1

Incremental Mechanism Desigri

Vincent Conitzer
Duke University
Department of Computer Science
conitzer@cs.duke.edu

Abstract

Mechanism design has traditionally focused almost
exclusively on the design of truthful mechanisms.

There are several drawbacks to this: 1. in certain
settings €.g.voting settings), no desirable strategy-

proof mechanisms exist; 2. truthful mechanisms
are unable to take advantage of the fact that com-
putationally bounded agents may not be able to
find the best manipulation, and 3. when designing
mechanisms automatically, this approach leads to
constrained optimization problems for which cur-

rent techniques do not scale to very large instances.

In this paper, we suggest an entirely different ap-
proach: we start with a iiee (manipulable) mech-
anism, and incrementally make ritore strategy-
proof over a sequence of iterations.

We give examples of mechanisms that (variants of)
our approach generate, including the VCG mech-
anism in general settings with payments, and the
plurality-with-runoff voting rule. We also provide
several basic algorithms for automatically execut-
ing our approach in general settings. Finally, we
discuss how computationally hard it is for agents to
find any remaining beneficial manipulation.

Introduction

Tuomas Sandholm
Carnegie Mellon University
Computer Science Department
sandholm@cs.cmu.edu

The traditional approach to mechanism design has been to
try to design good mechanisms that are as general as possible.
Probably the best-known general mechanism is\ic&rey-
Clarke-Groves (VCGinechanisni16; 4; 14, which chooses
the allocation that maximizes the sum of the agents’ utilities
(thesocial welfarg, and makes every agent pay the external-
ity that het imposes on the other agents. This is sufficient to
ensure that no individual agent has an incentive to manip-
ulate, but it also has various drawbacks: for example, the
surplus payments can, in general, not be redistributed, and
the designer may have a different objective than social wel-
fare, e.g.she may wish to maximize revenue. Other general
mechanisms have their own drawbacks, and there are vari-
ous impossibility results such as the Gibbard-Satterthwaite
theorem([8; 19 that show that certain objectives cannot be
achieved by truthful mechanisms.

The lack of a general mechanism that is always satisfac-
tory led to the creation of the field @utomated mechanism
design[5]. Rather than try to design a mechanism that works
for a range of settings, the idea is to have a computer au-
tomatically compute the optimal mechanism for the specific
setting at hand, by solving an optimization problem. A draw-
back of that approach is that current techniques do not scale
to very large instances. This is in part due to the fact that,
to ensure strategy-proofness, one must simultaneously decide
on the outcome that the mechanism chodsegvery possi-
ble inputof revealed preferences, and the strategy-proofness

In many multiagent settings, we must choose an outcomeonstraints interrelate these decisions.

based on the preferences of multiple self-interested agents, Another observation that has been made is that in com-
who will not necessarily report their preferences truthfully plex settings, it is unreasonable to believe that every agent
if it is not in their best interest to do so. Typical settingsis endowed with the computational abilities to compute an
in which this occurs include auctions, reverse auctions, exeptimal manipulation. This invalidates the above-mentioned
changes, voting settings, public good settings, resource/tagkvelation principle, in that restricting attention to truthful
allocation settings, ranking pages on the W&h etc. Re- mechanisms may in fact come at a cost in the quality of the
search irmechanism desigstudies how to choose outcomes outcomes that the mechanism produces. Adding to this the
in such a way that good outcomes are obtained even whesbservation that in some domains, all strategy-proof mecha-
agents respond to incentives to misreport their preferencasisms are unsatisfactory (by the Gibbard-Satterthwaite theo-
(or manipulatg. For the most part, researchers have focusedem), it becomes important to be able to design mechanisms
simply on creatingruthful (or strategy-proof mechanisms, that are not strategy-proof. Recent research has already pro-
in which no agent ever has an incentive to misreport. This apposed some manipulable mechanisms. There has been work
proach is typically justified by appealing to a result known asthat proposes relaxing the constraintapproximatetruth-
therevelation principle which states that for any mechanism fulness (in various senses). Approximately truthful mech-
that does well in the face of strategic misreporting by agentsanisms can be easier to execli®; 2, or can circumvent
there is a truthful mechanism that will perform just as well. impossiblity results that apply to truthful mechanisiig;

~This material is based upon work supported by the National Sci-g]' Other work has studied manipulable mechanisms in which

ence Foundation under ITR grants 11S-0121678 and 11S-0427858,a—
Sloan Fellowship, and an IBM Ph.D. Fellowship. 1we will use “she” for the center/designer, and “he” for an agent.

finding a beneficial manipulation is computationally difficult e For eachi € NN, a utility functionu, : ©; x O — R;3
in various sens€lS8; 13; 6; 1. e An objective functiony : © x O — R.

