn−k of the
vertex contributions (specifically, the contributions for all vertices
i ∈ V \ S), and they will not getgA. Finally, we havev(A) =
|E| + n−k

n(n+1)
× 2n+1

2n+2
, because the grand coalition will get all of

the edge contributions andgA, but none of the vertex contributions.
Hence, we can conclude that

∑

S⊆A w(S)v(S) ≥ |E|+ n−k
n(n+1)

>

|E|+ n−k
n(n+1)

× 2n+1
2n+2

= v(A). It follows that the conditions of the
Bondareva-Shapley theorem are satisfied and the core is empty.

Next, we show that emptiness of the core implies that a vertex
cover of size at mostk exists; this is the more difficult direction.
For the sake of contradiction, let us assume that the core is empty
and every vertex cover has size at leastk+1. The emptiness of the
core implies the existence of a weight functionw : 2A → [0, 1]
with the conditions specified in Theorem 1. Without loss of gen-
erality, we can assumew(A) = 0. (If w(A) > 0, then we can
construct the modified weight functionw′ with w′(A) = 0 and
w′(S) = w(S)/(1 − w(A)) whenS 6= A. Then, for anya ∈ A,
∑

S⊆A:a∈S w′(S) = 1/(1−w(A))
∑

S(A:a∈S w(S) ≤ (1/(1−

w(A)))(1−w(A)) = 1, where the inequality is due to the fact that
w satisfies Inequality 2. Moreover,

∑

S⊆A w′(S)v(S) = 1/(1 −

w(A))
∑

S(A w(S)v(S) > (1/(1−w(A)))(v(A)−w(A)v(A)) =

v(A), where the inequality is due to the fact thatw satisfies In-
equality 1.) So we can restrict our attention to coalitionsS ( A.

Now, we categorize all subsetsS ( A into two families, namely
SE = {S ( A | v(S) ≥ 1} andSV = 2A \ (SE ∪{A}). Because
all vertex issues combined contribute strictly less than1 and the
grand coalition marginal contribution will not occur as we consider
only coalitionsS ( A, it follows thatSE is exactly the family of
subsetsS that obtain at least one contribution of1 from an edge
issue. Hence,SV is the family of subsetsS that only derive value
from vertex issues. We can then rewrite Inequality 1 as

∑

S∈SE

w(S)v(S) +
∑

S∈SV

w(S)v(S) > v(A) (3)

Let S∗
E = {S ∈ SE | v(S) ≥ |E|} consist of the coalitions

that correspond to vertex covers, and letp =
∑

S∈S∗

E

w(S) and

q =
∑

S∈SE\S∗

E

w(S). Becausea0 ∈
⋂

S∈SE
S and Inequality 2

holds, we havep+ q =
∑

S∈SE
w(S) ≤

∑

S⊆A:a0∈S w(S) ≤ 1.
Therefore,q ≤ 1−p. Additionally, because for allS ∈ SE , v(S) is
an integer no greater than|E| (the presence ofa0 precludes vertex
issue contributions), we derive

∑

S∈SE

w(S)v(S) =
∑

S∈S∗

E

w(S)v(S) +
∑

S∈SE\S∗

E

w(S)v(S)

≤ p|E|+ q(|E| − 1)

≤ p|E|+ (1− p)(|E| − 1) = |E| − 1 + p
(4)

This corresponds to the first term in the left-hand side of Inequal-
ity 3. For the second term, since forS ∈ SV , each vertex can
contribute at most 1

n(n+1)
, we obtain

∑

S∈SV

w(S)v(S) ≤
∑

S∈SV

w(S)|S ∩ V | ×
1

n(n+ 1)

=
1

n(n+ 1)

∑

v∈V

∑

S∈SV :
v∈S

w(S) (5)

≤
1

n(n+ 1)

∑

v∈V

1 =
1

n+ 1
(6)

where the last inequality is due to Inequality 2.
Combining Inequalities 4 and 6 with Inequality 3, we obtain

|E|−1+p+ 1
n+1

≥
∑

S∈SE
w(S)v(S)+

∑

S∈SV
w(S)v(S) >

v(A) > |E| , wherev(A) > |E| because the grand coalitionA
obtains all edge issue contributions plus a positive grand coalition
marginal contribution. From this it follows thatp > n

n+1
.

