
An “Ethical” Game-Theoretic Solution Concept for
Two-Player Perfect-Information Games

Joshua Letchford1, Vincent Conitzer1, and Kamal Jain2

1 Department of Computer Science, Duke University, Durham, NC, USA
{jcl, conitzer}@cs.duke.edu

2 Microsoft Research, Redmond, WA, USA
kamalj@microsoft.com

Abstract. The standard solution concept for perfect-information extensive form
games is subgame perfect Nash equilibrium. However, humansdo not always
play according to a subgame perfect Nash equilibrium, especially in games where
it is possible for all the players to obtain much higher payoffs if they place some
trust in each other (and this trust is not violated). In this paper, we introduce a
new solution concept for two-player perfect-information games that attempts to
model this type of trusting behavior (together with the “ethical” behavior of not
violating that trust). The concept takes subgame perfect equilibrium as a starting
point, but then repeatedly resolves the game based on the players being able to
trust each other. We give two distinct algorithmic definitions of the concept and
show that they are equivalent. Finally, we give a fast implementation of one of
the algorithms for solving the game, and show that it runs in time O(n log n +
nh log(n/h)).

1 Introduction

Under a typical game-theoretic solution concept, the players pursue nothing other than
their own interest at every point in the game. Humans, however, do not always behave
this way: depending on what happened earlier in the game, they may feel that they
“owe” another player something and act accordingly. We propose a solution concept
for two-player extensive-information games that attemptsto model this phenomenon.

To illustrate the basic idea, consider the example game in Figure 1. The standard
game-theoretic approach to solving this game is to simply use backward induction. If
player 2 gets to move, he3 maximizes his utility by moving left, resulting in the utilities
(0, 2). Anticipating this, player 1 will choose to move left in the first move, resulting in
the utilities(1, 0). This is the unique subgame perfect equilibrium of the game.We note
that both players would prefer the rightmost outcome, whichhas utilities(2, 1), but the
strategic structure of the game prevents this outcome from occurring—at least within
the standard game-theoretic approach.

Now, we argue that this is not necessarily the most sensible outcome of the game,
assuming that the players have some amount of decency. Suppose player 1 does, in
fact, move right. In the standard game-theoretic approach,this would be considered a

3We use “she” for player 1 and “he” for player 2.

Fig. 1. A simple example.

mistake. However, suppose that it is common knowledge amongthe players that they
understand the game perfectly. Hence, player 2 knows that player 1 did not choose this
move by accident, but voluntarily chose to let player 2 pick between the outcome that
is better for both of them than the subgame perfect solution,and the outcome that is
much better for player 2 but worse for player 1. Player 1 knowsvery well that she
is leaving herself vulnerable to a selfish action by player 2,but chose to move right
anyway, with the hope of a better outcome for both. It seems sensible to argue that in this
case, it would be unethical for player 2 to move left. Specifically, it seems that player
2 “owes” it to player 1 to give her at least as much utility as she would have received
in the subgame perfect equilibrium, especially as player 2 can do so in a way that also
gives him at least as much utility as he would have received inthe subgame perfect
equilibrium. Thus, it seems that the ethical thing to do for player 2 in this situation is
to move right; if player 1 believes that player 2 is ethical inthis way, then she prefers
to move right initially—she “trusts” player 2 to make the “ethical” move. In this paper,
we propose a general solution concept corresponding to thisethical type of reasoning.

Incidentally, the simple game above closely resembles a game studied in experi-
mental game theory, called the “trust game.” In the trust game, player 1 has an initial
budget. She can choose to give any amount not exceeding this budget to player 2; if
she does so, the money will be tripled before player 2 receives it. After receiving the
money, player 2 can give any amount back to player 1 (this willnot be tripled), and
the game ends after this. Again, this game can be solved by backwards induction: it
is never in player 2’s interest to give any money back, and hence player 1 should give
player 2 no money at all.4 Experimentally, however, this is not at all what happens [6,
15, 14]. In an experimental study, 85% of subjects in the player 1 role gave at least some
money, and 98% of subjects in the player 2 role that received some money gave some
back [14]. Also, on average, subjects in the player 1 role gave $5.52 (out of their initial
$10), and subjects in the player 2 role returned $6.96 [15]. We will discuss what our
solution concept prescribes for this game in Appendix A.

A few more remarks are in order. We do not wish to argue that thebehavior pre-
scribed by our solution concept is the only behavior that canpossibly be described as
“ethical.” For example, in a modified version of the trust game where player 2 does not
have the option of giving money back at all, our solution concept prescribes that player

4This assumes that a player’s utility is simply the amount of money that the player receives.

