
Incremental Mechanism Design∗

Vincent Conitzer
Duke University

Department of Computer Science
conitzer@cs.duke.edu

Tuomas Sandholm
Carnegie Mellon University

Computer Science Department
sandholm@cs.cmu.edu

Abstract

Mechanism design has traditionally focused almost
exclusively on the design of truthful mechanisms.
There are several drawbacks to this: 1. in certain
settings (e.g.voting settings), no desirable strategy-
proof mechanisms exist; 2. truthful mechanisms
are unable to take advantage of the fact that com-
putationally bounded agents may not be able to
find the best manipulation, and 3. when designing
mechanisms automatically, this approach leads to
constrained optimization problems for which cur-
rent techniques do not scale to very large instances.
In this paper, we suggest an entirely different ap-
proach: we start with a naı̈ve (manipulable) mech-
anism, and incrementally make itmore strategy-
proof over a sequence of iterations.
We give examples of mechanisms that (variants of)
our approach generate, including the VCG mech-
anism in general settings with payments, and the
plurality-with-runoff voting rule. We also provide
several basic algorithms for automatically execut-
ing our approach in general settings. Finally, we
discuss how computationally hard it is for agents to
find any remaining beneficial manipulation.

1 Introduction
In many multiagent settings, we must choose an outcome
based on the preferences of multiple self-interested agents,
who will not necessarily report their preferences truthfully
if it is not in their best interest to do so. Typical settings
in which this occurs include auctions, reverse auctions, ex-
changes, voting settings, public good settings, resource/task
allocation settings, ranking pages on the web[1], etc. Re-
search inmechanism designstudies how to choose outcomes
in such a way that good outcomes are obtained even when
agents respond to incentives to misreport their preferences
(or manipulate). For the most part, researchers have focused
simply on creatingtruthful (or strategy-proof) mechanisms,
in which no agent ever has an incentive to misreport. This ap-
proach is typically justified by appealing to a result known as
therevelation principle, which states that for any mechanism
that does well in the face of strategic misreporting by agents,
there is a truthful mechanism that will perform just as well.

∗This material is based upon work supported by the National Sci-
ence Foundation under ITR grants IIS-0121678 and IIS-0427858, a
Sloan Fellowship, and an IBM Ph.D. Fellowship.

The traditional approach to mechanism design has been to
try to design good mechanisms that are as general as possible.
Probably the best-known general mechanism is theVickrey-
Clarke-Groves (VCG)mechanism[16; 4; 10], which chooses
the allocation that maximizes the sum of the agents’ utilities
(thesocial welfare), and makes every agent pay the external-
ity that he1 imposes on the other agents. This is sufficient to
ensure that no individual agent has an incentive to manip-
ulate, but it also has various drawbacks: for example, the
surplus payments can, in general, not be redistributed, and
the designer may have a different objective than social wel-
fare,e.g.she may wish to maximize revenue. Other general
mechanisms have their own drawbacks, and there are vari-
ous impossibility results such as the Gibbard-Satterthwaite
theorem[8; 15] that show that certain objectives cannot be
achieved by truthful mechanisms.

The lack of a general mechanism that is always satisfac-
tory led to the creation of the field ofautomated mechanism
design[5]. Rather than try to design a mechanism that works
for a range of settings, the idea is to have a computer au-
tomatically compute the optimal mechanism for the specific
setting at hand, by solving an optimization problem. A draw-
back of that approach is that current techniques do not scale
to very large instances. This is in part due to the fact that,
to ensure strategy-proofness, one must simultaneously decide
on the outcome that the mechanism choosesfor every possi-
ble inputof revealed preferences, and the strategy-proofness
constraints interrelate these decisions.

Another observation that has been made is that in com-
plex settings, it is unreasonable to believe that every agent
is endowed with the computational abilities to compute an
optimal manipulation. This invalidates the above-mentioned
revelation principle, in that restricting attention to truthful
mechanisms may in fact come at a cost in the quality of the
outcomes that the mechanism produces. Adding to this the
observation that in some domains, all strategy-proof mecha-
nisms are unsatisfactory (by the Gibbard-Satterthwaite theo-
rem), it becomes important to be able to design mechanisms
that are not strategy-proof. Recent research has already pro-
posed some manipulable mechanisms. There has been work
that proposes relaxing the constraint toapproximatetruth-
fulness (in various senses). Approximately truthful mech-
anisms can be easier to execute[12; 2], or can circumvent
impossiblity results that apply to truthful mechanisms[14;
9]. Other work has studied manipulable mechanisms in which

1We will use “she” for the center/designer, and “he” for an agent.

finding a beneficial manipulation is computationally difficult
in various senses[3; 13; 6; 7].

