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Introduction

Often, decisions must be taken based on the
preferences of multiple, self-interested agents
— Allocations of resources/tasks

— Joint plans

Would like to make decisions that are “good”
with respect to the agents’ preferences

But, agents may lie about their preferences 1f
this 1s to their benefit

Mechanism design = creating rules for
choosing the outcome that get good results
nevertheless



Part I: “Classical” mechanism design

Preference aggregation settings
Mechanisms

Solution concepts

Revelation principle
Vickrey-Clarke-Groves mechanisms

Impossibility results



Preference aggregation settings

e Multiple agents...
— humans, computer programs, institutions, ...

... must decide on one of multiple outcomes...

— joint plan, allocation of tasks, allocation of
resources, president, ...

.. based on agents’ preferences over the
outcomes
— Each agent knows only 1ts own preferences

— “Preferences” can be an ordering >. over the
outcomes, or a real-valued utility function u.

— Often preferences are drawn from a commonly
known distribution



Elections
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S0, what 1S a mechanism?

* A mechanism prescribes:

— actions that the agents can take (based on their
preferences)

— a mapping that takes all agents’ actions as input, and
outputs the chosen outcome

e the “rules of the game”
e can also output a probability distribution over outcomes
* Direct revelation mechanisms are mechanisms 1n
which action set = set of possible preferences



Example: plurality voting

* Every agent votes for one alternative
. Alternatwe with most Votes wins




Some other well-known voting mechanisms

In all of these rules, each voter ranks all m candidates
(direct revelation mechanisms)

Other scoring mechanisms

— Borda: candidate gets m-1 points for being ranked first, m-2 for being ranked
second, ...

— Veto: candidate gets 0 points for being ranked last, 1 otherwise

Pairwise election between two candidates: see which candidate 1s
ranked above the other more often

— Copeland: candidate with most pairwise victories wins

— Maximin: compare candidates by their worst pairwise elections

— Slater: choose overall ranking disagreeing with as few pairwise elections as
possible

Other

— Single Transferable Vote (STV): candidate with fewest votes drops out,
those votes transfer to next remaining candidate in ranking, repeat

— Kemeny: choose overall ranking that minimizes the number of
disagreements with some vote on some pair of candidates



The “matching pennies” mechanism ES@

* Winner of “matching pennies” gets to choose outcome



Mechanisms with payments

* In some settings (e.g. auctions), 1t 1s possible to make
payments to/collect payments from the agents

* Quasilinear utility functions: u,(o, &) = vi(0) + m
* We can use this to modify agents’ incentives



A few different 1-1item auction mechanisms

-7 English auction:

" — Each bid must be higher than previous bid
v — Last bidder wins, pays last bid
; Japanese auction:
I’ — Price rises, bidders drop out when price is too high

— Last bidder wins at price of last dropout

I
' _» Dutch auction:
| /} — Price drops until someone takes the item at that price
|| » Sealed-bid auctions (direct revelation mechanisms):
'| — Each bidder submits a bid in an envelope
\\)Auctioneer opens the envelopes, highest bid wins

. * First-price sealed-bid auction: winner pays own bid

=~ =»+ Second-price sealed bid (or Vickrey) auction: winner pays second
highest bid




What can we expect to happen?

 In direct revelation mechanisms, will (selfish) agents
tell the truth about their preferences?

— Voter may not want to “waste” vote on poorly performing
candidate (e.g. Nader)

— In first-price sealed-bid auction, winner would like to bid
only € above the second highest bid

 In other mechanisms, things get even more
complicated. ..



A little bit of game theory

©. = set of all of agent 1’s possible preferences (“types™)
— Notation: u,(0,, 0) 1s 1’s utility for o when 1 has type 0.
A strategy s. 1s a mapping from types to actions
- 5.0, > A,
— For direct revelation mechanism, s.: ®. — ©.
— More generally, can map to distributions, s.: ®. — A(A))
A strategy s. 1s a dominant strategy 1f for every type 0.,
no matter what the other agents do, s.(0.) maximizes 1’s
utility
A direct revelation mechanism 1s strategy-proof (or

dominant-strategies incentive compatible) 1f telling the
truth (s:(0,) = 0.) 1s a dominant strategy for all players

(Another, weaker concept: Bayes-Nash equilibrium)



The Vickrey auction 1s strategy-proof!
* What should a bidder with value v bid?

Option 1: Win the

item at price b, get
el IO, Would like to win if

tility v - b
| | ULV and only if v-b > ()
b = highest bid — but bidding
among other truthfully
bidders accomplishes this!

Option 2: Lose the
item, get utility O



Collusion 1n the Vickrey auction

« Example: two colluding bidders

v, = first colluder’s true
valuation

price colluder 1 would pay
when colluders bid truthfully

gains to be distributed among colluders

v, = second colluder’s
true valuation

b = highest bid among _J}Jprice colluder 1 would pay if
other bidders colluder 2 does not bid



The revelation principle

* For any (complex, strange) mechanism that produces
certain outcomes under strategic behavior...

* ... there exists an incentive compatible direct
revelation mechanism that produces the same
outcomes!