1 should give no money; but one could perhaps argue that giving money would still
be the ethical thing to do, given that the money will be tripled. In fact, under a strict
utilitarian framework, one might argue that the ethical thing to do is to transfer all the
money. Still, we argue that our solution concept corresponds to a particular, natural (if
perhaps limited) type of ethical behavior. For the purposesof this paper, we will avoid
discussion of whether our concept is more “rational” than the standard game-theoretic
concepts, and hence we will avoid the use of the word “rational.”

Also, while there has been an agenda within game theory of justifying cooperative
behavior by showing that cooperation can be sustained as an equilibrium of a repeated
game (for instance, in the Prisoner’s Dilemma [13]), philosophically, this paper does
not fall under that agenda. (However, because our solutionsalways Pareto dominate or
are equal to a subgame perfect solution, they can in fact be sustained as an equilibrium
of the repeated game as well.)

Solution concepts that model this type of ethical behavior potentially have a num-
ber of applications. They can be used to predict human behavior. Also, when combined
with algorithms for computing the ethical solution, such concepts can be used in artifi-
cially intelligent agents, for interacting either with humans or with each other. Indeed,
it has been argued that standard game-theoretic solutions do not always perform well in
settings where artificially intelligent agents interact with humans [4, 3, 12]. The design
of artificial intelligence that behaves ethically has previously received attention [1, 10].
Much of this work relies on humans specifying examples of ethical behavior, which the
agent then tries to generalize into more general rules [5, 9]. Other work specifies certain
prima facieduties, and the agent needs to learn from labeled examples how to trade off
these duties when they conflict [2]. Our work differs from this prior work in that we
define a single concept that is intended to capture a subset ofethical behavior, and all
that remains to be done is to find the corresponding solution (no learning is needed).

The rest of this paper is laid out as follows. In Section 2, we study some more
complex examples to get some intuition about our solution concept. In Section 3, we
give a first definition of our solution concept, which relies on iteratively modifying the
agents’ preferences and re-solving for the subgame perfectequilibrium. In Section 4,
we give another definition of the concept, which relies on iteratively removing nodes
from the game tree and re-solving for the subgame perfect equilibrium; we show that
this definition is equivalent to the one from Section 3. Finally, in Section 5, we give a
fast algorithm for computing a solution according to our concept.

2 Introductory examples

In this section, we study two additional example games. The first example shows a
seemingly more complex game that can be simplified to be similar to the example in
Figure 1. The second example is inherently more complex; however, understanding this
example will help significantly to understand the general definition.

Example: a game with moves by Nature.Alice and Bob are sitting next to each
other on a plane, and there are not enough pillows on the plane. Alice has a pillow
(it was sitting in her seat), and Bob does not. Alice is currently not tired, and Bob is
(and, from their demeanors, this is common knowledge). Alice could give the pillow

Fig. 2.Example: airplane pillows. Key: give pillow, keep pillow, Alice becomes tired, Alice does
not become tired, give when Alice becomes tired, keep when Alice becomes tired

to Bob, but she might regret it if she gets tired later on. Of course, Bob could give the
pillow back in that case, if he chooses to do so.5 A possible interpretation of this game
is shown in Figure 2. On the left side is the full game tree: Alice first decides whether
to give the pillow, then Nature decides whether Alice gets tired, and finally Bob decides
whether to return the pillow. (We note that if Alice is not tired, she slightly prefers
not having the pillow, to have some more space.) We emphasizethat this is a perfect-
information game. Because of that, we can remove Nature fromthe game by taking
expectations, resulting in the game on the right-hand side.By similar reasoning as that
for the example in Figure 1, Alice should give the pillow, andBob should give it back if
Alice is tired. This contrasts with the subgame perfect solution in which Bob would not
return the pillow, so that Alice keeps the pillow to herself;the subgame perfect solution
is worse for both players.

Example: a more complex game with 6 leaves.We now move on to an example
that is fundamentally more complex and that will require some more reflection on what
is ethical. Consider the example in Figure 3.

Fig. 3. A more complex example with 6 leaves.

Backward induction would tell us that player 2 will move leftin each subtree, and
hence player 1 should move left, resulting in the unique subgame perfect equilibrium
with utilities (2, 0). However, again, we may argue that if player 1 chooses middle
or right, then player 2 owes it to player 1 to give her at least2 (since she could have
guaranteed herself this much, and to give her this much player 2 does not need to accept

5This is ignoring the potential complication that Bob may have fallen asleep on the pillow.

a utility less than the0 that he would receive in the subgame perfect solution). Thatis,
if player 1 plays middle, player 2 should play right (resulting in utilities (4, 1)); and if
player 1 plays right, player 2 should play middle or right—but middle will give him a
higher utility, resulting in utilities(3, 4). Hence, at this level of analysis, the best move
for player 1 is to move to the middle, resulting in utilities(4, 1). However, we can take
this analysis one step further. Now suppose that player 1 moves right anyway. Since
(given ethical behavior by player 2) she could have guaranteed herself4 by choosing
middle, it can be argued that player 2 owes her at least4 (especially because player
2 can do so while still getting at least the1 that he received at the previous level of
analysis). So, at this level, the only ethical thing for player 2 to do is to move right;
middle is no longer ethical. Hence, the final solution is for both players to move right.

