An “Ethical” Game-Theoretic Solution Concept for
Two-Player Perfect-Information Games

Joshua Letchford Vincent Conitzet, and Kamal Jaif

! Department of Computer Science, Duke University, Durha@, NSA
{jcl, conitzer}@s.duke. edu
2 Microsoft Research, Redmond, WA, USA
kamal j @ri crosoft.com

Abstract. The standard solution concept for perfect-informatioreagive form
games is subgame perfect Nash equilibrium. However, hurdansot always
play according to a subgame perfect Nash equilibrium, éajpen games where
it is possible for all the players to obtain much higher pé&ydfthey place some
trust in each other (and this trust is not violated). In thapgr, we introduce a
new solution concept for two-player perfect-informaticanges that attempts to
model this type of trusting behavior (together with the fediti’ behavior of not
violating that trust). The concept takes subgame perfagtibum as a starting
point, but then repeatedly resolves the game based on thierplaeing able to
trust each other. We give two distinct algorithmic definisoof the concept and
show that they are equivalent. Finally, we give a fast immetation of one of
the algorithms for solving the game, and show that it runsnetO(n logn +
nhlog(n/h)).

1 Introduction

Under a typical game-theoretic solution concept, the pkapearsue nothing other than
their own interest at every point in the game. Humans, howekenot always behave
this way: depending on what happened earlier in the game, rtteey feel that they
“owe” another player something and act accordingly. We pegpa solution concept
for two-player extensive-information games that attentptsiodel this phenomenon.

To illustrate the basic idea, consider the example gamegarEil. The standard
game-theoretic approach to solving this game is to simpéyhackward induction. If
player 2 gets to move, Renaximizes his utility by moving left, resulting in the utiés
(0,2). Anticipating this, player 1 will choose to move left in thestimove, resulting in
the utilities(1, 0). This is the unique subgame perfect equilibrium of the gaienote
that both players would prefer the rightmost outcome, wihiab utilities(2, 1), but the
strategic structure of the game prevents this outcome froouming—at least within
the standard game-theoretic approach.

Now, we argue that this is not necessarily the most sensiltieome of the game,
assuming that the players have some amount of decency. Saipteyer 1 does, in
fact, move right. In the standard game-theoretic approdis would be considered a

3We use “she” for player 1 and “he” for player 2.

1,0
0,2 2,1

Fig. 1. A simple example.

mistake. However, suppose that it is common knowledge arttomglayers that they
understand the game perfectly. Hence, player 2 knows thgepll did not choose this
move by accident, but voluntarily chose to let player 2 piekWeen the outcome that
is better for both of them than the subgame perfect solutiod, the outcome that is
much better for player 2 but worse for player 1. Player 1 knows/ well that she

is leaving herself vulnerable to a selfish action by playeb&, chose to move right
anyway, with the hope of a better outcome for both. It seemsibke to argue that in this
case, it would be unethical for player 2 to move left. Speaili; it seems that player
2 “owes” it to player 1 to give her at least as much utility as siould have received
in the subgame perfect equilibrium, especially as playesr?do so in a way that also
gives him at least as much utility as he would have receivethénsubgame perfect
equilibrium. Thus, it seems that the ethical thing to do flaypr 2 in this situation is

to move right; if player 1 believes that player 2 is ethicathis way, then she prefers
to move right initially—she “trusts” player 2 to make the Katal” move. In this paper,

we propose a general solution concept corresponding t@thisal type of reasoning.

Incidentally, the simple game above closely resembles aegstodied in experi-
mental game theory, called the “trust game.” In the trust gaptayer 1 has an initial
budget. She can choose to give any amount not exceedingutigebto player 2; if
she does so, the money will be tripled before player 2 resaivéfter receiving the
money, player 2 can give any amount back to player 1 (this matl be tripled), and
the game ends after this. Again, this game can be solved bywaads induction: it
is never in player 2's interest to give any money back, anctegiayer 1 should give
player 2 no money at afl Experimentally, however, this is not at all what happens [6,
15, 14]. In an experimental study, 85% of subjects in thegldyrole gave at least some
money, and 98% of subjects in the player 2 role that receieetesmoney gave some
back [14]. Also, on average, subjects in the player 1 roledi®.52 (out of their initial
$10), and subjects in the player 2 role returned $6.96 [15.WMl discuss what our
solution concept prescribes for this game in Appendix A.

A few more remarks are in order. We do not wish to argue thatbtgavior pre-
scribed by our solution concept is the only behavior thatpassibly be described as
“ethical.” For example, in a modified version of the trust gawhere player 2 does not
have the option of giving money back at all, our solution @ptqrescribes that player

“This assumes that a player’s utility is simply the amount ohey that the player receives.