In this paper, we introduce a new approach. We start For example, in a single-item auctioN, is the set of bid-
with a ndvely designed mechanism that is not strategy-proofders;O = S x I1, whereS is the set of all possible allocations
(for example, the mechanism that would be optimal in theof the item (one for each bidder, plus potentially one alloca-
absence of strategic behavior), and we attempt to make tton where no bidder wins), and is the set of all possible
more strategy-proof. Specifically, the approach systemativectors(r, ..., ,) of payments to be made by the agents
cally identifies situations in which an agent has an incentivee.g, IT = R™); assuming no allocative externalities (that is,
to manipulate, and corrects the mechanism to take away this does not matter to a bidder which other bidder wins the
incentive. This is done iteratively, and the mechanism may oitem if the bidder does not win himself; is the set of pos-
may not become (completely) strategy-proof eventually. Thesible valuations that the bidder may have for the item (for
final mechanism may depend on the order in which possiblexample,©; = RZ°); the utility functionw; is given by:
manipulations are considered. ui (05, (8, (m1,...,m))) = 6; — m; if s is the outcome in

One can conceive of this approach as being a computawhich i wins the item, and.;(6;, (s, (71,...,m))) = —m;
tionally more efficient approach to automated mechanism destherwise. (In situations in which a type consists of a single
sign, insofar as the updates to the mechanism to make ialue, we will typically use; rather thard; for the type.}
more strategy-proof can be executed automatically (by acom- A (deterministic) mechanismconsists of a function
puter). Indeed, we will provide algorithms for doing so. Itis M : ©® — O, specifying an outcome for every vector
also possible to think about the results of this approach theof (reported) types. Given a mechanismV/, a benefi-
retically, and use them as a guide in “traditional” mechanisncial manipulatiof consists of an agent € N, a type

design. We will pursue this as well, giving various examplesvector (64,...,60,) € ©, and an alternative type re-
Finally, we will argue that if the mechanism that the approachport §; for agenti such thatu; (0;, M ({01, ...,6,))) <
produces remains manipulable, then any remaining manip%(gi M ({61, 0,10, 0i1 0,))). In this
lations will be computationally hard to find. case we say that Fné}]ipulétes}rofn 01,....0,) into

are designed in the real world. Real-world mechanisms ar 01,051, 0, 041, ., On). A mechanism isstrategy-

ften initiallv nave. leading t desirable strateaic behavior: roof or (dominant-strategies) incentive compatiliiehere
oftenniially nave, leading fo undesirable strategic benavior, 5 .o ng peneficial manipulations. (We will not consider

once this is recognized, the mechanism is amended to diS"anes-Nash equilibrium incentive compatibility here.)

cent the undesirable behavior. For example, soriieefiade- In settings with payments, we enforceerpost individual
signed mechanisms give bidders incentives to postpone supé

J e 9. ! . tionality constraint: we cannot make an agent worse off
mitting their bids until just before the event closes(snip- o\ o \would have been if he had not participated. That is
ing); often this is (partially) fixed by adding activity rule ' '

which prevents bidders that do not bid actively early from've cannot charge an agent more than he reported the outcome

winning later. As another example, in the 2003 Trading Agem(dlsregardmg payments) was worth to him.
Competition Supply Chain Management (TAC/SCM) game, ;
the rules of the game led the agents to procure most of the% Our approach and techniques
components on day 0. This was deemed undesirable, and tte this section, we explain the approach and techniques that
designers tried to modify the rules for the 2004 competitionwe consider in this paper. We recall that our goal is not to
to disincent this behavidd 1].2 (immediately) design a strategy-proof mechanism; rather, we
As we will see, there are many variants of the approachstart with some manipulable mechanism, and attempt to in-
each with its own merits. We will not decide which variant is crementally make it “more” strategy-proof. Thus, the basic
the best in this paper; rather, we will show for a few differenttemplate of our approach is as follows:

