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ABSTRACT agents outside the coalition. Nevertheless, it is a broadly applicable

MC-nets constitute a natural compact representation scheme for co-mOdel and_we will restrict attention to itin this paper. .
The straightforward way to represent a cooperative gamenwith

operative games in multiagent systems. In this paper, we study the . S o
complexity of several natural computational problems that concern agents requires listing ngmbers, one for each coahtuﬁ_wg A.
solution concepts such as the core, the least core and the nucleolusThIS is generally not feasible. Usually, hqwever, there is strL_Jcture
We characterize the complexity of these problems for a variety of N the game that allows us to represent it compactly. In this pa-
subclasses of MC-nets, also considering constraints on the gameoer_’ we focus on represepte_ltlons w_hos_e compactness relies on the
such as superadditivity (where appropriate). Many of our hard- |nS|ght that the .characterlstlc funct!on is often a sum of multiple
ness results are derived from a hardness result that we establish fofunctlons—that isp = 3, vt for multlplelssuest_—where ea_lch;_t .

a class of multi-issue cooperative games (SILT games); we Suspecl(:an be represented compactly. For example, if for each individual

that this hardness result can also be used to prove hardness for othdSSU€t: many (for example, all but a constant number ofjdraimy
representation schemes. agentgwheres is a dummy agent fo, if v,(SU{i}) = v.(S) for

all S), then we can explicitly specify the value of the function
for each subset of non-dummy agents [4]. Alternativblgrginal

Categorles and SUbJeCt Descrlptors Contribution nets (MC-netq114] specify, for each issue, a logical

J.4 [Social and Behavioral SciencgsEconomics patternsuch that some constant value is obtained if the coalition
satisfies the pattern, and zero otherwise. Both of these represen-
General Terms tation schemes are fully expressive; necessarily, some games will

require exponential space to specify, but many interesting families
of games (e.g., graph games) can be specified compactly.
MC-nets in particular have received a significant amount of at-

Algorithms, Economics, Theory

Keywords tention in recent years. Which games can be specified compactly
Cooperative games, core, computational complexity using them depends on which logical operators are allowed in the

patterns. The original paper [14] focused on the case where only
1 INTRODUCTION conjunctions and negations (and no brackets) are allowed. More re-

) ) ] ] cently, it was extended to also allow disjunctions and brackets [8].

In settings with multiple self-interested agents, the agents can |nspired by these papers, our main objective in this paper is to sys-
often benefit from formingeoalitions which allows them to ac-  tematically characterize how the complexity of solving coopera-
complish tasks that they could not accomplish individualGo- tive games represented as MC-nets depends on what constraints
operative game theorgrovides tools to answer several important  are imposed on patterns — specifically, which logical operators are
questions in this context, such as how the gains from such cooper-ajiowed and whether negative values are allowed. It turns out that a
ation are to be distributed among the agents. This has led to signif-key step is to first consider general multi-issue games in which all
icant and sustained interest from multiagent systems researchers ifgsyes but one concern only a small number of agents.

computational aspects of cooperative game theory. A book is now Byt what does it mean tsolvea game? There are many solu-

available on this topic [2]. ) _ tion concepts in cooperative game theory, such as the Shapley value
The most commonly studied model in cooperative game theory [19], the kernel [6], the core [11], the least core [17] and the nucle
specifies avaluev(S) for every subseti C A, whereA is the olus [18]. Among these, the Shapley value and the core are partic-

set of agents. This is the value that the agents @an obtain and  yjarly prominent. A key and defining property of the Shapley value
dls'f“BUte among themselves if they work (only) with each other. s its additivity: an agent's Shapley value is the sum of its Shapley
v : 2% — Ris known as theharacteristic functiorof the game.  values in the individual issues, so that having multiple issues (or
Several assumptions are inherent in this model: for example, morepatterns) does not get in the way of computational tractability [4,
generally there may be restrictions on how agents can transfer util- 14, 8]. Therefore, in this paper, we focus on stability-based solution
ity among themselves, or the agents may care about the actions otoncepts, including the core, the least core and the nucleolus.
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weights in the subgraph induced by that coalition. As has been pre-can be found in Lawler [15, p. 125]. (The provisioning problem
viously pointed out [14, 12], MC-nets can encode graph games effi- there is identical to the MSTVIOLATED-COALITION problem.)
ciently, so the problem is also hard for MC-nets. However, a natural Those algorithms can further be used to compute an element of
and extremely common constraint on the characteristic function is the least core, and, under certain conditions [9], the nucleolus, effi-
for it to be superadditivethat is, forS N .S’ = @), we must have ciently. The nucleolus is a very attractive solution concept; among
v(SUS") > v(S) + v(S’). The intuition is that one course of ac-  other properties, it is unique and it lies within the core whenever
tion for any coalition is simply to further divide into two subcoali- the core is nonempty.
tions and take the sum of their values, so the (maximum) value the As becomes apparent from the above discussion, the three prob-
coalition can achieve must be at least this sum. Graph games ardems QRE-EMPTINESS NOT-IN-CORE, and MOSTVIOLATED-
superadditive if and only if there are no negative edges, and if there COALITION are closely related to each other and to stability-based
are no negative edges the graph game must be convex and its corsolution concepts like the core, the least core and the nucleolus.
nonempty. So, if a superadditivity constraint is added, tRE This makes it natural to study them all together, as we do in the rest
EmMPTINESSproblem is trivial for graph games, and its complexity  of this paper.
is not clear for MC-nets.