1 should give no money; but one could perhaps argue thatgivianey would still
be the ethical thing to do, given that the money will be triplen fact, under a strict
utilitarian framework, one might argue that the ethicahthto do is to transfer all the
money. Still, we argue that our solution concept corresgdada particular, natural (if
perhaps limited) type of ethical behavior. For the purpaxfakis paper, we will avoid
discussion of whether our concept is more “rational” tham skandard game-theoretic
concepts, and hence we will avoid the use of the word “ratibna

Also, while there has been an agenda within game theory tfyjugy cooperative
behavior by showing that cooperation can be sustained agulibeium of a repeated
game (for instance, in the Prisoner’s Dilemma [13]), pholoisically, this paper does
not fall under that agenda. (However, because our solutiwsys Pareto dominate or
are equal to a subgame perfect solution, they can in factdtaised as an equilibrium
of the repeated game as well.)

Solution concepts that model this type of ethical behavaieptially have a num-
ber of applications. They can be used to predict human beha@lso, when combined
with algorithms for computing the ethical solution, suctmcepts can be used in artifi-
cially intelligent agents, for interacting either with hams or with each other. Indeed,
it has been argued that standard game-theoretic solutmnetdlways perform well in
settings where artificially intelligent agents interacttwihumans [4, 3, 12]. The design
of artificial intelligence that behaves ethically has poasly received attention [1, 10].
Much of this work relies on humans specifying examples oicaitbehavior, which the
agent then tries to generalize into more general rules [®8jer work specifies certain
prima facieduties, and the agent needs to learn from labeled exampletohoade off
these duties when they conflict [2]. Our work differs fromstipirior work in that we
define a single concept that is intended to capture a substhiotl behavior, and all
that remains to be done is to find the corresponding solutioridarning is needed).

The rest of this paper is laid out as follows. In Section 2, welg some more
complex examples to get some intuition about our solutiamcept. In Section 3, we
give a first definition of our solution concept, which religsiteratively modifying the
agents’ preferences and re-solving for the subgame pegtpgtibrium. In Section 4,
we give another definition of the concept, which relies onattigely removing nodes
from the game tree and re-solving for the subgame perfedtilegum; we show that
this definition is equivalent to the one from Section 3. Hipah Section 5, we give a
fast algorithm for computing a solution according to our cept.

2 Introductory examples

In this section, we study two additional example games. Tis¢ éxample shows a
seemingly more complex game that can be simplified to be &irdl the example in
Figure 1. The second example is inherently more complexghvew understanding this
example will help significantly to understand the generdinitéon.

Example: a game with moves by NatureAlice and Bob are sitting next to each
other on a plane, and there are not enough pillows on the pkliee has a pillow
(it was sitting in her seat), and Bob does not. Alice is cuilyenot tired, and Bob is
(and, from their demeanors, this is common knowledge).eAtiould give the pillow

2
2,1 5,2

Fig. 2. Example: airplane pillows. Key:ige pillow, keep pillow, Alice becomesred, Alice does
not becomeited, gve when Alice becomesred, keep vhen Alice becomesred

to Bob, but she might regret it if she gets tired later on. Qfrse, Bob could give the
pillow back in that case, if he chooses to do°sd possible interpretation of this game
is shown in Figure 2. On the left side is the full game treecalfirst decides whether
to give the pillow, then Nature decides whether Alice getstj and finally Bob decides
whether to return the pillow. (We note that if Alice is notdit, she slightly prefers
not having the pillow, to have some more space.) We emph#saehis is a perfect-
information game. Because of that, we can remove Nature frangame by taking
expectations, resulting in the game on the right-hand 8gesimilar reasoning as that
for the example in Figure 1, Alice should give the pillow, @ab should give it back if
Alice is tired. This contrasts with the subgame perfectsotuin which Bob would not
return the pillow, so that Alice keeps the pillow to hersétie subgame perfect solution
is worse for both players.

Example: a more complex game with 6 leavedMe now move on to an example
that is fundamentally more complex and that will require samore reflection on what
is ethical. Consider the example in Figure 3.

2,0
0,2 411534 53

Fig. 3. A more complex example with 6 leaves.

Backward induction would tell us that player 2 will move lefteach subtree, and
hence player 1 should move left, resulting in the unique antmyperfect equilibrium
with utilities (2,0). However, again, we may argue that if player 1 chooses middle
or right, then player 2 owes it to player 1 to give her at leéagsince she could have
guaranteed herself this much, and to give her this much pigiees not need to accept

5This is ignoring the potential complication that Bob may ééallen asleep on the pillow.

a utility less than th® that he would receive in the subgame perfect solution). Ehat
if player 1 plays middle, player 2 should play right (resudfiin utilities (4, 1)); and if
player 1 plays right, player 2 should play middle or right-t+middle will give him a
higher utility, resulting in utilitieg3, 4). Hence, at this level of analysis, the best move
for player 1 is to move to the middle, resulting in utilitiés 1). However, we can take
this analysis one step further. Now suppose that player lesaaght anyway. Since
(given ethical behavior by player 2) she could have guashterselfl by choosing
middle, it can be argued that player 2 owes her at leggtspecially because player
2 can do so while still getting at least thethat he received at the previous level of
analysis). So, at this level, the only ethical thing for @ay to do is to move right;
middle is no longer ethical. Hence, the final solution is fotthplayers to move right.