This approach bears some similarity to how mechanism%

variants that they can result in desirable mechanisms. 1. Start with some (manipulable) mechanidii
2. Find some sef’ of manipulations (where a manipulation
2 Mechanism design background is given by an agente N, atype vectotf, ..., 0,), and an
. . . . alternative type repo#; for agent);
In a mechanism design setting, we are given: 3. If possible, change the mechanidihto prevent (many of)
* Aset of agentsV (| N| = n); these manipulations from being beneficial;

e A set of outcomes) (here, if payments are used in the 4 Repeat from step until termination.
setting, an outcome includes information on payments to be This is merely a template; at each one of the steps, some-

made by/to the agents); thing remains to be filled in. Which initial mechanism do we
e For each agente N, a set of type®; (and we denote by

© = 0; x ... x 0, the set of all type vectorse. the set of 3The utility function is parameterized by type; while theare

all possible inputs to the mechanism); common knowledge, the types encode (private) preferences.

“In general, we may have additional information, such as a prior
2Interestingly, thesed-hocmodifications failed to prevent the Over the types, but we will not use this information in this paper.
behavior, and even an extreme modification during the 2004 com- °In general, a mechanism may be randomized, specifying distri-
petition failed. Later research suggests that in fact all reasonableutions over outcomes, but we will not consider this in this paper.
settings for a key parameter would have failéd]. S«Beneficial” here means beneficial to the manipulating agent.

choose in step 1?7 Which set of manipulations do we conthe set of all outcomes such that for any beneficial
sider in step 2? How do we “fix” the mechanism in step 3 tomanipulation (i, d;) (with (i,0,6;) € F), u;(0;,0) >

prevent these manipulations? And how do we decide to terl-ti 0;, M ({6, 0, 1.0 01 6,))). It may happen
minate in step 4? In this paper, we will not resolve what is th haté(M,H,’F) _ 0 Eno’ outcome will prevent all manip-

best way to fill in these blanks (it seems unlikely that there isulations). In this case, there are various ways in which
e can proceed. One is not to update the outcome at

a single, universal best way), but rather we will provide a few,
Another is to minimize the

instantiations of the technique, illustrate them with examplesg| i o set M'(0) = M(6).
and show some interesting properties. number of agents that will have an incentive to manipu-

One natural way of instantiating step 1 is to choose date from ¢ after the change, that is, to chood¢'(4) <
naively optimalmechanism, that is, a mechanism thatWOUIdargminoEo\{i € N : (3(i,0,6,) € F : ui(6;,0) <

give the highest objective value for each type vedt@very - .
; ; wi(0;, M({01,...,0;-1,0;,0:11,...,0,))))} (and ties can
agent would always reveal his type truthfully. For mstance,be broken to maximize the objectiy

if we wish to maximize social welfare, we simply always Many other variants are possible. For example, instead of
choose an outcome that maximizes social welfare for the re- y p : pe,

ported types; if we wish to maximize revenue, we choose aﬁhoosmg from the set of all possible outcon@svhen we

L : update the outcome of the mechanism for some type vec-
outcome that maximizes soc_|al We_lfare fort_he reported types[,opr 6, we can limit ourselves to the set of all outcor%lgs that
and make each agent pay his entire valuation. ’

. . would result from some beneficial manipulation Ahfrom
In step 2, there are many possible options: we can choos,