Conitzer and Sandholm [5] introduced a compact representation3, PRELIMINARIES
scheme that fundamentally relied on the game being superaddi-
tive. They proved that the @RE-EMPTINESS problem is coNP-
complete under their representation. However, they proved that this
hardness was strictly due to the hardness of computing the value
of the grand coalitiony(A)) under their representation, because
once that value is given, thedRE-EMPTINESS problem can be
solved in polynomial time. Hence this result cannot imply hardness 3.1  Problem Definitions
for MC-nets, wherev(A) is easy to compute. In other work [4],
Conitzer and Sandholm consider the multi-issue representation de-
scribed above (a constant number of non-dummy agents per issue) DEFINITION1 (CORE). Letz : A — R denote a payment

In this section, we define the computational problems that we
study, and review some basic results. We will not yet discuss how
games are represented; the definitions of the computational prob-
lems are valid for any representation scheme (though of course their
complexity depends on which scheme is used).

Given agentsA, we first formally define the core:

and proved that the harderd¥-IN-CoRE problem (see Defini- vector and letc(S) = > . s =(a) be the total payment to coalition
tion 3) is NP-complete even with a superadditivity constraint. How- S C A. Thecoreis the set of payment vectors witliAd) = v(A)
ever, they did not settle the complexity of theoRe-EMPTINESS that pay every coalition at least its value, i.€z | z(A) = v(A) A

problem under these conditions. In this paper, we prove that the (V.S C A)z(S) > v(S)}.
CORE-EMPTINESSproblem is in fact NP-complete under a multi- . ) o
issue representation (with a constant number of non-dummy agents e Wil study the following related decision problems:
for all but one issue), even when requiring superadditivity. We
show that this also implies hardness for several, but not all, vari-
ants of MC-nets. The proof is quite involved; we will give some
intuition for why this might be necessary at the end of Section 3.2.
Note that our work is not the first to prove NP-hardness for the ~ DEFINITION 3. In the NOT-IN-CORE problem, we are given a
CoRE-EMPTINESS problem in cooperative games that are super- cooperative game and a payment vectofz(A) = v(A)). The
additive. Greco et al. [13] proved such hardness for games that ar instance has gesanswer if and only ifc is not in the core of that
specified using “polynomial-time worth functions”. But their result game (that is, there existskdocking coalitionf) C S C A such
does not seem to apply to MC-nets and multi-issue games, as theirthatv(S) > z(.59)).
representation scheme is significantly more powerful. Specifically,
in their hardness proof, the coalition value switches to some value

once the coalition size exceefl$|/2, and we do not see how this d a violati he i h
can be expressed using MC-nets with only limited logical opera- v(A)), and a violation goaly € R. The instance has gesanswer

tors or using multi-issue games with smail issues. On the other If 2nd only if there exist8 ¢ S ¢ A such thaw(S) — z(S) > 7.

hand, our result implies their hardness result, as SILT games are |, pefinitions 3 and 4. when the answernyies we might also
polynomial-time worth function games. To the best of our knowl- |ie to find a coalition that proves that this is the case. Hence, the
edge, no hardness results are known foRE-EMPTINESSUnder reader might prefer a definition of the computational problem that
MC-nets or multi-issue representations. Previous results left openjs more constructive. Fortunately, in both cases, we can use an al-
the possibility that these problems were polynomial-time solvable goyrithm for the decision problem to actually construct the coalition
under such representation schemes. . , in question, shown as Algorithm?.ln the case of Definition 4, we
Although the core is a computationally challenging solution con- may also wish to find the maximumwith answeryes searching

cept in many cases, some positive results are known. For example oy this~ up to an arbitrarily good approximation is straightforward
the NOT-IN-CORE problem is in P for MC-nets if the treewidth of by binary search.

the corresponding agent graph is bounded [14]. This problem is
also in P for graph (or hyper-graph) games if all the edges (or hy-
peredges) have non-negative values [7]. Those games canespo 2The algorithm is correct for the following reasons. If the decision

to MC-nets with onlyA operators and non-negative pattern val- 5 qqrithm returnyesafterz(a) is increased by, there must be a
ues. In fact, Deng and Papadimitriou [7] gave an efficient network sybsetS with a ¢ S that can prove thgesanswer; hence we can
flow algorithm that can solve a harder problemoBi-VIOLATED- safely excludez by not restoringz(a). If the decision algorithm
COALITION (see Definition 4}. A similar network flow algorithm ~ returnsnoafterxz(a) is increased by\/ (but before that the answer
isye9, all S that can prove thgesanswer (without using what has
They do not explicitly state that their algorithm can solve this already been excluded) must includgetherefore we restore(a)
problem, but it does. Specifically, the maximum violatiorw{s!) (so the answer remains to geg and put that into C.

DEFINITION 2. IntheCORE-EMPTINESSproblem, we are given
a cooperative game. The instance hagesanswer if and only if
the core of that game is empty.

DEFINITION 4. IntheMOSTVIOLATED-COALITION problem,
we are given a cooperative game, a payment vegt¢e(A) =

(or equivalentlyv(N) = x(N) in their paper’s notation) minus the
value of the maximum flow/minimum cut.




Algorithm 1 Given an algorithm that decides whether a coalition
S with v(S) — z(S) > 0 (orv(S) — z(S) > 7) exists, and a game
for which the answer iges construct a coalition with that property.
forall a € Ado
increaser(a) andv(N) by M = (maxs v(S)) — v
run the algorithm for the decision variant again;
if the answer isiothen
restorez(a), v(N) to their original values
end if
end for
Output the coalitiorC = {a € A : z(a) < M}.

3.2 Basic Results

What could be a certificate for the core being empty? The well-
known Bondareva-Shapley theorem [1, 20] provides the answer.