3 A definition of ethical behavior based on iterated solutios

We now give the general definition of our ethical solution ogpt. In the example in
Figure 3, in a sense, we “solved” the game three times: fisfound the subgame per-
fect solution; second, we modified the solution based on ttiemthat player 2 should
give player 1 what she could have guaranteed herself in thte(§iubgame perfect) so-
lution (as long as doing so does not make player 2 worse dfftieavould have been in
the first solution); third, we modified the solution againé@sen the notion that player
2 should give player 1 what she could have guaranteed harsb#¥ second solution (as
long as doing so does not make player 2 worse off than he waud been in the sec-
ond solution). Furthermore, it is easy to construct exasmplevhich even more levels
of analysis are required.

In fact, the second and third solutions can be seen as suljgenfieet solutions of a
game in which the preferences have been modified based oayépin the previous
solution. In particular, let us call the utilitie®,, b2) from the previous solution the
base utilities Then, player 1's primary goal is to obtain at least utility player 1's
secondary goal is for player 2 to obtain at least utilifyher tertiary goal is to maximize
her own utility; and her quaternary goal is to maximize ple/s utility. © That is, given
that she achieves her own base utility, player 1 temporadtg her own interest aside
and attempts to ensure that player 2 obtains his base ptlitye that has been done,
she pursues her own utility again. Player 2's modified pegfees are defined similarly.
Formally, we have:

Definition 1. Given base utilities{bl, bs), we define player 1'sthical preference re-
lation >} as follows: (u1, us2) >(b sy (u1,up) if and only if at least one of the
following three conditions applies:

— u} < by, and: eitheru} < uq, or bothu} = w; andu}, < us.
- up > bl,u'l > bl,u’2 < bo, and:ug > ’LL/2
— u1 > by, us > be, and: eitheruy > uf, or uy = v} andug > ub,.

5The quaternary goal is relevant only for breaking ties ambisessential to our concept; we
add it for completeness.

Player2’s ethical preference relatio&?lh ba) is defined similarly (with the roles df
and2 reversed).

In the special case in whidh andb, are smaller than any utility in the game, the
players simply maximize their own utility (and break tiedawor of the other’s utility).

Now, we obtain a solution as follows: we solve the game, thadate the base util-
ities to be the utilities in that solution, solve the gameiagéth the modified utilities,
modify the utilities againetc, until the solution stops changirigrormally, we have
the following algorithm:

Iterated Backward Induction with Modified Preferences (IBI MP)
1. initializeb; «+— —oo
2. initialize by «+— —o0
3. repeat until convergence:
(a) solve the game by backward induction with respe@tgp ba)? >fb ba)
. 1,92 1,02
(b) updaté, b, to be the final utilities in this solution

We have not yet shown that this process will in fact convebbgéthis will become
clear from the alternative characterization in the nextieac
For example, for the game in Figure 3, we have the followingdtsolutions:

2,0
0,3 411534 5.2 0,3 ,11534 5.2 0,3 411534 52

Fig. 4. IBIMP solves the example game in three iterations. At eadfigad vertex, an arrow
indicates the player's move in the subgame perfect solidtiothe modified preferences, and the
leaf corresponding to the solution is underlined.

Another way to interpret this process is as follows: a thiadtp repeatedly proposes
strategy profiles for both players; the players accept thve pposal if and only if
every move is consistent with their ethical preferencetimta(with respect to the base
utilities from the currently accepted proposal). Then,ahly sequence of solutions that
the third party can successfully propose is the sequencelafiens that results from
the algorithm above.

We emphasize again that breaking ties in favor of the otheygslis not essential
to the concept, but it seems natural. (Incidentally, if Hesbroken in this way, then the

"It should be noted that in general, a perfect-informatiomgaan have multiple subgame
perfect Nash equilibria due to ties; finding the optimal osenéntrivial, but can be done in
polynomial time [7]. Because we specified a tie-breakingmacsm—breaking ties in the other
agent’s favor—we do not need to deal with these issues.

airline pillow example (Figure 2) has the same solution efgtayer 1 is indifferent
between having the pillow or not when she is not tired.)