We now recall that for everyS ∈ S∗
E , S ∩ V must be a vertex

cover inG. By the assumption we made to derive a contradiction,
every vertex cover has size at leastk + 1, so for all S ∈ S∗

E ,
|S ∩ V | ≥ k + 1. This implies

∑

v∈V

∑

S∈S∗

E
:

v∈S

w(S) =
∑

S∈S∗

E

w(S)|S ∩ V |

≥
∑

S∈S∗

E

w(S)(k + 1) = (k + 1)p >
n(k + 1)

n+ 1
(7)

Again, using Inequality 2, we obtainn ≥
∑

v∈V

∑

S(A:
v∈S

w(S) ≥

∑

v∈V







∑

S∈S∗

E
:

v∈S

w(S) +
∑

S∈SV :
v∈S

w(S)






, which is at leastn(k+1)

n+1
+

∑

v∈V

∑

S∈SV :
v∈S

w(S) by Inequality 7. Hence,

∑

v∈V

∑

S∈SV :
v∈S

w(S) ≤ n−
n(k + 1)

n+ 1
(8)

Combining Inequality 8 with Inequality 5 we get

∑

S∈SV

w(S)v(S) ≤
1

n(n+ 1)

(

n−
n(k + 1)

n+ 1

)

=
1

n+ 1
−

k + 1

(n+ 1)2
=

n− k

(n+ 1)2
(9)

Finally, using Inequality 9 and 4 together withp ≤ 1, we get
∑

S∈SE
w(S)v(S)+

∑

S∈SV
w(S)v(S) ≤ |E|−1+p+ n−k

(n+1)2
≤



|E|+ n−k
(n+1)2

≤ |E|+ n−k
n(n+1)

× 2n+1
2n+2

= v(A), which contradicts
Inequality 3.

So far, we have said nothing about superadditivity. It can be
checked that the VERTEX-COVERSILT game is superadditive when
the graphG has no isolated vertex (which of course we can as-
sume without affecting the hardness of VERTEX-COVER). How-
ever, some of the individual issues are not superadditive—in fact,
they are not even monotone. Specifically, the value of a vertex is-
sue may decrease to0 if a0 is added. We would like the hardness
result to hold even under the stronger condition that every issue is
required to be superadditive (and therefore, given that all values
are nonnegative, also monotone). We next show that we can rear-
range the issues in VERTEX-COVER SILT games so that the game
remains the same but each issue is superadditive.

LEMMA 3. If graph G has no isolated vertex, then the cor-
respondingVERTEX-COVER SILT game can be rewritten as an
equivalent SILT game each of whose individual issues is superad-
ditive, monotone and nonnegative. This also implies that the whole
game is superadditive, monotone and nonnegative.

PROOF. Recall that the original issue set isT = E∪V . We now
construct a new set of issuesT ′ = E all of which are superadditive,
monotone and nonnegative. We leavegA unchanged and prove the
equivalence ofT andT ′ (the overall value function is the same).

For each new issuee = {i, j} ∈ E = T ′, let its relevant agent
set beCe = A0 ∪ {i, j}. Let d(i) denote the degree of vertexi in
G. Let VCondition= [(a1 ∧ a2 ∧ ((¬a3 ∧ ¬a4) ∨ ¬a0)) ∨ (a3 ∧
a4 ∧ ((¬a1 ∧¬a2)∨¬a0))], i.e., the condition on auxiliary agents
to allow vertex issue contributions in the original VERTEX-COVER

SILT game. Similarly, let ECondition= a0 ∧ ((a1 ∧ a3) ∨ (a2 ∧
a4)), i.e., the condition to allow edge issue contributions. We recall
that VCondition and ECondition cannot hold simultaneously. For
a coalitionS ⊆ A, the new issue’s contribution isv′e(S) = 1 if
(i∨ j)∧ECondition,v′e(S) =