the set ofall manipulations; the set of all manipulations for Pthat is, the sefo € 0: (30,0 : (,6,0;) € F) -
a single agent; the set of all manipulations from or to a par® = M((01,...,0i-1,0;0:11,...,0,)))}—in addition to
ticular type or type vector; or just a single manipulation. Thethe current outcomel/(¢). The motivation is that rather
structure of the specific setting under consideration may als§!an consider all possible outcomes every time, we may wish
make certain manipulations more “natural” than others; w0 Simplify our job by considering only the ones that cause
can discover which manipulations are more natural by intufhe failure of strategy-proofness in the first place. We next
ition, by hiring agents to act in test runs of the mechanism, byPresent examples of some of the above-mentioned variants.
running algorithms that find manipulatioresc. Which setof 4 Instantiating the methodology
manipulations we choose will affect the difficulty of step 3.
Step 3 is the most complex step. Let us first con-
sider the case where we are only trying to prevent
single manipulation, fromé = (6y,...,0,) to 8/ =
(O1,...,0;-1, 9}, 0it1,-..,0,). We can make this manipula-
tion undesirable in one of three way&) make the outcome
that M selects fo® more desirable for agemnt(when he has
type6;), (b) make the outcome that/ selects for’ less de-
sirable for agent (when he has type;), or (c) a combination
of the two. We will focus or(a) in this paper. There may be
multiple ways to make the outcome thet selects for9 suf-
ficiently desirable to prevent the manipulation; a natural wa
to select from among these outcomes is to choose the one t

maximizes the designer's original objective. Note that thesg; jy ,oqyces a well-known mechanism. In future research,
modifications may introduce other beneficial manipulations. ,, o hope to use the technique to help us design novel mecha-

When we are trying to prevent a set of manipulations, Wenisms as well. We do emphasize, however, that although the
are confronted with an additional issue: after we have premechanisms that the approach eventually produces were al-
yenteq one ma.nlpulatl-on |n.the set, we may reintroduce theeady known taus, theapproachsimp|y follows local updat_
incentive for this manipulation when we try to prevent an-ing rules without any knowledge of what the final mechanism
other manipulation. Resolving this would require solving ashould be. In other words, the algorithm is not even given a

potentially large constrained optimization problem, consti-hint of what the final mechanism should look like.
tuting an approach similar to standard automated mechanis

design—reintroducing some of the scalability problems thalEP-1 Settings with payments

we wish to avoid. Therefore, when addressing the manipulah this subsection, we show the following result: in general

tions from one type vector, we will simply act as if we will preference aggregation settings in which the agents can make

not change the outcomes for any other type vector. payments €.g.combinatorial auctions), (one variant of) our
Formally, for this particular instantiation of our approach, technigque yields the VCG mechanism after a single iteration.

if M is the mechanism at the beginning of the iteration\e recall that the VCG mechanism chooses an outcome that

and M’ is the mechanism at the end of the iteration (af- "Certainly, if we apply the approach to a previously unstud-

ter the update), and” iS, the set of manipulations under jeq mechanism design domainyitll produce a novel mechanism.
consideration, we have/'(0) € arg max,eo(n,0,r) 9(0,0) However, it would be difficult to evaluate the quality of such a mech-
(here, 8 = (6y,...,0,)), where O(M,0,F) C O is anism, since there would be nothing to compare the mechanism to.

In this section, we illustrate the potential benefits of the ap-
roach by exhibiting mechanisms that it can produce in var-
lous standard mechanism design settings. We will demon-
strate a setting in which the approach ends up producing a
strategy-proof mechanism, as well as a setting in which the
produced mechanism is still vulnerable to manipulation (but

in some sense “more” strategy-proof thaiMeamechanisms).

(A third setting that we studied—deciding on whether to pro-

duce a public good—is omitted due to space constraint.) We

emphasize that our goal in this section is not to come up with

spectacularly novel mechanisms, but rather to show that the

K%Eproach advocated in this paper produces sensible results.
erefore, for now, we will consider the approach successful

maximizes social welfare (not counting payments), and im- Without the tie-breaking assumption, the lemma does not
poses the following tax on an agent: consider the total utilityhold: for example, in a single-item first-price auction, bid-
(not counting payments) of the other agents given the choseding exactly the second price for the item is not an optimal
outcome, and subtract this from the total utility (not countingmanipulation for the bidder with the highest valuation if the
payments) that the other agemtsuld have obtainedf the tie is broken in favor of the other bidder. However, increas-
given agent’s preferences had been ignored in choosing thag the bid by any amount will guarantee that the item is won
outcome. Specifically, we will consider the following variant (and in general, increasing the value for by any amount

of our technique (perhaps the most basic one): will guarantee that outcome).