In this paper, we introduce a new approach. We start
with a näıvely designed mechanism that is not strategy-proof
(for example, the mechanism that would be optimal in the
absence of strategic behavior), and we attempt to make it
more strategy-proof. Specifically, the approach systemati-
cally identifies situations in which an agent has an incentive
to manipulate, and corrects the mechanism to take away this
incentive. This is done iteratively, and the mechanism may or
may not become (completely) strategy-proof eventually. The
final mechanism may depend on the order in which possible
manipulations are considered.

One can conceive of this approach as being a computa-
tionally more efficient approach to automated mechanism de-
sign, insofar as the updates to the mechanism to make it
more strategy-proof can be executed automatically (by a com-
puter). Indeed, we will provide algorithms for doing so. It is
also possible to think about the results of this approach theo-
retically, and use them as a guide in “traditional” mechanism
design. We will pursue this as well, giving various examples.
Finally, we will argue that if the mechanism that the approach
produces remains manipulable, then any remaining manipu-
lations will be computationally hard to find.

This approach bears some similarity to how mechanisms
are designed in the real world. Real-world mechanisms are
often initially näıve, leading to undesirable strategic behavior;
once this is recognized, the mechanism is amended to disin-
cent the undesirable behavior. For example, some naı̈vely de-
signed mechanisms give bidders incentives to postpone sub-
mitting their bids until just before the event closes (i.e., snip-
ing); often this is (partially) fixed by adding anactivity rule,
which prevents bidders that do not bid actively early from
winning later. As another example, in the 2003 Trading Agent
Competition Supply Chain Management (TAC/SCM) game,
the rules of the game led the agents to procure most of their
components on day 0. This was deemed undesirable, and the
designers tried to modify the rules for the 2004 competition
to disincent this behavior[11].2

As we will see, there are many variants of the approach,
each with its own merits. We will not decide which variant is
the best in this paper; rather, we will show for a few different
variants that they can result in desirable mechanisms.

2 Mechanism design background

In a mechanism design setting, we are given:
• A set of agentsN (|N | = n);
• A set of outcomesO (here, if payments are used in the
setting, an outcome includes information on payments to be
made by/to the agents);
• For each agenti ∈ N , a set of typesΘi (and we denote by
Θ = Θ1 × . . .×Θn the set of all type vectors,i.e. the set of
all possible inputs to the mechanism);

2Interestingly, thesead-hocmodifications failed to prevent the
behavior, and even an extreme modification during the 2004 com-
petition failed. Later research suggests that in fact all reasonable
settings for a key parameter would have failed[17].

• For eachi ∈ N , a utility functionui : Θi ×O → R;3

• An objective functiong : Θ×O → R.
For example, in a single-item auction,N is the set of bid-

ders;O = S×Π, whereS is the set of all possible allocations
of the item (one for each bidder, plus potentially one alloca-
tion where no bidder wins), andΠ is the set of all possible
vectors〈π1, . . . , πn〉 of payments to be made by the agents
(e.g., Π = Rn); assuming no allocative externalities (that is,
it does not matter to a bidder which other bidder wins the
item if the bidder does not win himself),Θi is the set of pos-
sible valuations that the bidder may have for the item (for
example,Θi = R≥0); the utility function ui is given by:
ui(θi, (s, 〈π1, . . . , πn〉)) = θi − πi if s is the outcome in
which i wins the item, andui(θi, (s, 〈π1, . . . , πn〉)) = −πi

otherwise. (In situations in which a type consists of a single
value, we will typically usevi rather thanθi for the type.)4

A (deterministic) mechanismconsists of a function
M : Θ → O, specifying an outcome for every vector
of (reported) types.5 Given a mechanismM , a benefi-
cial manipulation6 consists of an agenti ∈ N , a type
vector 〈θ1, . . . , θn〉 ∈ Θ, and an alternative type re-
port θ̂i for agent i such thatui(θi, M(〈θ1, . . . , θn〉)) <

ui(θi,M(〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉)). In this
case we say thati manipulates from 〈θ1, . . . , θn〉 into
〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉. A mechanism isstrategy-
proof or (dominant-strategies) incentive compatibleif there
are no beneficial manipulations. (We will not consider
Bayes-Nash equilibrium incentive compatibility here.)