3 A definition of ethical behavior based on iterated solutions

We now give the general definition of our ethical solution concept. In the example in
Figure 3, in a sense, we “solved” the game three times: first, we found the subgame per-
fect solution; second, we modified the solution based on the notion that player 2 should
give player 1 what she could have guaranteed herself in the first (subgame perfect) so-
lution (as long as doing so does not make player 2 worse off than he would have been in
the first solution); third, we modified the solution again based on the notion that player
2 should give player 1 what she could have guaranteed herselfin the second solution (as
long as doing so does not make player 2 worse off than he would have been in the sec-
ond solution). Furthermore, it is easy to construct examples in which even more levels
of analysis are required.

In fact, the second and third solutions can be seen as subgameperfect solutions of a
game in which the preferences have been modified based on the payoffs in the previous
solution. In particular, let us call the utilities(b1, b2) from the previous solution the
base utilities. Then, player 1’s primary goal is to obtain at least utilityb1; player 1’s
secondary goal is for player 2 to obtain at least utilityb2; her tertiary goal is to maximize
her own utility; and her quaternary goal is to maximize player 2’s utility. 6 That is, given
that she achieves her own base utility, player 1 temporarilysets her own interest aside
and attempts to ensure that player 2 obtains his base utility; once that has been done,
she pursues her own utility again. Player 2’s modified preferences are defined similarly.
Formally, we have:

Definition 1. Given base utilities(b1, b2), we define player 1’sethical preference re-
lation≻1

(b1,b2)
as follows:(u1, u2) ≻1

(b1,b2)
(u′

1, u
′

2) if and only if at least one of the
following three conditions applies:

– u′

1 < b1, and: eitheru′

1 < u1, or bothu′

1 = u1 andu′

2 < u2.
– u1 ≥ b1, u

′

1 ≥ b1, u
′

2 < b2, and:u2 > u′

2.
– u1 ≥ b1, u2 ≥ b2, and: eitheru1 > u′

1, or u1 = u′

1 andu2 > u′

2.

6The quaternary goal is relevant only for breaking ties and isnot essential to our concept; we
add it for completeness.

Player2’s ethical preference relation≻2
(b1,b2)

is defined similarly (with the roles of1
and2 reversed).

In the special case in whichb1 andb2 are smaller than any utility in the game, the
players simply maximize their own utility (and break ties infavor of the other’s utility).

Now, we obtain a solution as follows: we solve the game, then update the base util-
ities to be the utilities in that solution, solve the game again with the modified utilities,
modify the utilities again,etc., until the solution stops changing.7 Formally, we have
the following algorithm:

Iterated Backward Induction with Modified Preferences (IBIMP)
1. initializeb1 ← −∞
2. initializeb2 ← −∞
3. repeat until convergence:

(a) solve the game by backward induction with respect to≻1
(b1,b2)

,≻2
(b1,b2)

(b) updateb1, b2 to be the final utilities in this solution

We have not yet shown that this process will in fact converge,but this will become
clear from the alternative characterization in the next section.

For example, for the game in Figure 3, we have the following three solutions:

Fig. 4. IBIMP solves the example game in three iterations. At each nonleaf vertex, an arrow
indicates the player’s move in the subgame perfect solutionfor the modified preferences, and the
leaf corresponding to the solution is underlined.

Another way to interpret this process is as follows: a third party repeatedly proposes
strategy profiles for both players; the players accept the new proposal if and only if
every move is consistent with their ethical preference relation (with respect to the base
utilities from the currently accepted proposal). Then, theonly sequence of solutions that
the third party can successfully propose is the sequence of solutions that results from
the algorithm above.

We emphasize again that breaking ties in favor of the other player is not essential
to the concept, but it seems natural. (Incidentally, if tiesare broken in this way, then the

7It should be noted that in general, a perfect-information game can have multiple subgame
perfect Nash equilibria due to ties; finding the optimal one is nontrivial, but can be done in
polynomial time [7]. Because we specified a tie-breaking mechanism—breaking ties in the other
agent’s favor—we do not need to deal with these issues.

airline pillow example (Figure 2) has the same solution evenif player 1 is indifferent
between having the pillow or not when she is not tired.)

4 An alternative characterization based on global pruning

In this section, we present an alternative definition of the solution concept, and show the
equivalence between the two definitions. The alternative definition is also algorithmic,
and also relies on repeatedly solving games. The differenceis in how we modify the
game. Instead of modifying the preferences based on the baseutilities, we now remove
all the leaf nodes for which at least one player’s utility is lower than the base utility.