1/d(i)+1/d(j)
n(n+1)

if i∧ j∧VCondition,

v′e(S) =
1/d(i)
n(n+1)

if i ∧ ¬j ∧ VCondition, andv′e(S) =
1/d(j)
n(n+1)

if

¬i ∧ j ∧ VCondition. Otherwise,v′e(S) = 0. To see why this is
equivalent to the original game, note that we have amortized vertex
i’s issue contribution 1

n(n+1)
over all of its adjacent edges, each

with a partial contribution 1/d(i)
n(n+1)

. Because there is no isolated

vertex,T andT ′ are equivalent.
It remains to prove superadditivity for each issuee’s value func-

tion v′e (which will imply monotonicity ofv′e as well by nonneg-
ativity, and will imply superadditivity and monotonicity for the
whole game too, because it is the sum of these issues and the grand
coalition contribution which is also superadditive). Consider two
disjoint coalitionsB,C ⊆ Ce whereB ∩ C = ∅. We prove
v′e(B ∪C) ≥ v′e(B) + v′e(C) by considering three cases. Without
loss of generality, assumev′e(B) ≥ v′e(C).
(1) If v′e(B) = 0 (and thereforev′e(C) = 0), by nonnegativity
v′e(B ∪ C) ≥ 0 = v′e(B) + v′e(C).
(2) If v′e(B) = 1, then ECondition must be true for bothB and
B ∪ C, while VCondition and ECondition must be both false for
C (becauseB contains an entire diagonal andB ∩ C = ∅, C can
contain neithera0 nor one of the columns). Sov′e(B∪C) = 1 and
v′e(C) = 0, and we havev′e(B ∪ C) = 1 ≥ v′e(B) + v′e(C) = 1.
(3) Finally, if 0 < v′e(B) < 1, VCondition must be true for
B. If VCondition is also true forB ∪ C, then v′e(B ∪ C) ≥
v′e(B) + v′e(C) because (1)C cannot make ECondition true as
it does not include a diagonal, and (2) the amortized vertex con-
tributions that result fromB andC correspond to disjoint sets of
vertices. On the other hand, if VCondition is false forB ∪ C, then

B ∪ C includes a diagonal and hence its ECondition is true. Thus
v′e(B ∪ C) = 1 ≥ v′e(B) + v′e(C) (becauseB andC can only
have vertex contributions from disjoint sets of vertices).

From Lemma 2, Lemma 3, and the fact that VERTEX-COVER

is NP-hard (even when restricted to instances without isolated ver-
tices), we obtain the following theorem.

THEOREM 2. TheCORE-EMPTINESSproblem is NP-hard for
SILT games, even when the value function for every issue is super-
additive, monotone, and nonnegative (and hence the game’s overall
value function is also superadditive, monotone, and nonnegative).

5. MARGINAL CONTRIBUTION NETS
A Marginal Contribution Net (MC-net) [14] represents a coop-

erative game using a set of patternsP; furthermore, each pattern
P ∈ P is associated with a valuevP . A patternP is a boolean
expression whose truth value depends on the coalitionS ⊆ A. Its
variables correspond to the agents;a will be shorthand fora being
in the coalition. Denote byP (S) the truth value ofP on coalition
S. The value of coalitionS is thenv(S) =

∑

P∈P:P (S)=true vP .
For example, we may have one pattern(a1∧¬a2) with value1 and
another pattern(a2) with value2. This impliesv({a1}) = 1+0 =
1 andv({a1, a2}) = 0 + 2 = 2.

We consider a variety of subclasses of MC-nets, which are de-
fined by whether they allow the use of: (1) negative pattern values,
(2) the∧ operator, (3) the∨ operator, and (4) the¬ operator. By
enumerating all possible combinations of these four attributes, we
define16 subclasses of MC-nets, as shown in Table 1. (A possi-
ble fifth attribute is whether brackets are allowed; fortunately, as
we discuss in Remark 1, that attribute is irrelavant to the computa-
tional complexity of our problems, except in one case.)