In settings with payments, we enforce anex-post individual
rationality constraint: we cannot make an agent worse off
than he would have been if he had not participated. That is,
we cannot charge an agent more than he reported the outcome
(disregarding payments) was worth to him.

3 Our approach and techniques
In this section, we explain the approach and techniques that
we consider in this paper. We recall that our goal is not to
(immediately) design a strategy-proof mechanism; rather, we
start with some manipulable mechanism, and attempt to in-
crementally make it “more” strategy-proof. Thus, the basic
template of our approach is as follows:
1. Start with some (manipulable) mechanismM ;
2. Find some setF of manipulations (where a manipulation
is given by an agenti ∈ N , a type vector〈θ1, . . . , θn〉, and an
alternative type report̂θi for agenti);
3. If possible, change the mechanismM to prevent (many of)
these manipulations from being beneficial;
4. Repeat from step2 until termination.

This is merely a template; at each one of the steps, some-
thing remains to be filled in. Which initial mechanism do we

3The utility function is parameterized by type; while theui are
common knowledge, the types encode (private) preferences.

4In general, we may have additional information, such as a prior
over the types, but we will not use this information in this paper.

5In general, a mechanism may be randomized, specifying distri-
butions over outcomes, but we will not consider this in this paper.

6“Beneficial” here means beneficial to the manipulating agent.

choose in step 1? Which set of manipulations do we con-
sider in step 2? How do we “fix” the mechanism in step 3 to
prevent these manipulations? And how do we decide to ter-
minate in step 4? In this paper, we will not resolve what is the
best way to fill in these blanks (it seems unlikely that there is
a single, universal best way), but rather we will provide a few
instantiations of the technique, illustrate them with examples,
and show some interesting properties.

One natural way of instantiating step 1 is to choose a
näıvely optimalmechanism, that is, a mechanism that would
give the highest objective value for each type vectorif every
agent would always reveal his type truthfully. For instance,
if we wish to maximize social welfare, we simply always
choose an outcome that maximizes social welfare for the re-
ported types; if we wish to maximize revenue, we choose an
outcome that maximizes social welfare for the reported types,
and make each agent pay his entire valuation.

In step 2, there are many possible options: we can choose
the set ofall manipulations; the set of all manipulations for
a single agent; the set of all manipulations from or to a par-
ticular type or type vector; or just a single manipulation. The
structure of the specific setting under consideration may also
make certain manipulations more “natural” than others; we
can discover which manipulations are more natural by intu-
ition, by hiring agents to act in test runs of the mechanism, by
running algorithms that find manipulations,etc.Which set of
manipulations we choose will affect the difficulty of step 3.

Step 3 is the most complex step. Let us first con-
sider the case where we are only trying to prevent a
single manipulation, fromθ = 〈θ1, . . . , θn〉 to θ′ =
〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉. We can make this manipula-
tion undesirable in one of three ways:(a) make the outcome
thatM selects forθ more desirable for agenti (when he has
typeθi), (b) make the outcome thatM selects forθ′ less de-
sirable for agenti (when he has typeθi), or (c) a combination
of the two. We will focus on(a) in this paper. There may be
multiple ways to make the outcome thatM selects forθ suf-
ficiently desirable to prevent the manipulation; a natural way
to select from among these outcomes is to choose the one that
maximizes the designer’s original objective. Note that these
modifications may introduce other beneficial manipulations.

When we are trying to prevent a set of manipulations, we
are confronted with an additional issue: after we have pre-
vented one manipulation in the set, we may reintroduce the
incentive for this manipulation when we try to prevent an-
other manipulation. Resolving this would require solving a
potentially large constrained optimization problem, consti-
tuting an approach similar to standard automated mechanism
design—reintroducing some of the scalability problems that
we wish to avoid. Therefore, when addressing the manipula-
tions from one type vector, we will simply act as if we will
not change the outcomes for any other type vector.