e Our objectivey is to try maximize some (say, linear) com- proof: First, we show that this manipulation will still result
bination of allocative social welfara.¢. social welfare not i s+ peing chosen. Suppose that allocatiogt s* is cho-

taking payments into account) and revenue. (It does not maken instead. Given the tie-breaking assumption, it follows
ter what the combination is.) that 3 u;(6,8) > w;(6,5%) + S u;(6;,5%), or equiva-

e The setF’ of manipulations that we consider is that of all 7 jZi
possible misreports (by any single agent). lently, VCG;(0;,0_;) < 3 u;(0;,5)—u;j(0;,s*). However,
e We try to prevent manipulations according (@) above g

(for a type vector from which there is a beneficial manipula-by definition, VCG;(6;,0_;) = maxs-- 3 u;(0;,5™) —

tion, make its outcome desirable enough to the manipulating . o J7

agents to prevent the manipulation). Among outcomes thati (%i-s™) =];, u;j(0;,) — u;j(6;,s%), so we have the de-

achieve this, we choose one maximizing the objegjive sired contradiction. It follows that agefis utility under the
We will use the term “allocation” to refer to the part of the manipulation isu; (6;, s*) — VCG (6:,0—)

outcome that does not concern payments, even though the re- ' -

) X . . . Next, we show th itcann in a higher utili
sult is not restricted to allocation settings such as auctions, 'the b etzhs ow't .at ?gzgmtcas ot obta;h ? g .e IUté v
Also, we will refer to the utility that agentwith typed; gets with any otheér manipulation. Suppose that manipufatpn

from allocations (not including payments) as (;, s). The results in allocatiors being chosen. Because utilities cannot
19 :

following simple observation shows that theively optimal D negative under truthful reporting, it follows thatt;, s) +

mechanism is théirst-price mechanism, which chooses an ; u;(0,5) = max.- ; u;(6,s™). Using the fact

allocation that maximizes social welfare, and makes every; " J7 o .

agent pay his valuation for the allocation. S?hat VCOGi(0;,6-i) = max--]gi uj (0, 8™) = u;(05,57),

Observation 1 The first-price mechanism feely maximizes W€ can rewrite the previous inequality*aa(ei,s)_+

both revenue and allocative social welfare. ; u;j(0;,s) = VOG(6:,60-:) + ; u;(6;,57), or equiva-
VEL] JjF

Proof: That the mechanism (inaly) maximizes allocative lentlyu;(6;,s) > VCG;(6;,0_;)+ . wi(0;,5%)—u;j(0;,5).

social welfare is clear. Moreover, due to the individual ratio- jFi .

nality constraint, we can never extract more than the allocaBecause u;(0;,s*) > > u;(6;, s), we can rewrite the pre-

tive social welfare; and the first-price mechanismiyely) _ A L

extracts all the allocative social welfare, for an outcome thavious inequality as.;(0;, s) > VCG;(0;,0—;) —u;(0;, 5*) +

(ndvely) maximizes allocative social welfare.m ui(0i,8) + > ui(05,8") — u;(0;,8) = VOG(0;,0-;) —

J

Before showing the main result of this subsection, we ., . (n. ; (0. &) — (D s <
first characterize optimal manipulations under the first-pric Z?EZ?’ i*g jq“{}(c?(’;l,‘S(Q_O;fgug/?ﬁgg{gzé%gﬁowﬁl(2” 5) <

mechanism.

Lemma 1 The following is an optimal manipulatioh from ~ Theorem 1 Under the variant of our approach described
9 € © for agent: under the first-price mechanism: above, the mechanism resulting after a single iteration is the

e for the allocation s* that would be chosen under the VCG mechanism.
first-price mechanism fop, report a value equal ta’s Proof: By Observation 1, the figely optimal mechanism is

VCG payment under the true valuations(fi(s*)) = the first-price mechanism. When updating the outcomé for
VCG(0;,0-)); by Lemma 1, each agentmust receive a utility of at least
o for any other allocatiors # s*, report a valuation of).8 u;(0;,8*) — VCG;(0;,0_;), wheres* is the allocation that
The utility of this manipulation is u(6;,s*) — maximizes allocative social welfare for type vector One
VCG;(6;,0_;). (This assumes ties will be broken in way of achieving this is to choose allocatigh and to charge
favor of allocations*.) agenti exactlyVCG,(0;,0_;)—that is, simply run the VCG

mechanism. Clearly this maximizes allocative social welfare.