To enumerate the subclasses, we write four binary indicators
consecutively (corresponding to the four attributes), and interpret
the result as a binary number. For example, Class 0 (0000 in bi-
nary) MC-nets have all indicators equal to0, which means this
subclass allows neither negative pattern values nor the use of any
of the operators∧, ∨, and¬. Hence, in Class 0, each pattern is ei-
ther empty (true) or consists of one agenta only. Class 13 (1101 in
binary) MC-nets can have negative pattern values as well as∧ and
¬ operators, but not∨ operators. These are the original MC-nets
introduced by [14]. The complexity results obtained in this section
are summarized in Table 1.

5.1 Classes Where All Problems Are Unam-
biguously Hard

In this subsection, we will prove the following theorem, which
shows that all three problems are NP-complete for a number of
subclasses of MC-nets. It is based on several lemmas that will be
stated and proved afterwards. There are two other subclasses for
which we will prove in later subsections that all problems are hard
if we make some further assumptions, namely the ability to specify
the grand coalition’s value in one case (Section 5.2), and the ability
to use brackets in the other case (Remark 1). All of these results
are by reduction from SILT games. For other classes, the CORE-
EMPTINESSproblem is in P, and so SILT games cannot be reduced
to them (unless P=NP).

THEOREM 3. All three problems,CORE-EMPTINESS, NOT-IN-
CORE, and MOST-V IOLATED-COALITION are NP-complete for
Class 5, 6, 7, 11, 12, 13, 14, and 15 MC-nets.4

4Again, our general reduction from CORE-EMPTINESS to NOT-
IN-CORE and MOST-V IOLATED-COALITION is a Turing reduc-



Class − ∧ ∨ ¬
CORE-

EMPTINESS
NOT-IN-

CORE

MOST-
V IOLATED-
COALITION

0 0 0 0 0 P P P
1 0 0 0 1 P P P
2 0 0 1 0 P P NP-c
3 0 0 1 1 P† P† NP-c
4 0 1 0 0 P P P
5 0 1 0 1 NP-c NP-c NP-c
6 0 1 1 0 NP-c NP-c NP-c
7 0 1 1 1 NP-c NP-c NP-c
8 1 0 0 0 P P P
9 1 0 0 1 P P P

10 1 0 1 0 NP-c∗ NP-c NP-c
11 1 0 1 1 NP-c NP-c NP-c
12 1 1 0 0 NP-c NP-c NP-c
13 1 1 0 1 NP-c NP-c NP-c
14 1 1 1 0 NP-c NP-c NP-c
15 1 1 1 1 NP-c NP-c NP-c

Table 1: Complexity results for MC-nets. The four binary in-
dicators correspond to whether (1) negative values, (2)∧ op-
erators, (3)∨ operators, and (4)¬ operators are allowed. For
entries with NP-c∗, we only proved NP-hardness when we are
allowed to specify the grand coalition value directly. For entries
with P†, the result changes to NP-c if brackets are allowed.

PROOF. From Lemma 4, it will follow that CORE-EMPTINESS

is NP-hard for Class5 MC-nets. This hardness extends to Class7
MC-nets, which are more expressive. From Lemma 5, it will follow
that CORE-EMPTINESS is NP-hard for Class12 MC-nets, which
extends to Class13, 14, and15 MC-nets. From Lemma 6 and
Lemma 7 respectively, it will follow that CORE-EMPTINESSis NP-
hard for Class11 and6 MC-nets, respectively. By Proposition 1
this also implies NP-hardness for the other two problems. Finally,
by Lemma 1, all problems are in NP.

LEMMA 4 (CLASS 5 MC-NETS). Any SILT game with non-
negative issues can be represented in polynomial size by an MC-net
that uses neither negative pattern values nor the∨ operator (but it
may use the∧ and¬ operators).

PROOF. First, construct a pattern
∧

a∈A a with valuegA to rep-
resent the grand coalition marginal contribution. Then, for each
issuet with relevant agent setCt, we add2|Ct| (which is a con-
stant number) patterns, as follows. For each subsetS ⊆ Ct, we
add the patternPS =

∧

a∈S a ∧
∧

a/∈S ¬a with valuevt(S).

LEMMA 5 (CLASS 12 MC-NETS). Any SILT game can be rep-
resented in polynomial size by an MC-net that uses neither the∨
operator nor the¬ operator (but it may use the∧ operator and
negative pattern values).