4 An alternative characterization based on global pruning

In this section, we present an alternative definition of tiation concept, and show the
equivalence between the two definitions. The alternatifimitien is also algorithmic,
and also relies on repeatedly solving games. The differenoehow we modify the
game. Instead of modifying the preferences based on theubdises, we now remove
all the leaf nodes for which at least one player’s utilityasver than the base utility.

Iterated Backward Induction with Pruned Leaves (IBIPL)
1. repeat until convergence:
(a) solve the game by backward induction (breaking ties worfaf the other
player)
(b) letdy, by be the final utilities in this solution
(c) remove all the leaves with utilitigg:;, us) such thatu; < by orus < be,
and all intermediate nodes that have no children left

For example, for the game in Figure 3, we have the followingétsolutions:

2,0

0,3 4,115 3,4 5.2 83

Fig. 5. IBIPL solves the example game in three iterations. The leasponding to the solution
in each iteration is underlined, and removed leaves aresetbsut.

We note that for this game, IBIPL's solution in each stag&iéssame as in IBIMP.
This is true in general, as we will see shortly. First, we note

Lemma 1. Under IBIPL,b; andb, monotonically (weakly) increase.

Proof. b; andb, always correspond to a solution, and any leadth eitheru! < b, or
ub, < by is immediately removed and can hence never be a future soluti m

Theorem 1. In each iteration, IBIMP and IBIPL find the same solution. Tisab; and
by are the same at each stage, and the values at each interraedide are the same in
the solution at each stage (if the intermediate node stifitexunder IBIPL).

Proof. The first solutions are the same (both find the backward inclusolution in
which ties are broken in favor of the other player). We shoat ththe claim is true for
the firstk solutions, it is true for thé + 1th solution, proving the claim by induction.

Given an intermediate node (without loss of generality, one at which player 1
moves) that still occurs in both games, suppose that thigesifor all its children (that
still occur in both games) are the same. We will show that foy ehild ¢ that still
occurs in the IBIMP game but not in the IBIPL tree, that childl wot be the most
preferred under player 1's ethical preferenﬁ(%l? 5,y (Whereb; andb, are the solution
values for the:th solution, under both IBIMP and iBIPL by the induction asgtion).
Because still occurs in the IBIPL game, it must have at least one cHilft in the
IBIPL tree; since it has not been removed, it must have ieti;lim‘{' > bl,ug > bs.
(We emphasize again that the utilities are the same undértleds, by assumption.)
On the other hand, becausaevas removed, every ledfthat is a child ofc must have
been removed; therefore, using the monotonicity propertzémma 1,/ has either
ull < by orul2 < bo. It follows that the utilities at: in the current iteration of IBIMP
must have the same property: either < b; or u§ < be. But then, it follows that
(u§',u8') =y, 4, (uf,us). Therefore, under IBIMP, playerwill not chooser from v.

Hence, both IBIMP and IBIPL choose from the childrérof v for which u§ >
by, u§ > by. Both of them will choose a child with the highest , breaking ties to
maximizews . It follows that the utilities forv are the same under both IBIMP and
IBIPL, and we can repeat this process to show this for all #réees up to and including
the root, thereby establishing that the nigwandb. will be the same. =

While the definition of the ethical solution concept corrasging to IBIMP is per-
haps more natural and easier to motivate, the equivalentitiefi corresponding to
IBIPL is often easier to work with and prove properties abdite following proposi-
tions illustrate this.

Proposition 1. IBIPL and IBIMP always terminate.

Proof. IBIPL clearly must terminate, because the tree shrinks @hestep (other than
the last one). By Theorem 1, it follows that IBIMP must alsortmate. =

Lemma 2. When IBIPL terminates, all remaining leaves have the saitigast (b;, b2).

Proof. For each remaining ledf we must have:; > b; andul, > by (otherwise, the
leaf would have been eliminated). So, if there is a remaitead! with utilities other
than (by, b), it must Pareto dominate the current solutiafy > b; andub, > by, or
ull > b andul2 > by). For the sake of contradiction, suppose that such alleat
ists. Both players break ties in favor of the other, so thktiet (ul,u2) will always
be preferred tdb; , b). Hence, the utilities at the parentowill be (v, u}), or some-
thing else that Pareto dominatgs, b2). The same is true for its paremtc, up to and

including the root. This contradict$, , b2) being the backward induction solution. m
Proposition 2. IBIPL and IBIMP always return a Pareto optimal solution.

Proof. For the sake of contradiction, suppose that the final saiutitder IBIPL is not
Pareto optimal—that is, there exists a leaf that Pareto dates the solution. This leaf
cannot have been eliminated, based on Lemma 1. But then, veetiva remaining
leaves with different utilities, which contradicts LemmaBy Theorem 1, it follows
that IBIMP also returns a Pareto optimal solutions

Proposition 3. IBIPL and IBIMP always return a solution in which both plageutili-
ties are at least as high as in any subgame perfect equilibrithere players break ties
in each other’s favor.