8There may be constraints on the reported utility function thatBut, under the constraints on the agents’ utilities, it also max-
prevent this—for example, in a (combinatorial) auction, perhapsmizes revenue, for the following reason. For any allocation
only monotone valuations are allowed (winning more items nevers, the most revenue that we can hope to extract is the al-

hurts an agent). If so, the agent should report valuations for thesgycative social welfare of, that is, > u;(6;, 5), minus the
outcomes that are as small as possible, which will still lead*to ;

3
being chosen. sum of the utilities that we must guarantee the agents, that

is, > u;(0;,s*) — VCG;(0;,6_;). Becauses = s* maxi- to the number of votes that preférso a. Then, starting with
i) the plurality rule, after exactly(b) — s(a) iterations of the
mizes)_ u;(0;, s), this means that the most revenue we canypnrach described above, the outcometfehanges for the

hope té extract i VCG;(6;,60_;), and the VCG mecha- first time, toa (the outcome of the plurality with runoff rulé).
' 5 Computing the mechanism’s outcomes

. In this section, we discuss how to automatically compute the

4.2 Ordinal preferences outcomes of the mechanisms that are generated by this ap-
In this subsection, we address voting (social choice) settinggroach in general. It will be convenient to think about set-
In such a setting, there is a set of outcomes (also known d#1gs in which the set of possible type vectors is finite (so that
candidatesor alternative$ and a set of agents (also known the mechanism can be represented as a finite table), although
asvoterg, and every agenits type is a complete ranking; these techniques can be extended to (some) infinite settings
over the candidates. (We do not need to specify numericads well. (At the very least, types can be grouped together into
utilities here.) The mechanism (epting ruld) takes as in- @ finite number; for specific settings, something better can
put the agents’ type reports (eoted, consisting of complete often be done.) One potential upside relative to standard au-
rankings of the candidates, and chooses an outcome. tomated mechanism design techniques is that we do not need

The most commonly used voting rule is thierality rule, ~ to compute the entire mechanism (the outcomes for all type
in which we only consider every voter's highest-ranked canVectors); rather, we only need to compute the outcome for the
didate, and the winner is simply the candidate with the highestype vector that is actually reported.
number of votes ranking it first (igslurality scorg. The plu- Let M, denote the (ri@e) mechanism from which we start,
rality rule is very manipulable: a voter voting for a candidateand let}/; denote the mechanism afteiterations. Letr; de-
that is not winning may prefer to attempt to get the candi-note the set of beneficial manipulations that we are consider-
date that currently has the second-highest plurality score t#g (and are trying to prevent) in thh iteration. Thus); is
win, by voting for that candidate instead. In the real world,a function of ; andM;_,. What this function is depends on
one common way of “fixing” this is to add a runoff round, the specific variant of the approach that we are using. When
resulting in theplurality-with-runoff rule. Under this rule, We try to prevent manipulations by making the outcome for
we take the two candidates with the highest plurality scoresthe type vector from which the agentis manipulating more de-
and declare as the winner the one that is ranked higher [?n'rable for that agent, we can be more specific, and say that,
more voters. By the Gibbard-Satterthwaite theorem, this idor type vectord, M, (6) is a function of the subset’ C F;
still not a strategy-proof mechanism (it is neither dictatorialthat consists of manipulations that start frémand of the
nor does it preclude any candidate from winning)—for exam-outcomes thad/; _; selects on the subset of type vectors that
ple, a voter may change his vote to change which candidategould result from a manipulation i. Thus, to compute
are in the runoff. Still, the plurality with runoff rule is, in the outcome that/; produces o, we only need to consider
an intuitive sense, “less” manipulable than the plurality rulethe outcomes that/;_; chooses for type vectotbat differ
(and certainly more desirable than a strategy-proof rule, sincom 6 in at most one typ¢and possibly even fewer, ify
a strategy-proof rule would either be dictatorial or precludedoes not consider all possible manipulationi)- As such, we
some candidate from winning). _ ___need to considei,_’s outcomes on at most_ |©;] type