Iterated Backward Induction with Pruned Leaves (IBIPL)
1. repeat until convergence:

(a) solve the game by backward induction (breaking ties in favor of the other
player)

(b) let b1, b2 be the final utilities in this solution
(c) remove all the leaves with utilities(u1, u2) such thatu1 < b1 or u2 < b2,

and all intermediate nodes that have no children left

For example, for the game in Figure 3, we have the following three solutions:

Fig. 5. IBIPL solves the example game in three iterations. The leaf corresponding to the solution
in each iteration is underlined, and removed leaves are crossed out.

We note that for this game, IBIPL’s solution in each stage is the same as in IBIMP.
This is true in general, as we will see shortly. First, we note:

Lemma 1. Under IBIPL,b1 andb2 monotonically (weakly) increase.

Proof. b1 andb2 always correspond to a solution, and any leafl with eitherul
1 < b1 or

ul
2 < b2 is immediately removed and can hence never be a future solution.

Theorem 1. In each iteration, IBIMP and IBIPL find the same solution. That is, b1 and
b2 are the same at each stage, and the values at each intermediate node are the same in
the solution at each stage (if the intermediate node still exists under IBIPL).

Proof. The first solutions are the same (both find the backward induction solution in
which ties are broken in favor of the other player). We show that if the claim is true for
the firstk solutions, it is true for thek + 1th solution, proving the claim by induction.

Given an intermediate nodev (without loss of generality, one at which player 1
moves) that still occurs in both games, suppose that the utilities for all its children (that
still occur in both games) are the same. We will show that for any child c that still
occurs in the IBIMP game but not in the IBIPL tree, that child will not be the most
preferred under player 1’s ethical preferences≻1

(b1,b2) (whereb1 andb2 are the solution
values for thekth solution, under both IBIMP and IBIPL by the induction assumption).
Becausev still occurs in the IBIPL game, it must have at least one childc′ left in the
IBIPL tree; since it has not been removed, it must have utilities uc′

1 ≥ b1, u
c′

2 ≥ b2.
(We emphasize again that the utilities are the same under both trees, by assumption.)
On the other hand, becausec was removed, every leafl that is a child ofc must have
been removed; therefore, using the monotonicity property in Lemma 1,l has either
ul

1 < b1 or ul
2 < b2. It follows that the utilities atc in the current iteration of IBIMP

must have the same property: eitheruc
1 < b1 or uc

2 < b2. But then, it follows that
(uc′

1 , uc′

2) ≻1
(b1,b2) (uc

1, u
c
2). Therefore, under IBIMP, player1 will not choosec from v.

Hence, both IBIMP and IBIPL choose from the childrenc′ of v for which uc′

1 ≥
b1, u

c′

2 ≥ b2. Both of them will choose a child with the highestuc′

1 , breaking ties to
maximizeuc′

2 . It follows that the utilities forv are the same under both IBIMP and
IBIPL, and we can repeat this process to show this for all the vertices up to and including
the root, thereby establishing that the newb1 andb2 will be the same.

While the definition of the ethical solution concept corresponding to IBIMP is per-
haps more natural and easier to motivate, the equivalent definition corresponding to
IBIPL is often easier to work with and prove properties about. The following proposi-
tions illustrate this.

Proposition 1. IBIPL and IBIMP always terminate.

Proof. IBIPL clearly must terminate, because the tree shrinks in each step (other than
the last one). By Theorem 1, it follows that IBIMP must also terminate.

Lemma 2. When IBIPL terminates, all remaining leaves have the same utilities (b1, b2).

Proof. For each remaining leafl, we must haveul
1 ≥ b1 andul

2 ≥ b2 (otherwise, the
leaf would have been eliminated). So, if there is a remainingleaf l with utilities other
than(b1, b2), it must Pareto dominate the current solution (ul

1 > b1 andul
2 ≥ b2, or

ul
1 ≥ b1 andul

2 > b2). For the sake of contradiction, suppose that such a leafl ex-
ists. Both players break ties in favor of the other, so the utilities (ul

1, u
l
2) will always

be preferred to(b1, b2). Hence, the utilities at the parent ofl will be (ul
1, u

l
2), or some-

thing else that Pareto dominates(b1, b2). The same is true for its parent,etc., up to and
including the root. This contradicts(b1, b2) being the backward induction solution.

Proposition 2. IBIPL and IBIMP always return a Pareto optimal solution.

Proof. For the sake of contradiction, suppose that the final solution under IBIPL is not
Pareto optimal—that is, there exists a leaf that Pareto dominates the solution. This leaf
cannot have been eliminated, based on Lemma 1. But then, we have two remaining
leaves with different utilities, which contradicts Lemma 2. By Theorem 1, it follows
that IBIMP also returns a Pareto optimal solution.

Proposition 3. IBIPL and IBIMP always return a solution in which both players’ utili-
ties are at least as high as in any subgame perfect equilibrium where players break ties
in each other’s favor.