THEOREM1 (BONDAREVA-SHAPLEY THEOREM). For any
cooperative game with non-negative value§y) > 0 for all S C
A), the core is empty if and only if there exists a weight function
w: 24\ {0} — [0, 1] such that

D> w(S)u(S) > v(A)
0CSCA
>

(Va € A)
PCSCA:aeS

@)

w(S) <1

)

The following lemma is also well-known (see, e.qg., [16, 10]).

LEmmA 1. If the value of any coalitiom(S) can be computed
in polynomial time, then th€oRE-EMPTINESS NOT-IN-CORE,
andMoST-VIOLATED-COALITION problems are in NP.

An efficient algorithm for one of the problems sometimes leads
to one for another. The dIr-IN-CORE problem is the special case
of the MOST-VIOLATED-COALITION problem wherey = 0. Mean-
while, if NOT-IN-CORE s in P, then so is GRE-EMPTINESS be-

cause the former is the separation oracle problem for the latter (se€

also the discussion in [14]). Summarizing in a proposition:

PrRoPOSITION 1. TheCORE-EMPTINESS NOT-IN-CORE and
MOST-VIOLATED-COALITION problems have nondecreasing com-
plexity. That is, if a problem is in P, so are the problems on its left;
if a problem is NP-hard, so are the problems on its right.

Hence, the most difficult hardness results to obtain are those .

for CORE-EMPTINESS Moreover, it appears even more difficult
to prove that this problem is hard if we require the game to be
superadditive, for the following reason. We recall that a natural
certificate for @RE-EMPTINESS consists of the right values for
w(S) in the Bondareva-Shapley theorem (or at least a specifica-
tion of which ones are positive). It is natural to attempt reductions
to CorRe-EMPTINESS Where, if the answer iges there exists a
subsetS such that settingy(S) = 1 andw(A \ S) = 1 (and ev-
erything else td) is a certificate. Indeed, this is the case for the
proof by Deng and Papadimitriou [7]. However, this approach can-

not work in superadditive games, because there we would obtain

Y sw(S)v(S) = v(S) +v(A\ S) < v(A). More generally, any
reduction where, if the answer y&s there is a certificate where
all thew(S) take value eithef or 1—and this would seem to be
the natural approach if we rely on reductions that involve finding a
subset or partition of the agents with some property—cannot work
if the game is superadditive; we fundamentally need to consider
fractional values for thev(.S), as we do in what follows.

3The hardness direction requires a Turing (Cook) reduction.

4. SMALL-ISSUES-LARGE-TEAM GAMES

We recall that one family of games that can be represented com-
pactly consists of those games whose characteristic functions are
the sum of multiple individual issues, each of which concerns only
a constant number of agents [4]. In this section, we consider a
slightly more general class of games that, in addition to the small
issues, allow a single issue that has nonzero value only for the grand
coalition. This value may represent various efficiencies that could
result from having all agents in the same coalition. We call these
gamesSmall-Issues-Large-Team (SILdames. Besides being of
interest in their own right, these games will help us prove hardness
results for MC-nets. Specifically, we show thabRe-EMPTINESS
is NP-hard in SILT games, even under the constraint of superaddi-
tivity (which also implies monotonicity because all the values are
nonnegative). We then (in Section 5.1) show that some (though not
all) important subclasses of MC-nets can compactly represent all
SILT games, thereby proving hardness for them as well.

DEFINITION 5 (SILT GAME). A SILT game is defined by a
triplet (A, T, ga) whereA is the set of agentq] is the set of small
issues, andy4 is the marginal contribution of the grand coali-
tion. A small issug € T is described by(v,, Cy): a relevant
agent setC; C A (where|C:| is bounded by a constant) and a
characteristic functiory; : 2¢¢ — R. v, is extended to the do-
main 24 by lettingv:(S) = v:(S N C;). Furthermore there is
the single large issue whose characteristic function 24 — R
is given byg(A) = ga and g(-) is zero everywhere else. The
game’s characteristic function overal : 2% — R is given by
v(8) = 9(S) + 2ier ve(SN C).

Next, we give a reduction to SILT games from the NP-complete
VERTEX-COVER problem, in which we are given a graghand a
numberk and are asked whether there exists a subset of atinost
vertices such that every edge includes a vertex in the subset.

DEFINITION 6 (VERTEX-COVER SILT GAME). Let(G, k) be
VERTEX-COVER instance, wheré&; = (V, E) and|V| = n. We
define the corresponding Vertex-Cover SILT gamMeT, ga) as
follows. The agent setié4 = AoUV whereAy = {ao, a1,...,a4}
is a set of5 auxiliary agents. The set of issueslis= VU E. A
vertex issueé € V' C T concerns only agents i; = Ao U {i}
and an edge issue = {i,j} € E C T concerns only agents in
Ce =AU {Z,j}

For a coalition S and a vertex issué € V, v;(S) = Wil) if
iA[(a1 ANaz A ((mas A—aq) V—ao)) V(as Aas A ((—ar A—az) V
—ao))] andv;(S) = 0 otherwise. Here, a positive literal in the
boolean expression means that agerd S, and a negative literal
-z meansz ¢ S. Similarly, for a coalitionS and an edge issue
e={i,j7},ve(S) =1if iV j) ANao A ((a1 Aas) V (a2 A as))
andwv.(S) = 0 otherwise.

Intuitively, if we arrange thé& auxiliary agents as in Figure 1, a
vertex issue contributes non-zero value if and only if (1) S,
(2) no diagonaK a1, ao, as} or {az, ao, a4} is completely included
in S, and (3) either the left columfiai, a2} or the right column
{as,as} (or both) is completely included i¥. An edge issue
e = {i,j} contributes non-zero value if and only if ({), 7} in-
tersects withS and (2) either diagonaka, ao,as} or diagonal
{a2, ag, a4} (Or both) is included irS.