PROOF. Again, we construct a pattern
∧

a∈A a with valuegA.

For each issuet with relevant agent setCt, we add2|Ct| patterns,
as follows. For each subsetS ⊆ Ct, in order of nondecreasing
size, we add the patternPS =

∧

a∈S a. We determine its value as
follows. We know that for the coalitionS, this pattern will apply;
also, we have already specified the values for all the other patterns
that will apply, because these involve coalitions that are subsets

tion. If it is desired to avoid Turing reductions, it can be noted
that [4] already showed that NOT-IN-CORE is NP-hard for SILT
games, even when the grand coalition’s marginal contribution is
zero (and hence so is MOST-V IOLATED-COALITION ).

of S. Let vpartial
t (S) denote the sum of the values of these previ-

ously specified patterns. Then, set the value of the new pattern to
vt(S)− vpartial

t (S), thereby guaranteeing thatS obtains the correct
value. (In fact, the value for the patternPS will turn out to be
∑

S′⊆S(−1)|S|−|S′|vt(S
′). See, e.g., [3].)

LEMMA 6 (CLASS 11 MC-NETS). Any SILT game can be rep-
resented in polynomial size by an MC-net that does not use the∧
operator (but it may use the∨ and¬ operators as well as negative
pattern values).

PROOF. By Lemma 5, we can represent any SILT game in poly-
nomial size by an MC-net that uses only the∧ operator (and possi-
bly negative values). Let the set of patterns of that MC-net beP. In
what follows, we construct a new MC-net with pattern setP ′ that
has only∨,¬ operators (and possibly negative values), and show
thatP andP ′ result in the same value for each coalition.

For thejth patternPj = z1 ∧ z2 ∧ . . . ∧ zm ∈ P with value
vj , we add a patternP ′

j = ¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zm with value
v′j = −vj to P ′. P ′

j evaluates totrue if and only ifPj evaluates to
false. Finally, we add one additional dummy patternP ′

0 = a ∨ ¬a
for some arbitrarya ∈ A (or, equivalently, simplyP ′

0 = true),
with value v(A), i.e., the value of the grand coalition (not just
its marginal contribution). The dummy pattern always contributes
valuev(A) to any coalitionS. Now we check that for any coalition
S, its valuev′(S) under the new patternsP ′ is equal to its value
v(S) under the old patternsP . Let J = {j | Pj is true forS} and
J ′ = {j | P ′

j is true forS}. Thenv(S) =
∑

j∈J vj =
∑|P|

j=1 vj −
∑

j /∈J vj = v(A)−
∑

j /∈J vj =
∑

j∈J′ v
′
j = v′(S).

LEMMA 7 (CLASS 6 MC-NETS). Any SILT game with non-
negative and monotone issues can be represented in polynomial
size by an MC-net that uses neither negative pattern values nor the
¬ operator (but it may use the∧ and∨ operators).

PROOF. For any such SILT game, we construct an MC-net with
patternsP =

⋃

t∈T Pt ∪ {Pg}, wherePg =
∧

a∈A a with value
gA represents the grand coalition’s marginal contribution.Pt is a
set of patterns for issuet that only concerns agents inCt.

All that remains to be done is to show how to constructPt and
to prove its equivalence to issuet. Let {S1,S2, . . . ,Sm} be a par-
tition of 2Ct based onvt. That is, there exists a strictly increas-
ing sequence of valuesv1 < v2 < . . . < vm such that for all
S ∈ Si, vt(S) = vi. DefineS+

i =
⋃m

j=i Sj . We then construct
Pt = {P1, P2, . . . , Pm} wherePi =

∨

S∈S+

i

∧

a∈S a has value

vi − vi−1, definingv0 = 0. (We note that this expression does not
require brackets because∧ has higher priority than∨.)