Proof. Under IBIPL, after the first iteration,b1 andb2 are equal to the utilities from
such a subgame perfect equilibrium; by Lemma 1, the utilities in later iterations can
only be higher. By Theorem 1, the property also holds for IBIMP.

5 A fast implementation of IBIPL

The pseudocodes for IBIMP and IBIPL give us some basic (albeit not fully specified)
algorithms for finding the ethical solution. In this section, we present a fast implemen-
tation of IBIPL with a runtime ofO(n log n + nh log(n/h)), wheren is the number of
leaf nodes, andh is the height of the tree.

The algorithm and analysis assume, without loss of generality, a game tree in which
all nonleaf nodes have at least two children. The basic idea is to maintain a data structure
corresponding to the game tree, which maintains the optimalaction at each nonleaf
node. When in successive iterations, leaves are deleted, weonly need to update the
ancestors of those leaves (in fact, we may not need to update all of them).

A fast implementation of IBIPL

1. Initialize two arraysA1, A2 of pointers to the leaf nodes
2. SortA1 by the first player’s utility, andA2 by the second player’s utility (ties

can be broken arbitrarily)
3. Intialize index pointersi1, i2 to the first element ofA1 andA2, respectively
4. UsingA1, compute the smallest value by which any two distinct valuesof u1

differ, divide this number by twice the largest value ofu2, and call the resultǫ1;
computeǫ2 similarly

5. Solve the game by backward induction (breaking ties in favor of the other
player); in the process, at each nodev, create a Fibonacci max heap whose
elements arev’s children, ordered by their values foru1 + ǫ1u2 if player 1 con-
trols v, and byu2 + ǫ2u1 if player 2 controlsv (theǫ terms are used to break
ties in the other player’s favor); the top child’su1, u2 values becomev’s values

6. Letb1, b2 be the values at the root
7. Repeat until convergence:

(a) In arrayA1 use binary search to find the first element for whichu1 ≥ b1;
let its location bei1′

(b) For every element inA1 in a location{i1, i1 + 1, . . . , i1
′ − 1} do:

i. If the corresponding leafv has not been marked deleted, mark it deleted
and callUpdate1(P (v), u1(v), u2(v)), whereP (v) is v’s parent

(c) Repeat the previous two steps with arrayA2

(d) Let i1 ← i1
′ andi2 ← i2

′

(e) Updateb1, b2 to the new values ofu1, u2 at the root

Update1(w, u1, u2)

1. Fromw’s Fibonacci max heap, remove(u1, u2)
2. If the max heap has become empty, callUpdate1(P (w), u1, u2)
3. Otherwise, if the values at the top of the heap have changed, up-

date w’s values u1(w), u2(w); if w is not the root, then call
Update2(P (w), u1, u2, u1(w), u2(w))

Update2(w, u1, u2, u1
′, u2

′)

1. Letu1
′′, u2

′′ be the current values ofw
2. Fromw’s Fibonacci max heap, remove(u1, u2), and insert(u1

′, u2
′)

3. If the values at the top of the heap have changed, up-
date w’s values u1(w), u2(w); if w is not the root, then call
Update2(P (w), u1

′′, u2
′′, u1(w), u2(w))

Theorem 2. The fast implementation of IBIPL runs inO(n log n+nh log(n/h)) time.

Proof. Creating the sorted arrays will takeO(n log n) time.
The first subgame perfect solution takesO(n) time to generate; this includes creat-

ing and populating all of the Fibonacci max heaps (for which the amortized insertion
time is O(1)). Calculatingǫ1 and ǫ2 also takesO(n) time, because we have sorted
arrays and thus only need to comparen adjacent pairs to find the smallest difference.

There are at mostn iterations of the loop: each iteration other than the last must
delete at least one leaf node. Within each iteration, we mustfind i1

′ and i2
′, which

takesO(log n) time using binary search. Thus, this takes a total ofO(n log n) time.
We still need to consider the time needed for the deletions and updates. Each leaf

node can be deleted at most once, so we haveO(n) deletions in total. Finding the leaves
that need to be deleted only requires us to advance through the arrays fromi1 to i′1 and
from i2 to i′2. Hence, finding the leaf nodes to delete requiresO(n) time in total.

Each individual leaf deletion can result in a number of updates (including both
Update1s andUpdate2s); however, it can result in at mosth updates, because a node
can only callUpdate1 or Update2 on its parent. Lettingbv be the branching factor
(number of children) ofv, updating nodev requiresO(log(bv)) time for (at most) an in-
sertion and a deletion into a Fibonacci max heap. At worst, wehaveh nodesv1, . . . , vh

that require updating as a result of a single leaf deletion, resulting in a total update
time of log(bv1

) + . . . + log(bvh
). We know, however, thatbv1

+ . . . + bvh
≤ 2n:

this is because there are at most2n nodes in the tree in total (because we assume that
each node has a branching factor of at least2), and the children of different nodes do
not overlap. The optimization problemmaximize log(bv1

) + . . . + log(bvh
) subject to

bv1
+ . . . + bvh

≤ 2n is solved by settingbvi
= 2n/h for every i, because thelog

function is concave. It follows that the total time requiredfor updates as a result of a
single leaf deletion isO(h log(n/h)), resulting in a bound ofO(nh log(n/h)) for the
total time for updates.