Proof. Under IBIPL, after the first iteratiory; andb, are equal to the utilities from
such a subgame perfect equilibrium; by Lemma 1, the uslitielater iterations can
only be higher. By Theorem 1, the property also holds for IBIM =

5 Afastimplementation of IBIPL

The pseudocodes for IBIMP and IBIPL give us some basic (aimifully specified)
algorithms for finding the ethical solution. In this sectiore present a fast implemen-
tation of IBIPL with a runtime oD (n log n + nhlog(n/h)), wheren is the number of
leaf nodes, and is the height of the tree.

The algorithm and analysis assume, without loss of gertgralgame tree in which
all nonleaf nodes have at least two children. The basic &lgarhaintain a data structure
corresponding to the game tree, which maintains the optantbn at each nonleaf
node. When in successive iterations, leaves are deleteaynlyeneed to update the
ancestors of those leaves (in fact, we may not need to uptiafietlaem).

A fast implementation of IBIPL

1. Initialize two arrays4;, A, of pointers to the leaf nodes
2. SortA; by the first player’s utility, andd, by the second player’s utility (tigs
can be broken arbitrarily)
3. Intialize index pointers,, i, to the first element ofl; and A,, respectively
4. Using 4, compute the smallest value by which any two distinct valfes,
differ, divide this number by twice the largest valuewgf and call the resul;;
computexs similarly
5. Solve the game by backward induction (breaking ties irofasf the othe
player); in the process, at each nodecreate a Fibonacci max heap whose
elements are’s children, ordered by their values fag + ¢, us if player 1 con-
trols v, and byus + esu; if player 2 controlsv (thee terms are used to break
ties in the other player’s favor); the top childis, u, values become’s valuesg
. Letbq, by be the values at the root
7. Repeat until convergence:
(a) In arrayA; use binary search to find the first element for whigh> b;
let its location be;’
(b) For every element in; in a location{iy,4; + 1,...,i;’ — 1} do:
i. Ifthe corresponding leaf has not been marked deleted, mark it deleted
and callUpdate, (P (v), u1(v), u2(v)), whereP(v) is v's parent
(c) Repeat the previous two steps with arrly
(d) Leti; «— ill andz'g — igl
(e) Updateby, b, to the new values of;, us at the root

»

Updatel(w,ul,UQ)

1. Fromw's Fibonacci max heap, remoye;, u2)

2. If the max heap has become empty, tidate; (P(w), u1,u2)

3. Otherwise, if the values at the top of the heap have changed
date w’'s values wuj(w),us(w); if w is not the root, then cal
Updatex (P (w), u1, ug, ui (w), uz(w))

Update; (w, u, uz, ur’, us’)

1. Letuy”, us” be the current values af

2. Fromw’s Fibonacci max heap, remoye;, us), and inser{u,’, us’)

3. If the values at the top of the heap have changed, |up-
date w’'s values wuj(w),us(w); if w is not the root, then cal
Updatex (P (w), u1”, ua”, uq (w), us(w))

Theorem 2. The fast implementation of IBIPL runsd(n log n 4+ nhlog(n/h)) time.

Proof. Creating the sorted arrays will take{n log n) time.

The first subgame perfect solution tak®&:) time to generate; this includes creat-
ing and populating all of the Fibonacci max heaps (for whivk &mortized insertion
time is O(1)). Calculatinge; and ey also takesO(n) time, because we have sorted
arrays and thus only need to comparadjacent pairs to find the smallest difference.

There are at most iterations of the loop: each iteration other than the lasstmu
delete at least one leaf node. Within each iteration, we rfindti;’ andiy’, which
takesO(log n) time using binary search. Thus, this takes a totaD6f log n) time.

We still need to consider the time needed for the deletionsugntlates. Each leaf
node can be deleted at most once, so we li3ve deletions in total. Finding the leaves
that need to be deleted only requires us to advance throegirthys from; to ¢} and
from iy to é5. Hence, finding the leaf nodes to delete requi¢s) time in total.

Each individual leaf deletion can result in a number of updaincluding both
Update,; s andUpdate;s); however, it can result in at mostupdates, because a node
can only callUpdate; or Update, on its parent. Letting, be the branching factor
(number of children) of,, updating node requiresO(log(b,,)) time for (at most) an in-
sertion and a deletion into a Fibonacci max heap. At worsthaxeeh nodesuy , . . ., vy,
that require updating as a result of a single leaf deletiesylting in a total update
time of log(by,) + ... + log(b,,). We know, however, that,, + ... + b,, < 2n:
this is because there are at m@atnodes in the tree in total (because we assume that
each node has a branching factor of at Ie€gsaind the children of different nodes do
not overlap. The optimization problemaximizelog(b,,) + . .. + log(b,,) subject to
by, + ...+ by, < 2nis solved by setting,, = 2n/h for everyi, because théog
function is concave. It follows that the total time requifed updates as a result of a
single leaf deletion i®)(hlog(n/h)), resulting in a bound o®(nhlog(n/h)) for the
total time for updates.