In this subsection, we will show that the following variant i=1
of our approach will produce the plurality-with-runoff rule vectors to computé/;(6) (for any givend), which is much
when starting with the plurality rule as the initial mechanism. o
e The setF consists of all manipulations in which a voter smaller than the set of all type vecto:E[l(\G)lD. Of course,
changes which candidate he ranks first. to computeM,_,(¢’) for some type vectof’, we need to
e We try to prevent manipulations as follows: for a type (vote) . , n
vector from which there is a beneficial manipulation, considefONSider\/; »’s outcomes on up tgzl i type vectorsetc.
all the outcomes that may result from such a manipulation Because of this, a simple recursive approach for comput-
(in addition to the current outcome), and choose as the new]) n))
outcome the one that minimizes the number of agents thdfd M:(6) for someéd will require O(() |©;])") time. This

still have an incentive to manipulate from this vote vector. approach may, however, spend a szianificant amount of time
e We will change the outcome f(_)r eaph vote vector at mos?ecomputing values/; (¢') many times. Another approach is
once (but we will have multiple iterations, for vote vectors g ;se dynamic programming, computing and storing mech-
whose outcome did not change in earlier iterations). ___anismM,_,’s outcomes orall type vectors before proceed-
We are now ready to present the result. (The remainingng to compute outcomes faif;. This approach will require

proofs are omitted due to space constraint.) n n _ _ _
O(t- (IT 194]) - (3 164])) time (for every iteration, for ev-
i=1 i=1

1
nism achieves this. m

Theorem 2 For a given type vecto#, suppose that candi-
dateb is ranked first the most often, amds ranked first the
second most oftes(b) > s(a) > ..., wheres(o) is the num- 9This is assuming that ties in the plurality rule are broken in favor
ber of timeso is ranked first). Moreover, suppose that the of ; otherwise, one more iteration is needed. (Some assumption on
number of votes that prefersto b is greater than or equal tie-breaking must always be made for voting rules.)

ery typE vector, we must investigate all possible manipula-

tions). We note that when we use this approach, we may ag Discussion
well compute the entire mechanishf; (we already have 0 \yhjje we have given a framework, and a portfolio of tech-

compute the entire mechanismt_l). If n i.s .Iarge" and is nigues within that framework, for making mechanisms more
small, the recursive apprc_)ach IS more.eff|0|entn iis Sma" strategy-proof, and illustrated their usefulness with examples,

&ve have not yet integrated the techniques into a single, com-
efficient. We can gain the benefits of both by using the recur y 9 ; g

) h and ing th h prehensive approach. This suggests some important ques-
sive approach and storing the outcomes that we compute ifi,ns for future research. Is there a single, general method
the process, so that we need not recompute them.

that obtains all of the benefits of the individual techniques

All of this is for fully general (finite) domains; it is likely ~ 14t \ve have described (possibly by making use of these tech-
that these techniques can be sped up considerably for Spec'ﬂ%ques as subcomponents)? If not, can we provide some guid-

domains. Moreover, as we have already seen, some domaigg e a5 to which techniques are likely to work best in a given
can simply be solved analytically. setting? Another direction for future research is to consider
6 Computational hardness of manipulation other types of manipulation, such as false-name bidHigh

We have demonstrated that our approach can charige na References
mechanisms into mechanisms that are less (sometimes not[aj Alon Altman and Moshe Tennenholtz. Ranking systems: The

all) manipulable. In this section, we will argue that in ad- PageRank axioms#ACM-EC, 2005.
dition, if the mechanism remains manipulablee remain- [2] Aaron Archer, Christos Papadimitriou, K Tawar, and Eva Tar-
ing manipulations are computationally difficult to findhis dos. An approximate truthful mechanism for combinatorial

is especially valuable because, as we argued earlier, if it is auctions with single parameter agerDA 2003.

too hard to discover beneficial manipulations, the revelatiod3] John Bartholdi, Il and James Orlin. Single transferable vote
principle ceases to hold, and a manipulable mechanism can Te€Sists strategic votingSocial Choice and Welfay(4):341~
sometimes actually outperform all truthful mechanisms. 354, 1991. . - . .