Adding everything together, our total runtime bound isO(n log n + n + n log n +
n + nh log(n/h)) = O(n log n + nh log(n/h)).

For the purpose of reducing the runtime bound (and in its own right), it is interesting
to consider how many iterations a particular type of tree canrequire. In the proof of
the runtime bound above, we only used the fact that there are at most n iterations.
We already know that the centipede game requiresΩ(n) iterations, but of course the
centipede game tree is extremely unbalanced. In Appendix B,we show how to construct
games with balanced binary trees that requireΩ(

√
n) iterations, as well as games with

depth 2 (not binary) that requireΩ(
√

n) iterations. We also construct a game in which
the solution in the first iteration is to move left at the root,in the second iteration it is to
move right, and in the third it is once again to move left—thatis, we cannot eliminate a
move/subtree when it stops being used (see Appendix C).

6 Conclusions

In this paper, we introduced a new solution concept for two-player perfect-information
games that attempts to model a type of trusting behavior (together with the “ethi-
cal” behavior of not violating that trust). The concept takes subgame perfect Nash
equilibrium as a starting point, but then repeatedly resolves the game based on the
players being able to trust each other. We gave two distinct algorithmic definitions of
the concept and showed that they are equivalent. Finally, wegave a fast implementa-
tion of one of the algorithms for solving the game, and showedthat it runs in time
O(n log n + nh log(n/h)).

There exist a large number of directions for future research. First, the validity of the
concept should be evaluated. While we believe that the two equivalent definitions pro-
vide a strong normative justification of our concept, there may be other axiomatizations
of the concept that make it even more convincing. However, aswe have said previously,
our concept only considers one particular type of ethical behavior, and other types of
ethical behavior may lead to other natural solution concepts. It would also be interesting
to investigate in more detail to what extent our solution concept models human behav-
ior, taking a more descriptive approach rather than the normative approach discussed so
far.

Another interesting direction is to try to generalize the concept to 3+-player games
and/or games with imperfect information. Neither of these generalizations seem trivial.
For example, if there is third player that barely affects theoutcome of the game at
all, then are the first two players still obliged to maintain player 3’s utility at at least
the same level across iterations? And, if (due to imperfect information) it is not clear
to player 1 whether player 2 took a “trusting” move, is player1 obliged to assume
that player 2 took such a move or not? Hence, it is not clear whether the 3+-player
and/or imperfect-information cases admit as clean of a concept as the 2-player perfect-
information case. Another issue is that our concept in some sense assumes that it is
common knowledge that both players will behave ethically, and it is not clear what
should be done if this is not the case. (One might model this asa game of imperfect
information in which Nature first decides which players are ethical.)

Finally, how can we use this concept to approximately solve games that are so large
that it is not possible to write down the entire tree? AI techniques for such games are
usually based on limited-depth lookahead and heuristics toevaluate the nodes at this

limited depth. For our concept, it is not clear whether the correct approach is to use
this type of limited-depth search on the full remaining treewithin each iteration of the
algorithm; or, to run the algorithm (all the iterations) on alimited-depth tree; or to do
something entirely different. It also seems that if the two players do not use the same
heuristics or depths, this can cause significant difficulties, because from one player’s
perspective the other may not be acting ethically.

7 Acknowledgments

We thank the National Science Foundation and the Alfred P. Sloan Foundation for sup-
port (through award number IIS-0812113 and a Research Fellowship, respectively).

References

1. Michael Anderson and Susan Leigh Anderson. The status of machine ethics: a report for the
AAAI symposium.Minds and Machines, 17:1–10, 2007.

2. Michael Anderson, Susan Leigh Anderson, and Chris Armen.Medethex: A prototype med-
ical ethics advisor.AAAI, pages 1759–1765, 2006.

3. Ya’akov Gal and Avi Pfeffer. Modeling reciprocity in human bilateral negotiation.AAAI,
2007.

4. Barbara J. Grosz, Sarit Kraus, Shavit Talman, Boaz Stossel, and Moti Havlin. The influence
of social dependencies on decision-making: Initial investigations with a new game.AAMAS,
pages 782–789, 2004.

5. Marcello Guarini. Particularism and the classification and reclassification of moral cases.
IEEE Intelligent Systems, 21(4):22–28, 2006.