Adding everything together, our total runtime boundié: logn +n + nlogn +
n 4+ nhlog(n/h)) = O(nlogn + nhlog(n/h)). =

For the purpose of reducing the runtime bound (and in its aghty, it is interesting
to consider how many iterations a particular type of tree eaquire. In the proof of
the runtime bound above, we only used the fact that there tangoatn iterations.
We already know that the centipede game requipés) iterations, but of course the
centipede game tree is extremely unbalanced. In AppendieBhow how to construct
games with balanced binary trees that requilfe/n) iterations, as well as games with
depth 2 (not binary) that requit@(./n) iterations. We also construct a game in which
the solution in the first iteration is to move left at the rdotthe second iteration it is to
move right, and in the third it is once again to move left—tisatve cannot eliminate a
move/subtree when it stops being used (see Appendix C).

6 Conclusions

In this paper, we introduced a new solution concept for thaygr perfect-information
games that attempts to model a type of trusting behaviorefteg with the “ethi-
cal” behavior of not violating that trust). The concept tal®ibgame perfect Nash
equilibrium as a starting point, but then repeatedly resslthe game based on the
players being able to trust each other. We gave two distilgctrishmic definitions of
the concept and showed that they are equivalent. Finallygawe a fast implementa-
tion of one of the algorithms for solving the game, and shotved it runs in time
O(nlogn + nhlog(n/h)).

There exist a large number of directions for future resedraist, the validity of the
concept should be evaluated. While we believe that the twivalgnt definitions pro-
vide a strong normative justification of our concept, thesg/be other axiomatizations
of the concept that make it even more convincing. HowevexgbBave said previously,
our concept only considers one particular type of ethicaldvéor, and other types of
ethical behavior may lead to other natural solution coredpivould also be interesting
to investigate in more detail to what extent our solutioncapt models human behav-
ior, taking a more descriptive approach rather than the ativ@ approach discussed so
far.

Another interesting direction is to try to generalize th@cept to 3+-player games
and/or games with imperfect information. Neither of thesaeyalizations seem trivial.
For example, if there is third player that barely affects thecome of the game at
all, then are the first two players still obliged to maintalayer 3’s utility at at least
the same level across iterations? And, if (due to imperfgftirmation) it is not clear
to player 1 whether player 2 took a “trusting” move, is playjeobliged to assume
that player 2 took such a move or not? Hence, it is not clearthenehe 3+-player
and/or imperfect-information cases admit as clean of aephas the 2-player perfect-
information case. Another issue is that our concept in soemses assumes that it is
common knowledge that both players will behave ethicalhg & is not clear what
should be done if this is not the case. (One might model this game of imperfect
information in which Nature first decides which players attdaal.)

Finally, how can we use this concept to approximately sobmes that are so large
that it is not possible to write down the entire tree? Al teges for such games are
usually based on limited-depth lookahead and heuristiev&tuate the nodes at this

limited depth. For our concept, it is not clear whether therett approach is to use
this type of limited-depth search on the full remaining trgthin each iteration of the
algorithm; or, to run the algorithm (all the iterations) ofiraited-depth tree; or to do
something entirely different. It also seems that if the tiayprs do not use the same
heuristics or depths, this can cause significant difficsitecause from one player’s
perspective the other may not be acting ethically.

7 Acknowledgments

We thank the National Science Foundation and the AlfreddarsFoundation for sup-
port (through award number 11S-0812113 and a Researchvrhiip, respectively).

References

1. Michael Anderson and Susan Leigh Anderson. The statusohine ethics: a report for the
AAAI symposium. Minds and Machingsl7:1-10, 2007.

2. Michael Anderson, Susan Leigh Anderson, and Chris ArnMéedethex: A prototype med-
ical ethics advisorAAA|, pages 1759-1765, 2006.

3. Ya'akov Gal and Avi Pfeffer. Modeling reciprocity in humdilateral negotiation AAA,
2007.

4. Barbara J. Grosz, Sarit Kraus, Shavit Talman, Boaz Stess@ Moti Havlin. The influence
of social dependencies on decision-making: Initial ingggtons with a new gameéAAMAS
pages 782-789, 2004.

5. Marcello Guarini. Particularism and the classificatioml aeclassification of moral cases.
IEEE Intelligent System21(4):22-28, 2006.

6. Brooks King-Casas, Damon Tomlin, Cedric Anen, Colin An@eer, Steven R. Quartz, and
P. Read Montague. Getting to know you: Reputation and trust two-person economic
exchange Science308(5718):78-83, 2005.