Sincev1 ≥ 0 (due to nonnegativity) and by constructionvi <
vi+1, all pattern valuesvi − vi−1 are nonnegative. For any subset
S ⊆ Ct, there exists somei such thatS ∈ Si. For anyj ≤ i,
S will satisfy Pj becauseS ∈ Si ⊆ S+

j . We next show that for
any j > i, S does not satisfyPj . For the sake of contradiction,
suppose thatS does satisfy somePj with j > i. Then, there exists
S′ ∈ S+

j such thatS′ ⊆ S. However, becausei < j, it follows
that vt(S) < vt(S

′). This contradicts the monotonicity of issue
t. Hence,S ∈ Si satisfiesPj if and only if j ≤ i. Therefore,S’s
value under patternPt equals

∑i
j=1 v

j−vj−1 = vi = vt(S).

5.2 MC-nets with Only OR Operators
If only the∨ operator is available, it is impossible for MC-nets to

compactly represent the grand coalition’s marginal contributiongA.
For example, supposev(S) = 0 for anyS 6= A andv(A) = gA =
1. The∨-only MC-net (with possibly negative pattern values) to



specify this game uses2n − 1 patterns: for each nonempty subset
∅ 6= S ⊆ A, construct a pattern

∨

a∈S awith value(−1)|S|−1 [21].
Hence, we cannot hope to compactly represent SILT games with
this subclass of MC-nets; we need to add some additional repre-
sentational power to do so. The minimal additional representational
power that will do the trick is to simply allow the direct specifica-
tion of the value of grand coalition, so this is what we do here.
At the end of the paper, we discuss the open problem of determin-
ing the complexity of CORE-EMPTINESSfor SILT games without
a marginal contribution for the grand coalition (i.e., games consist-
ing only of small issues). If this problem is still NP-hard, then we
could drop the additional power in this subsection, because we do
not need it to represent the small issues. In fact, [4] already showed
that NOT-IN-CORE is NP-hard for such games (and hence so is
MOST-V IOLATED-COALITION ). So for these problems we do not
need the additional power. This results in the following theorem:

THEOREM 4. NOT-IN-COREandMOST-V IOLATED-COALITION

are NP-complete for Class10 MC-nets.CORE-EMPTINESSis also
NP-complete for Class10 MC-netsif they are given the additional
power to specify the value of the grand coalition.

The theorem is implied by the following lemma.

LEMMA 8 (CLASS 10 MC-NETS). Any SILT game can be rep-
resented in polynomial size by an MC-net that uses neither the∧
operator nor the¬ operator (but it may use the∨ operator and
negative pattern values, as well as the additional power to specify
the value of the grand coalition in casegA 6= 0).

PROOF. For each issuet with relevant agent setCt, we add a
setPt of 2|Ct| patterns, as follows. First, we add the empty pattern
P∅ = true, with valuevt(∅) (which in most circumstances would
be0). For each subsetS ⊆ Ct (S 6= ∅), in order of nondecreas-
ing size, we add the patternPS =

∨

a∈S a to Pt. We determine
its value as follows. Our goal is to ensure that if we applyPt to
Ct, as well as toCt \ S, this results in two values whose differ-
ence is exactlydt(S) = vt(Ct) − vt(Ct \ S). (dt is also known
as the dual ofvt [10].) Ct will satisfy every pattern; the only pat-
terns that are not satisfied byCt \ S concern only agents inS.
One such pattern is

∨

a∈S a, whose value we are seeking to specify
now; for all the other such patterns, we have already specified their
values. Letdpartial

t (S) denote the sum of the values of these previ-
ously specified patterns. Then, set the value of the new pattern to
dt(S)− dpartial

t (S), thereby guaranteeing that the difference in val-
ues is correct. (In fact, whenvt(∅) = 0, the value for the pattern
PS will turn out to be

∑

S′⊆S(−1)|S|−|S′|+1vt(Ct \ S′), by an
inclusion-exclusion principle.)

With these patterns, we obtain a value functionv′t. By construc-
tion, for any∅ 6= S ⊆ Ct, we havev′t(Ct)−v′t(Ct\S) = vt(Ct)−
vt(Ct \ S). Moreover,v′t(∅) = vt(∅). Therefore,v′t(Ct) =
v′t(Ct \Ct) + vt(Ct)− vt(Ct \Ct) = v′t(∅) + vt(Ct)− vt(∅) =
vt(Ct). Hence, also for allS ( Ct, v′t(S) = v′t(Ct \ (Ct \ S)) =
vt(Ct \ (Ct \S))+v′t(Ct)−vt(Ct) = vt(S). Hence, the patterns
correctly represent the issue.