6. Brooks King-Casas, Damon Tomlin, Cedric Anen, Colin F. Camerer, Steven R. Quartz, and
P. Read Montague. Getting to know you: Reputation and trust in a two-person economic
exchange.Science, 308(5718):78–83, 2005.

7. Michael L. Littman, Nishkam Ravi, Arjun Talwar, and Martin Zinkevich. An efficient
optimal-equilibrium algorithm for two-player game trees.UAI, 2006.

8. Richard D. McKelvey and Thomas R. Palfey. An experimentalstudy of the centipede game.
Econometrica, 60(4):803–836, 1992.

9. Bruce M. McLaren. Computational models of ethical reasoning: Challenges, initial steps,
and future directions.IEEE Intelligent Systems, 21(4):29–37, 2006.

10. James H. Moor. The nature, importance, and difficulty of machine ethics.IEEE Intelligent
Systems, 21(4):18–21, 2006.

11. Rosemarie Nagel and Tang Fang Fang. An experimental study on the centipede game in
normal form—an investigation on learning.Journal of Mathematical Psychology, 42:356–
382, June 1998.

12. Shavit Talman, Ya’akov Gal, Meirav Hadad, and Sarit Kraus. Adapting to agents’ personal-
ities in negotiation.AAMAS, 2005.

13. Albert Tucker. A two-person dilemma. In Eric Rasmusen, editor, Readings in Games and In-
formation, pages 7–8. Blackwell Publishing, 2001. Originally written in 1950 (unpublished).

14. Paul J. Zak. The neurobiology of trust.Scientific American, pages 88–95, June 2008.
15. Paul J. Zak, Robert Kurzban, and William T. Matzner. Oxytocin is associated with human

trustworthiness.Hormones and Behavior, 48:522–527, December 2005.

A Some example games

In this section, we will consider some classic games for which our solution concept
provides interesting solutions. First, we consider the trust game described in the intro-
duction. To keep the game at a manageable size, the first player has one dollar, anything
she gives to player 2 will be tripled, and only integer donations are allowed. This game
appears in Figure 6. As we noted earlier, the subgame perfect(backward induction) so-

Fig. 6. A version of the trust game.

lution is for player 1 to give no money (move right). As for oursolution concept, let
us consider the IBIPL interpretation. First, it eliminates(0, 3) (because this has a lower
utility for player 1 than the subgame perfect solution(1, 0). Then, the next solution is
for player 1 to give1, and for player2 to give1 back. This is the final solution (nothing
Pareto dominates it). In general trust games, our solution concept always results in1
giving all her money, and2 giving her back exactly that much. This solution is always
reached in the second iteration of IBIMP/IBIPL.

The second example game is thecentipede game(really, a family of games). In this
game, both players have some amount of money. They alternateturns, and at each turn,
the current player can either end the game, or pass to the other player. If she passes,
then her amount decreases, but the other player’s amount increases. If the other player
then passes back, then both players will be better off than they were before the two
passes. (A typical example is that the player who passes loses half of her money, but
the other player’s money quadruples.) However, there is a fixed deadline. An example
centipede game can be seen in Figure 7. The subgame perfect (backward induction)
solution to game is for player 1 to end the game at the first step. As for our solution
concept, let us consider the IBIPL interpretation. First, it eliminates(1, 8) (because it
has a lower utility for player 1 than the subgame perfect solution (2, 2)), resulting in
(4, 4) becoming the new solution. Then, it eliminates(2, 16) (and(2, 2)), resulting in
the final solution(8, 8). In general, in centipede games, our solution concept will always
choose the bottom-most leaf that is more advantageous to player 1. That is, the players
pass until the very last move, which may be either a pass or an ending move. This
solution is reached as follows: in each iteration of IBIMP/IBIPL, the current solution
moves two levels down, as in the above example.

Fig. 7. A version of the centipede game.

In empirical studies of the centipede game, humans rarely play the subgame perfect
equilibrium; rather, they usually continue to pass until a little after the middle of the
game (but usually they do not continue all the way to the end, either) [8, 11].

B Lower bounds on the number of iterations

We now introduce some example games that require a large number of iterations to
solve using our concept. In these games, all utilities are strictly positive and have no
ties. We recall thatn is the total number of leaf nodes.

We first introduce a game that will give us a lower bound on the number of iterations
required in a complete alternating-move binary tree (in theworst case).

Definition 2. We define the gameGk recursively as follows:

– G1 is a modified version of the game in Figure 1: all its utilitiesare increased by1
(to make them positive).

– Gk+1 is defined as follows:
• If player 1 moves left at the root, then player 2 makes a dummy move after that,

after which the players playGk.
• If player 1 moves right at the root, and player 2 subsequentlytakes his right-

most move, then the players play a modified version ofGk (which we will call
G′

k) in which all of player 1’s (player 2’s) utilities have been increased by the
largest utility that player 1 (player 2) gets inGk.
• If player 1 moves right at the root, then player 2 has a move (not the rightmost

one) for every leaf inGk that is the solution forGk in some iteration. This
move results in a utility for player 1 that is worse than what she receives in the
corresponding solution forGk, but better than what she received in the solution
in the previous iteration forGk (if there is a previous iteration). It results in

a utility for player 2 that is larger than any utility inG′

k (and the larger the
iteration that the solution corresponds to, the lower player 2’s utility).