Formally, for this particular instantiation of our approach,
if M is the mechanism at the beginning of the iteration
and M ′ is the mechanism at the end of the iteration (af-
ter the update), andF is the set of manipulations under
consideration, we haveM ′(θ) ∈ arg maxo∈O(M,θ,F) g(θ, o)
(here, θ = 〈θ1, . . . , θn〉), where O(M, θ, F) ⊆ O is

the set of all outcomeso such that for any beneficial
manipulation (i, θ̂i) (with (i, θ, θ̂i) ∈ F), ui(θi, o) ≥
ui(θi,M(〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉)). It may happen
that O(M, θ, F) = ∅ (no outcome will prevent all manip-
ulations). In this case, there are various ways in which
we can proceed. One is not to update the outcome at
all, i.e. set M ′(θ) = M(θ). Another is to minimize the
number of agents that will have an incentive to manipu-
late from θ after the change, that is, to chooseM ′(θ) ∈
arg mino∈O |{i ∈ N : (∃(i, θ, θ̂i) ∈ F : ui(θi, o) <

ui(θi,M(〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉)))}| (and ties can
be broken to maximize the objectiveg).

Many other variants are possible. For example, instead of
choosing from the set of all possible outcomesO when we
update the outcome of the mechanism for some type vec-
tor θ, we can limit ourselves to the set of all outcomes that
would result from some beneficial manipulation inF from
θ—that is, the set{o ∈ O : ((∃(i, θ̂i) : (i, θ, θ̂i) ∈ F) :
o = M(〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉))}—in addition to
the current outcomeM(θ). The motivation is that rather
than consider all possible outcomes every time, we may wish
to simplify our job by considering only the ones that cause
the failure of strategy-proofness in the first place. We next
present examples of some of the above-mentioned variants.

4 Instantiating the methodology
In this section, we illustrate the potential benefits of the ap-
proach by exhibiting mechanisms that it can produce in var-
ious standard mechanism design settings. We will demon-
strate a setting in which the approach ends up producing a
strategy-proof mechanism, as well as a setting in which the
produced mechanism is still vulnerable to manipulation (but
in some sense “more” strategy-proof than naı̈ve mechanisms).
(A third setting that we studied—deciding on whether to pro-
duce a public good—is omitted due to space constraint.) We
emphasize that our goal in this section is not to come up with
spectacularly novel mechanisms, but rather to show that the
approach advocated in this paper produces sensible results.
Therefore, for now, we will consider the approach successful
if it produces a well-known mechanism. In future research,
we hope to use the technique to help us design novel mecha-
nisms as well.7 We do emphasize, however, that although the
mechanisms that the approach eventually produces were al-
ready known tous, theapproachsimply follows local updat-
ing rules without any knowledge of what the final mechanism
should be. In other words, the algorithm is not even given a
hint of what the final mechanism should look like.

4.1 Settings with payments
In this subsection, we show the following result: in general
preference aggregation settings in which the agents can make
payments (e.g.combinatorial auctions), (one variant of) our
technique yields the VCG mechanism after a single iteration.
We recall that the VCG mechanism chooses an outcome that

7Certainly, if we apply the approach to a previously unstud-
ied mechanism design domain, itwill produce a novel mechanism.
However, it would be difficult to evaluate the quality of such a mech-
anism, since there would be nothing to compare the mechanism to.

maximizes social welfare (not counting payments), and im-
poses the following tax on an agent: consider the total utility
(not counting payments) of the other agents given the chosen
outcome, and subtract this from the total utility (not counting
payments) that the other agentswould have obtainedif the
given agent’s preferences had been ignored in choosing the
outcome. Specifically, we will consider the following variant
of our technique (perhaps the most basic one):
• Our objectiveg is to try maximize some (say, linear) com-
bination of allocative social welfare (i.e. social welfare not
taking payments into account) and revenue. (It does not mat-
ter what the combination is.)
• The setF of manipulations that we consider is that of all
possible misreports (by any single agent).
• We try to prevent manipulations according to(a) above
(for a type vector from which there is a beneficial manipula-
tion, make its outcome desirable enough to the manipulating
agents to prevent the manipulation). Among outcomes that
achieve this, we choose one maximizing the objectiveg.