7. Michael L. Littman, Nishkam Ravi, Arjun Talwar, and MartZinkevich. An efficient
optimal-equilibrium algorithm for two-player game treds$Al, 2006.

8. Richard D. McKelvey and Thomas R. Palfey. An experimestiadly of the centipede game.
Econometrica60(4):803—836, 1992.

9. Bruce M. McLaren. Computational models of ethical reasgnChallenges, initial steps,
and future directionslEEE Intelligent System21(4):29-37, 2006.

10. James H. Moor. The nature, importance, and difficulty athine ethicslEEE Intelligent
Systems21(4):18-21, 2006.

11. Rosemarie Nagel and Tang Fang Fang. An experimentay studhe centipede game in
normal form—an investigation on learningournal of Mathematical Psycholog#$2:356—
382, June 1998.

12. Shavit Talman, Ya'akov Gal, Meirav Hadad, and Sarit israfiddapting to agents’ personal-
ities in negotiation AAMAS 2005.

13. Albert Tucker. A two-person dilemma. In Eric Rasmuselitag, Readings in Games and In-
formation pages 7-8. Blackwell Publishing, 2001. Originally writia 1950 (unpublished).

14. Paul J. Zak. The neurobiology of truSicientific Americanpages 88-95, June 2008.

15. Paul J. Zak, Robert Kurzban, and William T. Matzner. ©gyt is associated with human
trustworthinessHormones and Behavip#8:522—-527, December 2005.

A Some example games

In this section, we will consider some classic games for Whaar solution concept
provides interesting solutions. First, we consider thettgame described in the intro-
duction. To keep the game at a manageable size, the firstrflag@ne dollar, anything
she gives to player 2 will be tripled, and only integer domiasi are allowed. This game
appears in Figure 6. As we noted earlier, the subgame pélfackward induction) so-

1,0

03 12 21 30

Fig. 6. A version of the trust game.

lution is for player 1 to give no money (move right). As for camlution concept, let
us consider the IBIPL interpretation. First, it eliminafés3) (because this has a lower
utility for player 1 than the subgame perfect solutioh 0). Then, the next solution is
for player 1 to givel, and for playee to give 1 back. This is the final solution (nothing
Pareto dominates it). In general trust games, our soluttrtept always results in
giving all her money, and@ giving her back exactly that much. This solution is always
reached in the second iteration of IBIMP/IBIPL.

The second example game is ttentipede gamgeally, a family of games). In this
game, both players have some amount of money. They alteuratg and at each turn,
the current player can either end the game, or pass to the pldnger. If she passes,
then her amount decreases, but the other player's amouetises. If the other player
then passes back, then both players will be better off than tere before the two
passes. (A typical example is that the player who passes lué of her money, but
the other player's money quadruples.) However, there isedfdeadline. An example
centipede game can be seen in Figure 7. The subgame peréekin@d induction)
solution to game is for player 1 to end the game at the first. gisfor our solution
concept, let us consider the IBIPL interpretation. Firsgliminates(1, 8) (because it
has a lower utility for player 1 than the subgame perfecttsmiu(2, 2)), resulting in
(4,4) becoming the new solution. Then, it eliminai@s16) (and(2, 2)), resulting in
the final solutior(8, 8). In general, in centipede games, our solution concept Withgs
choose the bottom-most leaf that is more advantageousyemla That is, the players
pass until the very last move, which may be either a pass omdmg move. This
solution is reached as follows: in each iteration of IBIMBRL, the current solution
moves two levels down, as in the above example.

2,16 8,8

Fig. 7. A version of the centipede game.

In empirical studies of the centipede game, humans raralythle subgame perfect
equilibrium; rather, they usually continue to pass untiltéel after the middle of the
game (but usually they do not continue all the way to the eitideg [8, 11].

B Lower bounds on the number of iterations

We now introduce some example games that require a large etuafhiterations to
solve using our concept. In these games, all utilities aietlst positive and have no
ties. We recall that is the total number of leaf nodes.

We first introduce a game that will give us a lower bound on tiber of iterations
required in a complete alternating-move binary tree (invtloest case).

Definition 2. We define the gam@;, recursively as follows:

— (1 is a modified version of the game in Figure 1: all its utilit@® increased by
(to make them positive).
— Gy41 is defined as follows:

o If player 1 moves left at the root, then player 2 makes a dumaverafter that,
after which the players plag,.

o If player 1 moves right at the root, and player 2 subsequedntes his right-
most move, then the players play a modified versiaiofwhich we will call
G}.) in which all of player 1's (player 2’s) utilities have beemcreased by the
largest utility that player 1 (player 2) gets i@

o If player 1 moves right at the root, then player 2 has a move m®rightmost
one) for every leaf inG;, that is the solution foiGG;, in some iteration. This
move results in a utility for player 1 that is worse than wha seceives in the
corresponding solution fofy,, but better than what she received in the solution
in the previous iteration fol7}, (if there is a previous iteration). It results in

a utility for player 2 that is larger than any utility i), (and the larger the
iteration that the solution corresponds to, the lower plad's utility).