We first give an informal, but general, argument for the! CE:?] H. (ilf-rli(?'sleng?frt pricing of public goads.Public
claim that any manipulations that remain after a large num—s] Vi O'Cet C' t_ ’ d T Sandhol Complexity of
ber of iterations of our approach are hard to find. Supposg n:ggﬁgnisrﬁné:;gs% pggénsafosfflo Ozrgdz Py e
that the only knowledge that an agent has about the mechgs Vincent Conitzer and ’Tuomas Sandhc;lm Universal voting
nism is the variant of our approach by which the designer ob-" ;1,01 tweaks to make manipulation hatdCAI, 2003.
tains it (the initial n&ve mechanism, the manipulations that [

\ . i T Boi Faltings and Quang Huy Nguyen. Multi-agent coordina-
the designer considers, how she tries to eliminate these op-" tjon using local searchJCAI, 2005.

portunities for manipulations, how many iterations she per{g] Allan Gibbard. Manipulation of voting scheme&conomet-
forms, etc). Given this, the most natural algorithm for an rica, 41:587—-602, 1973.
agent to find a beneficial manipulation is to simulate our ap{9] Andrew Goldberg and Jason Hartline. Envy-free auctions for
proach for the relevant type vectors, perhaps using the algo- digital goods. ACM-EC, pages 29-35, 2003.
rithms presented earlier. However, this approach to manipu-10] Theodore Groves. Incentives in tearBsonometrica41:617—
lation is computationally infeasible if the agent does not have = 631, 1973.
the computational capabilities to simulate as many iterationbl1] Christopher Kiekintveld, Yevgeniy Vorobeychik, and Michael
as the designer will actually perform. Wellman. An analysis of the 2004 supply chain management
Unfortunately, this informal argument fails if the agent ac- trading agent competition.lJCAI-05 Workshop on Trading
tually has greater computational abilities or better algorithm? Agent Design and Analysi2005. .
than the designer. However, it turns out that if we allow for[14 Anshul Kothari, David Parkes, and Subhash ~Suri.
randomupdates to the mechanism, then we can prove hard- Apprommately-strategyproof and tractable multi-unit auc-
ness of manipulation in a formal, complexity-theoretic sense tions. ACM-EG pages 166-175, 2003.
So far. we have onlv di ! d updati : r%13] Noam Nisan and Amir Ronen. Computationally feasible VCG
) y discussed updating the mechanis

. d inistic fashi h h hani . d mechanismsACM-EC pages 242—-252, 2000.
in a deterministic fashion. When the mechanism is update 4] David Parkes, Jayant Kalagnanam, and Marta Eso. Achiev-

deterministically, any agent that is computationally powerful ing budget-balance with Vickrey-based payment schemes in
enough to simulate this updating process can determine the exchangeslJCAI, pages 1161-1168, 2001.

outcome that the mechanism will choose, for any vector of15 Mark Satterthwaite. Strategy-proofness and Arrow’s condi-
revealed types. Hence, that agent can evaluate whether he tions: existence and correspondence theorems for voting pro-
would benefit from misrepresenting his preferences. How- cedures and social welfare functiondournal of Economic
ever, this is not the case if we add random choices to our ap- Theory 10:187-217, 1975.

proach (and the agents are not told about the random choic&t6 William Vickrey. Counterspeculation, auctions, and competi-
until after they have reported their types). In fact, we can tive sealed tenderslournal of Finance16:8-37, 1961.

prove the following result. (As in most previous work on [17] Yevgeniy Vorobeychik, Christopher Kiekintveld, and Michael
hardness of manipulation, this is only a worst-case notion of ~ Wellman. Empirical mechanism design: Methods, with appli-

hardness, which may not prevent manipulation in all cases.) Cation to a supply chain scenariaCM-EG 2006.
[18] Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. Robust

Theorem 3 When the updates to the mechanism are cho- combinatorial auction protocol against false-name hisifi-
sen randomly, evaluating whether there exists a manipulation cial Intelligence 130(2), 2004.
that increases an agent’s expected utility2-hard.