We will use the term “allocation” to refer to the part of the
outcome that does not concern payments, even though the re-
sult is not restricted to allocation settings such as auctions.
Also, we will refer to the utility that agenti with typeθi gets
from allocations (not including payments) asui(θi, s). The
following simple observation shows that the naı̈vely optimal
mechanism is thefirst-price mechanism, which chooses an
allocation that maximizes social welfare, and makes every
agent pay his valuation for the allocation.

Observation 1 The first-price mechanism naı̈vely maximizes
both revenue and allocative social welfare.

Proof: That the mechanism (naı̈vely) maximizes allocative
social welfare is clear. Moreover, due to the individual ratio-
nality constraint, we can never extract more than the alloca-
tive social welfare; and the first-price mechanism (naı̈vely)
extracts all the allocative social welfare, for an outcome that
(näıvely) maximizes allocative social welfare.

Before showing the main result of this subsection, we
first characterize optimal manipulations under the first-price
mechanism.

Lemma 1 The following is an optimal manipulation̂θi from
θ ∈ Θ for agenti under the first-price mechanism:
• for the allocation s∗ that would be chosen under the
first-price mechanism forθ, report a value equal toi’s
VCG payment under the true valuations (u(θ̂i(s∗)) =
V CGi(θi, θ−i));
• for any other allocations 6= s∗, report a valuation of0.8

The utility of this manipulation is u(θi, s
∗) −

V CGi(θi, θ−i). (This assumes ties will be broken in
favor of allocations∗.)

8There may be constraints on the reported utility function that
prevent this—for example, in a (combinatorial) auction, perhaps
only monotone valuations are allowed (winning more items never
hurts an agent). If so, the agent should report valuations for these
outcomes that are as small as possible, which will still lead tos∗

being chosen.

Without the tie-breaking assumption, the lemma does not
hold: for example, in a single-item first-price auction, bid-
ding exactly the second price for the item is not an optimal
manipulation for the bidder with the highest valuation if the
tie is broken in favor of the other bidder. However, increas-
ing the bid by any amount will guarantee that the item is won
(and in general, increasing the value fors∗ by any amount
will guarantee that outcome).

Proof: First, we show that this manipulation will still result
in s∗ being chosen. Suppose that allocations 6= s∗ is cho-
sen instead. Given the tie-breaking assumption, it follows
that

∑
j 6=i

uj(θj , s) > ui(θ̂i, s
∗) +

∑
j 6=i

uj(θj , s
∗), or equiva-

lently,V CGi(θi, θ−i) <
∑
j 6=i

uj(θj , s)−uj(θj , s
∗). However,

by definition, V CGi(θi, θ−i) = maxs∗∗
∑
j 6=i

uj(θj , s
∗∗) −

uj(θj , s
∗) ≥ ∑

j 6=i

uj(θj , s) − uj(θj , s
∗), so we have the de-

sired contradiction. It follows that agenti’s utility under the
manipulation isui(θi, s

∗)− V CGi(θi, θ−i).
Next, we show that agenti cannot obtain a higher utility

with any other manipulation. Suppose that manipulationθ̂i

results in allocations being chosen. Because utilities cannot
be negative under truthful reporting, it follows thatui(θ̂i, s)+∑
j 6=i

uj(θj , s) ≥ maxs∗∗
∑
j 6=i

uj(θj , s
∗∗). Using the fact

that V CGi(θi, θ−i) = maxs∗∗
∑
j 6=i

uj(θj , s
∗∗) − uj(θj , s

∗),

we can rewrite the previous inequality asui(θ̂i, s) +∑
j 6=i

uj(θj , s) ≥ V CGi(θi, θ−i) +
∑
j 6=i

uj(θj , s
∗), or equiva-

lentlyui(θ̂i, s) ≥ V CGi(θi, θ−i)+
∑
j 6=i

uj(θj , s
∗)−uj(θj , s).

Because
∑
j

uj(θj , s
∗) ≥ ∑

j

uj(θj , s), we can rewrite the pre-

vious inequality asui(θ̂i, s) ≥ V CGi(θi, θ−i)−ui(θi, s
∗)+

ui(θi, s) +
∑
j

uj(θj , s
∗) − uj(θj , s) ≥ V CGi(θi, θ−i) −

ui(θi, s
∗) + ui(θi, s), or equivalently,ui(θi, s)− ui(θ̂i, s) ≤

ui(θi, s
∗)− V CGi(θi, θ−i), as was to be shown.