Figure 8 showsr,.

1,3 3,2

]

Fig.8.G>

Theorem 3. G, requires2” iterations to solve.

Proof. We will show this by inductionG; requires2 iterations. Suppose that we have
shown thaiG), requires2® iterations; we will show tha€,.; requires2**+! iterations.
Specifically, we will show that the first* iterations will correspond to the solutions of
G, and the nex2* iterations will correspond to the solutions Gf,.

First, we argue by induction that in iteratioiii < 2*), we have:

— The solution is the leaf in the subtrég, that is also the solution in iteratianfor
Gp.

— Of the moves that player 2 has after player 1 moves right atabg the firsti — 1
have been removed.

It is easy to see that this is true fore= 1. If it is true for 4, then in the next iteration,
we will remove the leftmost move for player 2 (at the verteteaplayer 1 has moved
right at the root); the most preferred move for player 2 a thertex will then become
the next move. The solution for the remaining subtree ondfteslde will correspond
to thei 4 1th solution ofGy,, and player 1 will prefer this at the root, based on how we
defined the utilities. This establishes the claim abovehabthe firs2” iterations will
correspond to the solutions in the subttég

After the first2* iterations, all of the game tree has been eliminated, wighetk-
ception ofG}.. Since the utilities in&;, differ from those inG), by a constant, by the
induction assumption, it requir@$ additional iterations.

Corollary 1. A complete alternating-move binary tree can requi?é,/n) iterations
to solve.

Proof. GG}, can be turned into a complete binary tree of depthby adding dummy
moves; this tree will have = 22* leaves and still requirg* = /n iterations.

Now, we introduce a game that will allow us to show a lower ban the number
of iterations required to solve a game of depth 2 (in the woaise).

Definition 3. We define the gamié;, recursively as follows:

— H, consists of a single leaf.

— Hj, consists of;,_, except there is a single additional move for playeat the
root. If player 1 takes this move, then, for every iteratibdiq_,, there is a corre-
sponding move for player 2. This move gives player 1 a uthiaf is less than the
utility that player 1 receives in the solution to the correagding iteration ofH;,_1,
but more than the utility that player 1 receives in the pregideration ofH;_ 4 (if
there is a previous iteration). There is one additional méoreplayer 2 that gives
player 1 a utility that is greater than any other utility indtgame. As for player
2’s utility, the earlier moves give player 2 a larger utilignd all these moves give
player 2 a utility that is greater than anything that playereteives inHy,_ ;.

For example, the game in Figure 1/i&, and the game in Figure 3 i33.
Theorem 4. Hj, requiresk iterations to solve.

Proof. We will prove this by induction ork. Clearly this is true forf;. We will show,
by induction oni, that the solution in théth iteration of Hy,; corresponds to the
solution in theth iteration ofH},, fori < k. If this is true forz, then in the next iteration,
theith move for player (at the node after playdr plays the new, rightmost move at
the root) is removed, so that the- 1th move becomes optimal at this node. The next
solution for the part of{;1; corresponding td{; will correspond to thé+ 1th solution
of Hy, and player 1 will prefer this at the root, based on how we aefithe utilities.
This establishes that the solution in tile iteration of . ; corresponds to the solution
in theith iteration of Hy, for i < k. Finally, there will be one last iteration, in which
we move to the rightmost leaf, which both players prefer toghlution corresponding
to thekth iteration of H},.

Corollary 2. A game tree of depth 2 can requifd/n iterations to solve.

Proof. Because we have shown thd}; requiresk iterations, it follows that; ., has
k+ 1 more leaves tha#l;,. Hence Hy, hasn = 1+...+k = k(k+1)/2 leaves, which
is O(k?); and Hy, requiresk iterations to solve.

C Anexample where a move switches back and forth

In all of the example games above, when the move taken at ach@igyes in an iter-
ation, it never changes back to the original move in lateattens. One might wonder

Fig. 9. An example where the move at the root switches back and forth.

whether this is in fact impossible; if that were the caset thigiht facilitate the design
of a more efficient algorithm for computing solutions (besawve would be able to
remove subtrees that were used earlier). However, the deampigure 9 shows that
it is in fact possible for the move to change back to the oagmove.

In iteration 1, the (intermediate) solution is (1,1), usthg left branch of the root.
In iteration 2, the solution is (2,2), using the right bratithe root. Finally, in iteration
3 (the final iteration), the solution is (4,4), using the lefanch of the root again.