Finally, the grand coalition’s marginal contribution iga
n—k 2n+1
2n+42"

a

n(n+1)

LEMMA 2. The VERTEX-COVER instance(G, k) hasyesas
its answer if and only if its correspondingeRTEX-COVER SILT
game in Definition 6 has an empty core.



i} One of the diagonals (red
i is required for edge issue

One of the columns (blue) «—+*_ & contributions.

is required for vertex issue H
oD~ @a
i 2

contributions. Meanwhile,
a diagonal (red) excludes

Figure 1: How auxiliary agents in Definition 6 determine
whether an issue contributes non-zero value or not.

vertex issue contributions.

PROOF First, we show that the existence of a vertex cover of
size at most implies that the core is empty. We can handle this

direction quite easily thanks to the Bondareva-Shapley Theorem.

Let S C V be a vertex cover of size at mdst We construct the
following weight functionw : 24 — [0, 1]

w({ao,a1,a3} U S) = w({ao, az,as} US) =1/2
w({a1,a2} U (V'\ 8)) = w({as,as} U(V\ S)) =1/2

andw = 0 everywhere else. It is straightforward to check that for
alla € A, > g 4.0es w(S) < 1. We havev({ao, a1,a3} US) =
v({ao,az2,a4} U S) = |E|: these coalitions will get all of the
edge contributions (becauses a vertex cover), none of the vertex
contributions (because they contain a diagonal), and they will not
getga. Also, we havev({ai,az2} U (V' \ S5)) = v({as,as} U
VA\S) 2 wtan fl) these coalitions will get none of the edge
contributions (because they do not contai, at least: — k of the
vertex contributions (specifically, the contributions for all vertices
ieV \ S) and they will not gey4. Finally, we havev(A) =

|E| + iy % 5e+3. because the grand coalition will get all of
the edge contributions angh, but none of the vertex contributions.

Hence, we can conclude thal s , w(S)v(S) > |E|+ 7 n<n+1> >
|E|+ nﬁjl) x sntl = v(A). Itfollows that the conditions of the

Bondareva-Shapley theorem are satisfied and the core is empty.
Next, we show that emptiness of the core implies that a vertex
cover of size at most exists; this is the more difficult direction.

For the sake of contradiction, let us assume that the core is empty

and every vertex cover has size at Idast 1. The emptiness of the
core implies the existence of a weight functien: 2* — [0, 1]
with the conditions specified in Theorem 1. Without loss of gen-
erality, we can assume(A4) = 0. (If w(A) > 0, then we can
construct the modified weight function’ with w’(4) = 0 and
w'(S) = w(S)/(1 —w(A)) whenS # A. Then, for anyu € A,
2 SCAiaes w'(S) = 1/(1 - w(A)) ngA:aes w(S) < (1/(1 -
w(A)))(1—w(A)) = 1, where the inequality is due to the fact that
w satisfies Inequality 2. Moreovey, g, w’'(S)v(S) = 1/(1 —
w(A)) Ygca w(S)v(S) > (1/(1-w(A)))(v(A)—w(A)v(A)) =
v(A), where the inequality is due to the fact thatsatisfies In-
equality 1.) So we can restrict our attention to coalitiohg A.

Now, we categorize all subsetsC A into two families, namely
Sg={SC A|v(S)>1}andSy =24\ (Sg U{A}). Because
all vertex issues combined contribute strictly less thaand the
grand coalition marginal contribution will not occur as we consider
only coalitionsS C A, it follows thatSg is exactly the family of
subsetsS that obtain at least one contribution bffrom an edge
issue. HenceSy is the family of subset$' that only derive value
from vertex issues. We can then rewrite Inequality 1 as

> w@(S) + Y w(S)v(S) > v(A)

SESE SeESy

®)

Let Sy = {S € Sg | v(S) > |E|} consist of the coalitions
that correspond to vertex covers, andget ZSGSE w(S) and

4= D sesp\s;, w(5). Becauseaw € (g, S and Inequality 2
holds, we have + ¢ = > .5, w(S) < X scanges w(S) < 1.
Thereforeg < 1—p. Additionally, because forall € Sg, v(S) is

an integer no greater tha®| (the presence afy precludes vertex
issue contributions), we derive

S wS)u(s) = Y wSS)+ Y. w(S)(S)
SeSE Sesy, SeESE\SE
<plE|+q(|E] - 1)
<plEl+1-p)(|E|-1)=|E|-1+p
4)

This corresponds to the first term in the left-hand side of Inequal-
ity 3. For the second term, since féf € Sy, each vertex can

contribute at mostm we obtain

1
z w(S)u(S) < Z wSISNVIx Ty
I 2 ®)
uev SeSy:
vesS
1 1
S Tann o ©

where the last inequality is due to Inequality 2.