Theorem 1 Under the variant of our approach described
above, the mechanism resulting after a single iteration is the
VCG mechanism.

Proof: By Observation 1, the naı̈vely optimal mechanism is
the first-price mechanism. When updating the outcome forθ,
by Lemma 1, each agenti must receive a utility of at least
ui(θi, s

∗) − V CGi(θi, θ−i), wheres∗ is the allocation that
maximizes allocative social welfare for type vectorθ. One
way of achieving this is to choose allocations∗, and to charge
agenti exactlyV CGi(θi, θ−i)—that is, simply run the VCG
mechanism. Clearly this maximizes allocative social welfare.
But, under the constraints on the agents’ utilities, it also max-
imizes revenue, for the following reason. For any allocation
s, the most revenue that we can hope to extract is the al-
locative social welfare ofs, that is,

∑
i

ui(θi, s), minus the

sum of the utilities that we must guarantee the agents, that

is,
∑
i

ui(θi, s
∗) − V CGi(θi, θ−i). Becauses = s∗ maxi-

mizes
∑
i

ui(θi, s), this means that the most revenue we can

hope to extract is
∑
i

V CGi(θi, θ−i), and the VCG mecha-

nism achieves this.

4.2 Ordinal preferences
In this subsection, we address voting (social choice) settings.
In such a setting, there is a set of outcomes (also known as
candidatesor alternatives) and a set of agents (also known
asvoters), and every agenti’s type is a complete rankingÂi

over the candidates. (We do not need to specify numerical
utilities here.) The mechanism (orvoting rule) takes as in-
put the agents’ type reports (orvotes), consisting of complete
rankings of the candidates, and chooses an outcome.

The most commonly used voting rule is theplurality rule,
in which we only consider every voter’s highest-ranked can-
didate, and the winner is simply the candidate with the highest
number of votes ranking it first (itsplurality score). The plu-
rality rule is very manipulable: a voter voting for a candidate
that is not winning may prefer to attempt to get the candi-
date that currently has the second-highest plurality score to
win, by voting for that candidate instead. In the real world,
one common way of “fixing” this is to add a runoff round,
resulting in theplurality-with-runoff rule. Under this rule,
we take the two candidates with the highest plurality scores,
and declare as the winner the one that is ranked higher by
more voters. By the Gibbard-Satterthwaite theorem, this is
still not a strategy-proof mechanism (it is neither dictatorial
nor does it preclude any candidate from winning)—for exam-
ple, a voter may change his vote to change which candidates
are in the runoff. Still, the plurality with runoff rule is, in
an intuitive sense, “less” manipulable than the plurality rule
(and certainly more desirable than a strategy-proof rule, since
a strategy-proof rule would either be dictatorial or preclude
some candidate from winning).

In this subsection, we will show that the following variant
of our approach will produce the plurality-with-runoff rule
when starting with the plurality rule as the initial mechanism.
• The setF consists of all manipulations in which a voter
changes which candidate he ranks first.
•We try to prevent manipulations as follows: for a type (vote)
vector from which there is a beneficial manipulation, consider
all the outcomes that may result from such a manipulation
(in addition to the current outcome), and choose as the new
outcome the one that minimizes the number of agents that
still have an incentive to manipulate from this vote vector.
• We will change the outcome for each vote vector at most
once (but we will have multiple iterations, for vote vectors
whose outcome did not change in earlier iterations).

We are now ready to present the result. (The remaining
proofs are omitted due to space constraint.)

Theorem 2 For a given type vectorθ, suppose that candi-
dateb is ranked first the most often, anda is ranked first the
second most often (s(b) > s(a) > . . ., wheres(o) is the num-
ber of timeso is ranked first). Moreover, suppose that the
number of votes that prefersa to b is greater than or equal

to the number of votes that prefersb to a. Then, starting with
the plurality rule, after exactlys(b) − s(a) iterations of the
approach described above, the outcome forθ changes for the
first time, toa (the outcome of the plurality with runoff rule).9

5 Computing the mechanism’s outcomes
In this section, we discuss how to automatically compute the
outcomes of the mechanisms that are generated by this ap-
proach in general. It will be convenient to think about set-
tings in which the set of possible type vectors is finite (so that
the mechanism can be represented as a finite table), although
these techniques can be extended to (some) infinite settings
as well. (At the very least, types can be grouped together into
a finite number; for specific settings, something better can
often be done.) One potential upside relative to standard au-
tomated mechanism design techniques is that we do not need
to compute the entire mechanism (the outcomes for all type
vectors); rather, we only need to compute the outcome for the
type vector that is actually reported.