Finally, if gA 6= 0, we can use the ability to specify the grand
coalition value to represent this.

5.3 Classes with Some Easy Problems
Note that there is no superadditivity constraint in what follows.

LEMMA 9. The MOST-V IOLATED-COALITION problem is in
P for MC-nets without the∨ and∧ operators (but possibly using
the¬ operator and negative pattern values).

PROOF. LetA = {a1, a2, . . . , an}. Besides (possibly) the empty
pattern, there are at most2n distinct patterns, namelya1, a2, . . . , an

and¬a1,¬a2, . . . ,¬an. Let their respective values beb1, b2, . . . , bn
andc1, c2, . . . , cn (possibly0). The most violated coalition isS =
{ai | bi− ci−xi > 0}, which can be computed in linear time.

Therefore, by Proposition 1, we conclude:

THEOREM 5. All three problems,CORE-EMPTINESS, NOT-IN-
COREandMOST-V IOLATED-COALITION , are in P for Class0, 1, 8
and9 MC-nets.

We now consider MC-nets that use neither∧ nor negative values
(but∨ and¬ may occur). We show that this necessarily results in
subadditivegames. (A game issubadditiveif S1 ∩ S2 = ∅ implies
thatv(S1 ∪ S2) ≤ v(S1) + v(S2).) From that, we prove that their
NOT-IN-CORE and CORE-EMPTINESS problems are easy. How-
ever, the MOST-V IOLATED-COALITION problem is still hard.

LEMMA 10. MC-nets that use neither∧ nor negative values
are subadditive.

PROOF. First consider an MC-net with just a single pattern, so
that every coalition has valuevP or 0. Let the pattern beP =
∨

a∈S+

P

a ∨
a∈S−

P

¬a. Then, subadditivity could only be violated if

there are someS1, S2 with S1 ∩ S2 = ∅, v(S1) = 0, v(S2) = 0,
butv(S1∪S2) = vP . But this means either (1) that there existsa ∈
(S1∪S2)∩S+

P , in which case eithera ∈ S1∩S+
P or a ∈ S2∩S+

P ,
contradicting thatv(S1) = 0 andv(S2) = 0; or (2) that there exists
a ∈ S−

P \ (S1∪S2), in which case alsoa ∈ S−
P \S1, contradicting

thatv(S1) = 0. Hence, subadditivity holds if there is only a single
pattern. If there are multiple patterns, the resulting game is the sum
of single-pattern games, which is also subadditive.

LEMMA 11. If a game is subadditive and the value of each sin-
gleton coalitionv({a}) can be computed in polynomial time, then
theNOT-IN-CORE problem is in P.

PROOF. We will show that it is sufficient to check only singleton
subsets{a}. If for somea ∈ A, v({a}) > x(a), x is not in the
core. Otherwise, ifx(a) ≥ v(a) for all a ∈ A, thenx must be
in the core because by subadditivity,v(S) ≤

∑

a∈S v({a}) ≤
∑

a∈S x(a) = x(S).

LEMMA 12. TheMOST-V IOLATED-COALITION problem is NP-
hard for MC-nets with neither the∧ operator nor negative values
(but possibly using the∨ and¬ operators).

PROOF. We reduce from an arbitrary HITTING-SET instance,
in which we are givenm subsetsH1, H2, . . . , Hm ⊆ N with
N = {1, . . . , n} and a numberk ≤ n, and are asked whether
there is a subsetH ⊆ N with |H| ≤ k such that for all1 ≤ i ≤
m, H ∩ Hi 6= ∅. We construct an MC-net withn + 1 agents
(a0, a1, . . . , an) andm patternsP1 to Pm, wherePi =