Combining Inequalltles 4 and 6 with Inequality 3, we obtain
|El=1+p+ 5 +1 = ngs w(S)v(S) +Zs€sv w(S)v(S) >
v(A) > |E|, wherev(A) > |E| because the grand coalitiof
obtains all edge issue contributions plus a positive grand coalition
marginal contribution. From this it follows that>

We now recall that for every € Sz, S NV must be a vertex
cover inG. By the assumption we made to derive a contradiction,
every vertex cover has size at ledst+ 1, so for all S € Sz,
|SNV| > k+ 1. This implies

S w®) = > wS)Snv|
veV SeSg: SeSy
vES
k+1
> 3 w(S)(k+1) = (k+1)p> % )
sesy
Again, using Inequality 2, we obtain > >~ > w(S) >
vEV SCA:
veS
Y| T w)+ X w(S) |, which is at least* &L 4+
veV SGSE: SeSy:
vES veES
> > w(S) by Inequality 7. Hence,
vEV SESy:
veES
§)<n-2EED ®
Z Z n+1
vEV SESy:
veS
Combining Inequality 8 with Inequality 5 we get
Z w(S)v(S) < % <n_ M)
o n(n+1) n -+
_ 1 k+1  n-—k ©)
Tnd+l (n+1)27 (n41)2

Finally, using Inequality 9 and 4 together with< 1, we get
Ysesp WS+ ses, w(S)v(S) < |B|=1+p+ iz <



|E|+ n"%lk)g <|E|+ "&jfl) X 32:[; = v(A), which contradicts B U C includes a diagonal and hence its ECondition is true. Thus
Inequality 3. [ v (BUC) =1 > v.(B) + v.(C) (becauseB andC can only
have vertex contributions from disjoint sets of verticed).

So far, we have said nothing about superadditivity. It can be

checked that the FRTEX-COVER SILT game is superadditive when From Lemma 2, Lemma 3, and the fact tha&RfEX-COVER
the graphG has no isolated vertex (which of course we can as- is NP-hard (even when restricted to instances without isolated ver-
sume without affecting the hardness oERTEX-COVER). How- tices), we obtain the following theorem.

ever, some of the individual issues are not superadditive—in fact,

they are not even monotone. Specifically, the value of a vertex is- THEOREM 2. The CORE-EMPTINESS problem is NP-hard for

sue may decrease oif a is added. We would like the hardness  SILT games, even when the value function for every issue is super-
result to hold even under the stronger condition that every issue is additive, monotone, and nonnegative (and hence the game's overall
required to be superadditive (and therefore, given that all values value function is also superadditive, monotone, and nonnegative).
are nonnegative, also monotone). We next show that we can rear-

range the issues inBRTEX-COVER SILT games so that the game 5, MARGINAL CONTRIBUTION NETS

remains the same but each issue is superaditive. A Marginal Contribution Net (MC-net) [14] represents a coop-
LEMMA 3. If graph G has no isolated vertex, then the cor- erative game using a set of pattefRs furthermore, each pattern
i P € P is associated with a valuer. A patternP is a boolean

respondingVERTEX-COVER SILT game can be rewritten as an , h h value d d h ich A |
equivalent SILT game each of whose individual issues is superad_expressmn whose truth value epends on the coaliiidh A. _ts
variables correspond to the agentsyill be shorthand for being

ditive, monotone and nonnegative. This also implies that the whole . th it Denote by (S) th h val s lti
game is superadditive, monotone and nonnegative. in the coalition. Lenote yj.( ) the truth value of? on coalition

o S. The value of coalitior5' is thenv(S) = 3-pcp. p(5)—true VP-
PrROOF. Recall that the original issue seflis= EUV. We now For example, we may have one pattésn A —a) with valuel and
construct a new set of issu#$ = E all of which are superadditive,  gnother patterfus) with value2. This impliesv({a1}) = 140 =
monotone and nonnegative. We legveunchanged and prove the andv({as,as}) =0+ 2 =2.

equivalence of” and7" (the overall value function is the same). We consider a variety of subclasses of MC-nets, which are de-
For each new issue = {i,j} € E =T’ letits relevantagent  fined by whether they allow the use of: (1) negative pattern values,

setbeC. = Ao U {i,j}. Letd(i) denote the degree of vertéin (2) the A operator, (3) the/ operator, and (4) the: operator. By

G. LetVCondition= [(a1 A az A ((mas A —aq) V —ao)) V (as A enumerating all possible combinations of these four attributes, we

as A ((ma1 A=az) V—ao))], i-e., the condition on auxiliary agents  gefine16 subclasses of MC-nets, as shown in Table 1. (A possi-

to allow vertex issue contributions in the originatRTEX-COVER ble fifth attribute is whether brackets are allowed; fortunately, as

SILT game. Similarly, let EConditior= ao A ((a1 A az) V (a2 A we discuss in Remark 1, that attribute is irrelavant to the computa-

a4)), i.e., the condition to allow edge issue contributions. We recall tjgna) complexity of our problems, except in one case.)
that VCondition and ECondition cannot hold simultaneously. For T4 enumerate the subclasses, we write four binary indicators

a coalitionS € A, the new isl,s(ljg)’s f/?in/_tri.bution i8(5) = Lif consecutively (corresponding to the four attributes), and interpret
(4V j) AECondition,v (S) = W if i A j A VCondition, the result as a binary number. For example, Class 0 (0000 in bi-
WL(S) = nl(/ﬂll)) if i A —j A VCondition, andv’,(S) = ;(/:fl)) if nary) MC-nets have all indicators equal @ which means this

subclass allows neither negative pattern values nor the use of any

o . ., B L
2/ j A VCondition. Otherwisey. (S) = 0. To see why this is of the operatorg\, v, and—. Hence, in Class 0, each pattern is ei-

equivalent to the original game, note that we have amortized vertex X .
i's issue contribution—L— over all of its adjacent edges, each ther empty (rue) or consists of one agentonly. Class 13 (1101 in

_ ' _ n(ﬁl)l/d(i) _ i binary) MC-nets can have negative pattern values as wellasd
with a partial contrlbutlonm. Because there is no isolated - gperators, but not operators. These are the original MC-nets
vertex,T andT” are equivalent. introduced by [14]. The complexity results obtained in this section