Figure 8 showsG2.

Fig. 8.G2

Theorem 3. Gk requires2k iterations to solve.

Proof. We will show this by induction.G1 requires2 iterations. Suppose that we have
shown thatGk requires2k iterations; we will show thatGk+1 requires2k+1 iterations.
Specifically, we will show that the first2k iterations will correspond to the solutions of
Gk, and the next2k iterations will correspond to the solutions ofG′

k.
First, we argue by induction that in iterationi (i < 2k), we have:

– The solution is the leaf in the subtreeGk that is also the solution in iterationi for
Gk.

– Of the moves that player 2 has after player 1 moves right at theroot, the firsti− 1
have been removed.

It is easy to see that this is true fori = 1. If it is true for i, then in the next iteration,
we will remove the leftmost move for player 2 (at the vertex after player 1 has moved
right at the root); the most preferred move for player 2 at this vertex will then become
the next move. The solution for the remaining subtree on the left side will correspond
to thei + 1th solution ofGk, and player 1 will prefer this at the root, based on how we
defined the utilities. This establishes the claim above, so that the first2k iterations will
correspond to the solutions in the subtreeGk.

After the first2k iterations, all of the game tree has been eliminated, with the ex-
ception ofG′

k. Since the utilities inG′

k differ from those inGk by a constant, by the
induction assumption, it requires2k additional iterations.

Corollary 1. A complete alternating-move binary tree can requireΩ(
√

n) iterations
to solve.

Proof. Gk can be turned into a complete binary tree of depth2k by adding dummy
moves; this tree will haven = 22k leaves and still require2k =

√
n iterations.

Now, we introduce a game that will allow us to show a lower bound on the number
of iterations required to solve a game of depth 2 (in the worstcase).

Definition 3. We define the gameHk recursively as follows:

– H1 consists of a single leaf.
– Hk consists ofHk−1, except there is a single additional move for player1 at the

root. If player 1 takes this move, then, for every iteration of Hk−1, there is a corre-
sponding move for player 2. This move gives player 1 a utilitythat is less than the
utility that player 1 receives in the solution to the corresponding iteration ofHk−1,
but more than the utility that player 1 receives in the previous iteration ofHk−1 (if
there is a previous iteration). There is one additional movefor player 2 that gives
player 1 a utility that is greater than any other utility in the game. As for player
2’s utility, the earlier moves give player 2 a larger utility, and all these moves give
player 2 a utility that is greater than anything that player 2receives inHk−1.

For example, the game in Figure 1 isH2, and the game in Figure 3 isH3.

Theorem 4. Hk requiresk iterations to solve.

Proof. We will prove this by induction onk. Clearly this is true forH1. We will show,
by induction oni, that the solution in theith iteration ofHk+1 corresponds to the
solution in theith iteration ofHk, for i ≤ k. If this is true fori, then in the next iteration,
the ith move for player2 (at the node after player1 plays the new, rightmost move at
the root) is removed, so that thei + 1th move becomes optimal at this node. The next
solution for the part ofHk+1 corresponding toHk will correspond to thei+1th solution
of Hk, and player 1 will prefer this at the root, based on how we defined the utilities.
This establishes that the solution in theith iteration ofHk+1 corresponds to the solution
in the ith iteration ofHk, for i ≤ k. Finally, there will be one last iteration, in which
we move to the rightmost leaf, which both players prefer to the solution corresponding
to thekth iteration ofHk.

Corollary 2. A game tree of depth 2 can requireΩ
√

n iterations to solve.

Proof. Because we have shown thatHk requiresk iterations, it follows thatHk+1 has
k+1 more leaves thanHk. Hence,Hk hasn = 1+ . . .+k = k(k+1)/2 leaves, which
is O(k2); andHk requiresk iterations to solve.

C An example where a move switches back and forth

In all of the example games above, when the move taken at a nodechanges in an iter-
ation, it never changes back to the original move in later iterations. One might wonder

Fig. 9. An example where the move at the root switches back and forth.

whether this is in fact impossible; if that were the case, that might facilitate the design
of a more efficient algorithm for computing solutions (because we would be able to
remove subtrees that were used earlier). However, the example in Figure 9 shows that
it is in fact possible for the move to change back to the original move.

In iteration 1, the (intermediate) solution is (1,1), usingthe left branch of the root.
In iteration 2, the solution is (2,2), using the right branchof the root. Finally, in iteration
3 (the final iteration), the solution is (4,4), using the leftbranch of the root again.