LetM0 denote the (näıve) mechanism from which we start,
and letMt denote the mechanism aftert iterations. LetFt de-
note the set of beneficial manipulations that we are consider-
ing (and are trying to prevent) in thetth iteration. Thus,Mt is
a function ofFt andMt−1. What this function is depends on
the specific variant of the approach that we are using. When
we try to prevent manipulations by making the outcome for
the type vector from which the agent is manipulating more de-
sirable for that agent, we can be more specific, and say that,
for type vectorθ, Mt(θ) is a function of the subsetF θ

t ⊆ Ft

that consists of manipulations that start fromθ, and of the
outcomes thatMt−1 selects on the subset of type vectors that
would result from a manipulation inF θ

t . Thus, to compute
the outcome thatMt produces onθ, we only need to consider
the outcomes thatMt−1 chooses for type vectorsthat differ
from θ in at most one type(and possibly even fewer, ifF θ

t
does not consider all possible manipulations). As such, we

need to considerMt−1’s outcomes on at most
n∑

i=1

|Θi| type

vectors to computeMt(θ) (for any givenθ), which is much

smaller than the set of all type vectors (
n∏

i=1

|Θi|). Of course,

to computeMt−1(θ′) for some type vectorθ′, we need to

considerMt−2’s outcomes on up to
n∑

i=1

|Θi| type vectors,etc.

Because of this, a simple recursive approach for comput-

ing Mt(θ) for someθ will require O((
n∑

i=1

|Θi|)t) time. This

approach may, however, spend a significant amount of time
recomputing valuesMj(θ′) many times. Another approach is
to use dynamic programming, computing and storing mech-
anismMj−1’s outcomes onall type vectors before proceed-
ing to compute outcomes forMj . This approach will require

O(t · (
n∏

i=1

|Θi|) · (
n∑

i=1

|Θi|)) time (for every iteration, for ev-

ery type vector, we must investigate all possible manipula-

9This is assuming that ties in the plurality rule are broken in favor
of a; otherwise, one more iteration is needed. (Some assumption on
tie-breaking must always be made for voting rules.)

tions). We note that when we use this approach, we may as
well compute the entire mechanismMt (we already have to
compute the entire mechanismMt−1). If n is large andt is
small, the recursive approach is more efficient; ifn is small
and t is large, the dynamic programming approach is more
efficient. We can gain the benefits of both by using the recur-
sive approach and storing the outcomes that we compute in
the process, so that we need not recompute them.

All of this is for fully general (finite) domains; it is likely
that these techniques can be sped up considerably for specific
domains. Moreover, as we have already seen, some domains
can simply be solved analytically.

6 Computational hardness of manipulation
We have demonstrated that our approach can change naı̈ve
mechanisms into mechanisms that are less (sometimes not at
all) manipulable. In this section, we will argue that in ad-
dition, if the mechanism remains manipulable,the remain-
ing manipulations are computationally difficult to find. This
is especially valuable because, as we argued earlier, if it is
too hard to discover beneficial manipulations, the revelation
principle ceases to hold, and a manipulable mechanism can
sometimes actually outperform all truthful mechanisms.

We first give an informal, but general, argument for the
claim that any manipulations that remain after a large num-
ber of iterations of our approach are hard to find. Suppose
that the only knowledge that an agent has about the mecha-
nism is the variant of our approach by which the designer ob-
tains it (the initial näıve mechanism, the manipulations that
the designer considers, how she tries to eliminate these op-
portunities for manipulations, how many iterations she per-
forms, etc.). Given this, the most natural algorithm for an
agent to find a beneficial manipulation is to simulate our ap-
proach for the relevant type vectors, perhaps using the algo-
rithms presented earlier. However, this approach to manipu-
lation is computationally infeasible if the agent does not have
the computational capabilities to simulate as many iterations
as the designer will actually perform.