It remains to prove superadditivity for each isstgevalue func- are summarized in Table 1.

tion v, (which will imply monotonicity ofv. as well by nonneg-
ativity, and will imply superadditivity and monotonicity for the 5.1 Classes Where All Problems Are Unam-

whole game too, because it is the sum of these issues and the grand blgUOUS|y Hard

coalition contribution which is also superadditive). Consider two  In this subsection, we will prove the following theorem, which
disjoint coalitionsB,C C C. where BN C = (). We prove shows that all three problems are NP-complete for a number of
v (BUC) > v.(B) + v.(C) by considering three cases. Without subclasses of MC-nets. It is based on several lemmas that will be
loss of generality, assumg (B) > v, (C). stated and proved afterwards. There are two other subclasses for
1) If v,(B) = 0 (and thereforev,(C) = 0), by nonnegativity which we will prove in later subsections that all problems are hard
ve(BUC) >0 =v,(B) + v, (C). if we make some further assumptions, namely the ability to specify
(2) If v.(B) = 1, then ECondition must be true for boff and the grand coalition’s value in one case (Section 5.2), and the ability
B U C, while VCondition and ECondition must be both false for to use brackets in the other case (Remark 1). All of these results
C (becauseB contains an entire diagonal afin C = @, C can are by reduction from SILT games. For other classes, theec
contain neithero nor one of the columns). S¢(BUC) = 1 and EmPTINESSproblem is in P, and so SILT games cannot be reduced
v, (C) =0, and we have,(BUC) =1 > v,(B) +v.(C) = 1. to them (unless P=NP).

(3) Finally, if 0 < v.(B) < 1, VCondition must be true for

B. If VCondition is also true forB U C, thenv,(B U C) > THEOREM 3. Allthree problemsCORE-EMPTINESS NOT-IN-

vL(B) + v.(C) because (1)U cannot make ECondition true as CORE, and MOST-VIOLATED-COALITION are NP-complete for
it does not include a diagonal, and (2) the amortized vertex con- Class 5, 6, 7, 11, 12, 13, 14, and 15 MC-riéts.

tributions that result fron3 and C' correspond to disjoint sets of ~ “4Again, our general reduction fromdRE-EMPTINESSto NOT-
vertices. On the other hand, if VCondition is false 81U C', then IN-CORE and MOSTVIOLATED-COALITION is a Turing reduc-




MosT
CORE- NOT-IN- | VIOLATED-
Class| — | A | V| = | EMPTINESS| CORE COALITION
0|0|0|0]|O P P P
1/0|0]0]1 P P P
2100|110 P P NP-c
3/0|0|1]1 pf p NP-c
41 0(1(0]|0 P P P
50101 NP-c NP-c NP-c
601|110 NP-c NP-c NP-c
7101111 NP-c NP-c NP-c
8|/ 1/0|0]|O0 P P P
9/1/0|0]1 P P P
101010 NP-¢* NP-c NP-c
111|011 NP-c NP-c NP-c
121100 NP-c NP-c NP-c
113|110 1 NP-c NP-c NP-c
14| 1(1(1]|0 NP-c NP-c NP-c
151 (1(1]1 NP-c NP-c NP-c

Table 1: Complexity results for MC-nets. The four binary in-
dicators correspond to whether (1) negative values, (2) op-
erators, (3) v operators, and (4)— operators are allowed. For
entries with NP-c*, we only proved NP-hardness when we are
allowed to specify the grand coalition value directly. For entries
with PT, the result changes to NP-c if brackets are allowed.

PROOF From Lemma 4, it will follow that ©@RE-EMPTINESS
is NP-hard for Clas§ MC-nets. This hardness extends to Class
MC-nets, which are more expressive. From Lemma 5, it will follow
that CORE-EMPTINESSIis NP-hard for Clasd2 MC-nets, which
extends to Clasd3, 14, and15 MC-nets. From Lemma 6 and
Lemma 7 respectively, it will follow that GRE-EMPTINESSIis NP-
hard for Classl1 and6 MC-nets, respectively. By Proposition 1
this also implies NP-hardness for the other two problems. Finally,
by Lemma 1, all problems are in NPL]

LEMMA 4 (CLASS5 MC-NETS). Any SILT game with non-

of S. Let vP*@(S) denote the sum of the values of these previ-
ously specified patterns. Then, set the value of the new pattern to
v.(S) — vP2"3($), thereby guaranteeing théitobtains the correct
value. (In fact, the value for the patteis will turn out to be

Yarcs(—1)IF7150,(8"). See, e.g., [3].) O

LEMMA 6 (CLASS11 MC-NETS). Any SILT game can be rep-
resented in polynomial size by an MC-net that does not use the
operator (but it may use the and — operators as well as negative
pattern values).

PROOF By Lemma 5, we can represent any SILT game in poly-
nomial size by an MC-net that uses only th@perator (and possi-
bly negative values). Let the set of patterns of that MC-néPbin
what follows, we construct a new MC-net with pattern Bétthat
has onlyv, = operators (and possibly negative values), and show
that andP’ result in the same value for each coalition.