∨

j∈Hi
aj

has value1, and consider payment vectorx with x(a0) = m −
n/(n + 1) and for1 ≤ j ≤ n, x(aj) = 1/(n + 1). Note that
a0 is a dummy agent whose purpose is to ensurex(A) = v(A).
We ask whether a coalitionS exists such thatv(S) − x(S) >
m − (k + 1/2)/(n + 1). If a hitting setH of size at mostk
exists, then the coalitionSH = {aj |j ∈ H} hasv(SH) = m and
x(SH) ≤ k/(n + 1) < (k + 1/2)/(n + 1), so the answer to our
MOST-V IOLATED-COALITION is yes. Conversely, if a coalitionS
with v(S)− x(S) > m− (k + 1/2)/(n+ 1) exists, then it must
satisfy all patterns, because otherwisev(S) − x(S) ≤ m − 1 <
m− (k+1/2)/(n+1), and we must have|S| ≤ k, because other-
wisev(S)−x(S) ≤ m−(k+1)/(n+1) < m−(k+1/2)/(n+1).
ThereforeHS = {j|aj ∈ S} is a hitting set of size at mostk.



THEOREM 6. For Class2 and3MC-nets, theCORE-EMPTINESS

andNOT-IN-COREproblems are in P while theMOST-V IOLATED-
COALITION problem is NP-complete.

PROOF. By Lemma 10, these MC-nets are subadditive, so by
Lemma 11 and Proposition 1, CORE-EMPTINESS and NOT-IN-
CORE are in P. On the other hand, MOST-V IOLATED-COALITION

is NP-complete by Lemma 1 and 12.

Finally, class4 MC-nets, in which neither∨, ¬, nor negative
pattern values are used, are equivalent to hypergraph games with
only nonnegative edge values, which were studied in [7] and proved
to be easy (see also Section 2). We omit the proof to save space.

THEOREM 7. CORE-EMPTINESS, NOT-IN-CORE, andMOST-
V IOLATED-COALITION are in P for Class4 MC-nets.

REMARK 1. So far, we have not considered the possibility of
using brackets in the patterns of MC-nets; here we do so. Because
this will only make them harder to solve, all NP-completeness re-
sults still hold. Therefore, let us consider the subfamilies of MC-
nets for which some problems are in P.

For MC-nets without connectives (Class 0, 1, 8, 9), MC-nets with
only ∧ operators (Class 4), and MC-nets with only∨ operators
(Class 2), brackets make no difference to the patterns. For MC-
nets with both∨ and¬ operators (Class 3), adding brackets allows
them to simulateP1∧P2 by¬(¬P1∨¬P2). Hence they can encode
Class 7 MC-nets, implying NP-completeness for all three problems.

6. CONCLUSION
We settled the complexity of the CORE-EMPTINESS, NOT-IN-

CORE, and MOST-V IOLATED-COALITION problems in several sub-
classes of MC-nets, defined by which logical operators and whether
negative pattern values are allowed (see Table 1). (Efficient algo-
rithms for the MOST-V IOLATED-COALITION problem also allow
efficient computation of the least core and, under certain condi-
tions, the nucleolus [9].) To obtain these results, we introduced
SILT games, which may be of interest in their own right, and proved
hardness for them even under the constraint that each of their issues
is superadditive. We showed certain subclasses of MC-nets can ef-
ficiently represent those hard SILT games. (We suspect that many
other representation schemes that are not necessarily subclasses of
MC-nets would be able to efficiently represent these SILT games,
and hence our hardness results apply to such schemes as well.) For
other subclasses of MC-nets, we directly proved results.

Different from previous hardness results, all our hardness results
based on SILT games hold even with superadditivity, an extremely
common constraint for cooperative games. Achieving this for the
CORE-EMPTINESS problem necessarily (as argued at the end of
Section 3.2) requires an involved reduction.

Our results leave open whether the hardness we proved for SILT
games would continue to hold even when the marginal contribu-
tion of the grand coalition is zero (so that the game consists only of
small issues [4]). If this is so, it would give us an even more pow-
erful result that would allow us to prove hardness for even more
representation schemes. As just one example, we would cleanly
obtain hardness for Class 10 MC-nets, rather than just for the ex-
tension of this subclass that additionally allows specifyingv(A).
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