Unfortunately, this informal argument fails if the agent ac-
tually has greater computational abilities or better algorithms
than the designer. However, it turns out that if we allow for
randomupdates to the mechanism, then we can prove hard-
ness of manipulation in a formal, complexity-theoretic sense.

So far, we have only discussed updating the mechanism
in a deterministic fashion. When the mechanism is updated
deterministically, any agent that is computationally powerful
enough to simulate this updating process can determine the
outcome that the mechanism will choose, for any vector of
revealed types. Hence, that agent can evaluate whether he
would benefit from misrepresenting his preferences. How-
ever, this is not the case if we add random choices to our ap-
proach (and the agents are not told about the random choices
until after they have reported their types). In fact, we can
prove the following result. (As in most previous work on
hardness of manipulation, this is only a worst-case notion of
hardness, which may not prevent manipulation in all cases.)

Theorem 3 When the updates to the mechanism are cho-
sen randomly, evaluating whether there exists a manipulation
that increases an agent’s expected utility is#P-hard.

7 Discussion
While we have given a framework, and a portfolio of tech-
niques within that framework, for making mechanisms more
strategy-proof, and illustrated their usefulness with examples,
we have not yet integrated the techniques into a single, com-
prehensive approach. This suggests some important ques-
tions for future research. Is there a single, general method
that obtains all of the benefits of the individual techniques
that we have described (possibly by making use of these tech-
niques as subcomponents)? If not, can we provide some guid-
ance as to which techniques are likely to work best in a given
setting? Another direction for future research is to consider
other types of manipulation, such as false-name bidding[18].

References
[1] Alon Altman and Moshe Tennenholtz. Ranking systems: The

PageRank axioms.ACM-EC, 2005.
[2] Aaron Archer, Christos Papadimitriou, K Tawar, and Eva Tar-

dos. An approximate truthful mechanism for combinatorial
auctions with single parameter agents.SODA, 2003.

[3] John Bartholdi, III and James Orlin. Single transferable vote
resists strategic voting.Social Choice and Welfare, 8(4):341–
354, 1991.

[4] Ed H. Clarke. Multipart pricing of public goods.Public
Choice, 11:17–33, 1971.

[5] Vincent Conitzer and Tuomas Sandholm. Complexity of
mechanism design.UAI, pages 103–110, 2002.

[6] Vincent Conitzer and Tuomas Sandholm. Universal voting
protocol tweaks to make manipulation hard.IJCAI, 2003.

[7] Boi Faltings and Quang Huy Nguyen. Multi-agent coordina-
tion using local search.IJCAI, 2005.

[8] Allan Gibbard. Manipulation of voting schemes.Economet-
rica, 41:587–602, 1973.

[9] Andrew Goldberg and Jason Hartline. Envy-free auctions for
digital goods.ACM-EC, pages 29–35, 2003.

[10] Theodore Groves. Incentives in teams.Econometrica, 41:617–
631, 1973.

[11] Christopher Kiekintveld, Yevgeniy Vorobeychik, and Michael
Wellman. An analysis of the 2004 supply chain management
trading agent competition.IJCAI-05 Workshop on Trading
Agent Design and Analysis, 2005.

[12] Anshul Kothari, David Parkes, and Subhash Suri.
Approximately-strategyproof and tractable multi-unit auc-
tions. ACM-EC, pages 166–175, 2003.

[13] Noam Nisan and Amir Ronen. Computationally feasible VCG
mechanisms.ACM-EC, pages 242–252, 2000.

[14] David Parkes, Jayant Kalagnanam, and Marta Eso. Achiev-
ing budget-balance with Vickrey-based payment schemes in
exchanges.IJCAI, pages 1161–1168, 2001.

[15] Mark Satterthwaite. Strategy-proofness and Arrow’s condi-
tions: existence and correspondence theorems for voting pro-
cedures and social welfare functions.Journal of Economic
Theory, 10:187–217, 1975.

[16] William Vickrey. Counterspeculation, auctions, and competi-
tive sealed tenders.Journal of Finance, 16:8–37, 1961.

[17] Yevgeniy Vorobeychik, Christopher Kiekintveld, and Michael
Wellman. Empirical mechanism design: Methods, with appli-
cation to a supply chain scenario.ACM-EC, 2006.

[18] Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. Robust
combinatorial auction protocol against false-name bids.Artifi-
cial Intelligence, 130(2), 2004.