For thejth patternP; = z1 A z2 A ... A zm € P with value
vj, we add a patternPj —z1 V —2a V...V =z, With value
v; = —v; 1o P’. Pj evaluates tarueif and only if P; evaluates to
false Finally, we add one additional dummy pattefh = a V —a
for some arbitrarya € A (or, equivalently, simplyP} = true),
with value v(A), i.e., the value of the grand coalition (not just
its marginal contribution). The dummy pattern always contributes
valuev(A) to any coalitionS. Now we check that for any coalition
S, its valuev’(S) under the new pattern8’ is equal to its value
v(S) under the old patternB. LetJ = {j | P; is true forS} and

J' = {j| Pjistrue forS}. Thenv(S) = 3., v; = Y17 vy —
Djgsvi = v(A) = Fje,vi =X v = 0'(5). O

LEMMA 7 (CLASS6 MC-NETS). Any SILT game with non-
negative and monotone issues can be represented in polynomial
size by an MC-net that uses neither negative pattern values nor the
- operator (but it may use the andV operators).

PrROOF For any such SILT game, we construct an MC-net with
patternsP = | J,c Pe U { Py}, WwherePy = A, @ with value
ga represents the grand coalition’s marginal contributid.is a
set of patterns for issuethat only concerns agents .

negative issues can be represented in polynomial size by an MC-net  A|l that remains to be done is to show how to constrBetand

that uses neither negative pattern values norvheperator (but it
may use the\ and— operators).

PROOF. First, construct a patterfy ,_ , a with valueg to rep-
resent the grand coalition marginal contribution. Then, for each
issuet with relevant agent sef';, we add2!/“t! (which is a con-
stant number) patterns, as follows. For each suBset C:, we
add the patterd’s = A .5 a A A, ¢5 —a With valuev(S). [J

LEMMA 5 (CLASS 12 MC-NETS). Any SILT game can be rep-
resented in polynomial size by an MC-net that uses neither'the
operator nor the— operator (but it may use the operator and
negative pattern values).

PROOF. Again, we construct a patteify, . , a with value g.
For each issué with relevant agent sef;, we add2/“*! patterns,
as follows. For each subsét C C4, in order of nondecreasing
size, we add the pattetis = A, .5 a. We determine its value as
follows. We know that for the coalitios, this pattern will apply;

also, we have already specified the values for all the other patterns
that will apply, because these involve coalitions that are subsets

tion. If it is desired to avoid Turing reductions, it can be noted
that [4] already showed that d4-IN-CORE is NP-hard for SILT
games, even when the grand coalition’s marginal contribution is
zero (and hence so is®6TVIOLATED-COALITION).

to prove its equivalence to issuelLet {Si, Ss,...,Sm} be a par-
tition of 2¢* based orv;. That is, there exists a strictly increas-
ing sequence of values' < v? < ... < v™ such that for all
S € Si, v(S) = v'. DefineS;” = J7, S;. We then construct
Pi = {Pi, Pa,..., Py} whereP;, = Vsesjr Nqcs @ has value

v — '™, definingv® = 0. (We note that this expression does not
require brackets becausehas higher priority thaw.)

Sincev! > 0 (due to nonnegativity) and by constructioh <
01, all pattern values® — v*~! are nonnegative. For any subset
S C C4, there exists somésuch thatS € S;. For any; < 4,

S will satisfy P; becauses € S; C S;“. We next show that for
anyj > i, S does not satisfy?;. For the sake of contradiction,
suppose tha$ does satisfy som&; with j > 4. Then, there exists
S’ e Sf such thatS” C S. However, because < j, it follows
thatv,(S) < v(S’). This contradicts the monotonicity of issue
t. Hence,S € S; satisfiesP; if and only if 7 < 4. Therefore,S’s
value under patter; equalsy’_, v/ —v’ " =" = v,(S). [

5.2 MC-nets with Only OR Operators

If only the \V operator is available, it is impossible for MC-nets to
compactly represent the grand coalition’s marginal contribugion
For example, suppos€S) = 0 forany S # A andv(A) = g4 =
1. The Vv-only MC-net (with possibly negative pattern values) to



specify this game uses' — 1 patterns: for each nonempty subset
0 # S C A, constructa patterly , _; a with value(—1)/%1=1 [21].
Hence, we cannot hope to compactly represent SILT games with

this subclass of MC-nets; we need to add some additional repre-

sentational power to do so. The minimal additional representational
power that will do the trick is to simply allow the direct specifica-
tion of the value of grand coalition, so this is what we do here.
At the end of the paper, we discuss the open problem of determin-
ing the complexity of ©Re-EMPTINESSfor SILT games without

a marginal contribution for the grand coalition (i.e., games consist-
ing only of small issues). If this problem is still NP-hard, then we

PROOF LetA = {a1,az2,...,an}. Besides (possibly) the empty
pattern, there are at maxt distinct patterns, namelby , as, . . . , an
and-as, —ag, ..., "a,. Lettheir respective values be, bs, . . ., by,
andci, co, . . ., ¢, (POssibly0). The most violated coalition iS =
{a; | bi — ¢; —x; > 0}, which can be computed in linear time[D

Therefore, by Proposition 1, we conclude:

THEOREM 5. Allthree problemsCORE-EMPTINESS NOT-IN-
CoREandMOSTVIOLATED-COALITION, are in P for Clas9, 1, 8
and9 MC-nets.

could drop the additional power in this subsection, because we do We now consider MC-nets that use neithenor negative values
not need it to represent the small issues. In fact, [4] already showed(but vV and— may occur). We show that this necessarily results in

that NoT-IN-CoRE is NP-hard for such games (and hence so is
MOSTVIOLATED-COALITION). So for these problems we do not
need the additional power. This results in the following theorem:

THEOREM 4. NOT-IN-COREandMOSTVIOLATED-COALITION
are NP-complete for ClasH) MC-nets.CORE-EMPTINESSIS also
NP-complete for Class0 MC-netsif they are given the additional
power to specify the value of the grand coalition.

The theorem is implied by the following lemma.

LEMMA 8 (CLASS 10 MC-NETS). Any SILT game can be rep-
resented in polynomial size by an MC-net that uses neithenthe
operator nor the— operator (but it may use thg operator and
negative pattern values, as well as the additional power to specify
the value of the grand coalition in caga # 0).

PROOF For each issue with relevant agent sef’;, we add a
setP, of 2!°¢! patterns, as follows. First, we add the empty pattern
Py = true, with valuev, () (which in most circumstances would
be0). For each subset C C; (S # (), in order of nondecreas-
ing size, we add the patteiis = \/aes a to P;. We determine
its value as follows. Our goal is to ensure that if we applyto
Cy, as well as taC; \ S, this results in two values whose differ-
ence is exactlyl;(S) = v (Cy) — v, (Cy \ S). (d: is also known
as the dual of; [10].) C;: will satisfy every pattern; the only pat-
terns that are not satisfied 6y, \ S concern only agents ii$.
One such pattern ¢/, _ ¢ a, whose value we are seeking to specify
now; for all the other such patterns, we have already specified their
values. Letd?"@(5) denote the sum of the values of these previ-

subadditivegames. (A game isubadditivef S; NS> = () implies
thatv(S1 U S2) < v(S1) + v(S2).) From that, we prove that their
NOT-IN-CORE and GRE-EMPTINESS problems are easy. How-
ever, the MOST-VIOLATED-COALITION problem is still hard.

LEMMA 10. MC-nets that use neithet nor negative values
are subadditive.

PROOF First consider an MC-net with just a single pattern, so
that every coalition has valuepr or 0. Let the pattern be? =
Vaest @ V,es= —a. Then, subadditivity could only be violated if

P P

there are som€1, So with S1N Sy = (Z), 1}(51) =0, 1}(52) =0,
butv(S1US2) = vp. Butthis means either (1) that there exists
(S1US2)NSH, inwhich case eithet € S1NSH ora € SaNSE,
contradicting that (S1) = 0 andv(S2) = 0; or (2) that there exists

a € S\ (S1US2), inwhich case alsa € S \ S, contradicting
thatv(S1) = 0. Hence, subadditivity holds if there is only a single
pattern. If there are multiple patterns, the resulting game is the sum
of single-pattern games, which is also subadditivel

LeEmmMA 11. If a game is subadditive and the value of each sin-
gleton coalitionv({a}) can be computed in polynomial time, then
theNOT-IN-CORE problem is in P.

ProoF We will show that it is sufficient to check only singleton
subsets{a}. If for somea € A, v({a}) > z(a), z is not in the
core. Otherwise, ift(a) > wv(a) for all a € A, thenz must be
in the core because by subadditivity,S) < > .sv({a}) <

Daesr(a) = (). O
LEMMA 12. TheMOST-VIOLATED-COALITION problem is NP-

ously specified patterns. Then, set the value of the new pattern tohard for MC-nets with neither the. operator nor negative values

di(S) — d¥"(S), thereby guaranteeing that the difference in val-
ues is correct. (In fact, whem (9) = 0, the value for the pattern
Ps will turn out to be Y ¢, o(—1)151715"+14,(C, \ §"), by an
inclusion-exclusion principle.)

With these patterns, we obtain a value functignBy construc-
tion, for any() # S C C;, we havev; (Cy) —v;(Ce\S) = v:(Cy) —
v (Cy \ S). Moreover,vi(0) = v¢(0). Therefore,v;(Cy) =
v1(Ce \ Ct) +v1(Ct) = ve(Cr \ Cr) = v(D) + v:(Ch) — ve (D) =
v¢(Ct). Hence, also for alb C C, v;(S) = vy (C: \ (C: \ S)) =
ve(Ci \ (Cr\ S)) +v;(Ct) — ve(Ct) = v+(S). Hence, the patterns
correctly represent the issue.

Finally, if ga # 0, we can use the ability to specify the grand
coalition value to represent this[]

5.3 Classes with Some Easy Problems
Note that there is no superadditivity constraint in what follows.

LEMMA 9. The MOSTVIOLATED-COALITION problem is in
P for MC-nets without the/ and A operators (but possibly using
the— operator and negative pattern values).

(but possibly using the and — operators).

PrROOF We reduce from an arbitrary IIRTING-SET instance,
in which we are givenn subsetsH:, Hs,...,H,, € N with
N = {1,...,n} and a numbek < n, and are asked whether
there is a subsel C N with |[H| < k such that for alll < 4 <
m, H N H; # (. We construct an MC-net with + 1 agents
(a0, a1, ..., an) andm patternsP; to Pr,, whereP; = \/;_,; a;
has valuel, and consider payment vectorwith z(ag) = m —
n/(n+ 1) and forl < j < n, z(a;) = 1/(n + 1). Note that
ao is a dummy agent whose purpose is to ensttd) = v(A).
We ask whether a coalitio§ exists such thav(S) — z(S) >
m — (k 4+ 1/2)/(n + 1). If a hitting setH of size at mostk
exists, then the coalitio§y = {a;|j € H} hasv(Sy) = m and
z(Se) <k/(n+1) < (k+1/2)/(n+ 1), so the answer to our
MOSTVIOLATED-COALITION is yes Conversely, if a coalitiory
with v(S) — z(S) > m — (k+ 1/2)/(n + 1) exists, then it must
satisfy all patterns, because otherwig®) — z(S) < m —1 <
m—(k+1/2)/(n+1), and we must haves| < k, because other-
wisev(S)—z(S) < m—(k+1)/(n+1) < m—(k+1/2)/(n+1).
ThereforeHs = {j|a; € S} is a hitting set of size at mo&t [J
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