— “strategic behavior” = some solution concept (e.g.
dominant strategies)

new mechanism

P, |—s

actions .
— mechanism |f——> outcome




The Clarke mechanism [Clarke 71]

Generalization of the Vickrey auction to arbitrary
preference aggregation settings
Agents reveal types directly
— 0.” 1s the type that 1 reports, 0. 1s the actual type
Clarke mechanism chooses some outcome o that
maximizes 2. u.(0.’, o)
To determine the payment that agent j must make:
— Choose o’ that maximizes X, u;(9;", 0”)
— Make j pay 24 (007, 07) - uy(0;’, 0))

Clarke mechanism is:

— 1ndividually rational: no agent pays more than the outcome
1s worth to that agent

— (weak) budget balanced: agents pay a nonnegative amount



Why 1s the Clarke mechanism strategy-proot?

» Total utility for agent j 1s
uj(eja 0) - 2i; (u;(0;°, 07) - uy(6;", 0)) =
ui(9;, 0) + Zi; wi(0;, 0) - 25 uy(6;7, 07)
* But agent j cannot affect the choice of 0’
* Hence, j can focus on maximizing u;(9;, o) + 2, u;(0;’, 0)

* But mechanism chooses o to maximize X. u.(0.”, 0)
* Hence, 1f 6," = 0,, s utility will be maximized!

« Extension of 1dea: add any term to player j’s payment
that does not depend on j’s reported type

e This 1s the family of Groves mechanisms [Groves 73]



The Clarke mechanism 1s not perfect

Requires payments + quasilinear utility functions

In general money needs to flow away from the
system

Vulnerable to collusion, false-name manipulation

Maximizes sum of agents’ utilities, but sometimes we
are not interested 1n this

— E.g. want to maximize revenue



Impossibility results without payments

e Can we do without payments (voting mechanisms)?

e (Gibbard-Satterthwaite [Gibbard 73, Satterthwaite 75]
impossibility result: with three or more alternatives and
unrestricted preferences, no voting mechanism exists
that 1s

— deterministic

— strategy-proof

— onto (every alternative can win)

— non-dictatorial (more than one voter can affect the outcome)

* (Generalization [Gibbard 77]: @ randomized voting rule 1s
strategy-proof 1f and only 1f 1t is a randomization over
unilateral and duple rules

— unilateral = at most one voter affects the outcome
— duple = at most two alternatives have a possibility of winning



Single-peaked preferences [Black 48]

Suppose alternatives are ordered on a line

Every voter prefers alternatives that are closer to her
most preferred alternative

Let every voter report only her most preferred
alternative (“peak”)

Choose the median voter’s peak as the winner

Strategy-proof!




Impossibility result with payments

o Simple setting: = s e e g0
gl )2 \ e J
V(9B ) =x V(8 ZE) =y
EASS=GON EASS=GON

* We would like a mechanism that:
— 1s efficient (trade iff y > x)
— 1s budget-balanced (seller receives what buyer pays)
— 1S strategy-proof (or even weaker form of incentive compatible)
— 1s individually rational (even just in expectation)

e This 1s impossible! [Myerson & Satterthwaite 83]



Part II: Enter the computer scientist

» Computational hardness of executing classical
mechanisms

* New kinds of manipulation

» Computationally efficient approximation
mechanisms

* Automatically designing mechanisms using
optimization software

* Designing mechanisms for computationally
bounded agents

o Communication constraints



How do we compute
the outcomes of mechanisms?

* Some voting mechanisms are NP-hard to execute

(including Kemeny and Slater) [Bartholdi et al. 89,
Dwork et al. 01, Ailon et al. 05, Alon 05]

— In practice can still solve instances with fairly large

numbers of alternatives [Davenport & Kalagnanam AAAIO04, Conitzer
et al. AAAIO6, Conitzer AAAIOG]

* What about Clarke mechanism? Depends on
setting



Inefficiency of sequential auctions
» Suppose your valuation function is v( ) =

$200, V() — $100, V) — $5OO (complementarity)

* Now suppose that there are two (say, Vickrey)
auctions, the first one for []] and the second
one for

- What should you bid in the first auction (for 7] )"

« If you bid $200, you may lose to a bidder who
bids $250, only to find out that you could have
won for $200

* |f you bid anything higher, you may pay more
than $200, only to find out that sells for
$1000

« Sequential (and parallel) auctions are inefficient

N



Combinatorial auctions

: =t
Simultaneously for sale: | ||, ||@ , L]
bid 1

1 TT)) = $500

bid 2

<
=
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used in truckload transportation, industrial procurement, radio spectrum allocation, ...



The winner determination problem
(WDP)

* Choose a subset A (the accepted bids) of the
bids B,

* to maximize 2, AV,,

* under the constraint that every item occurs at
most once in A

— This is assuming free disposal, i.e. not everything
needs to be allocated



WDP example
e ltems A, B,C,D, E

 Bids:

* (A, C, D}, 7)

* (1B, E}, 7)

* (1C}, 3)

* ({A,B,C, E},9)
* (1D}, 4)

* (1A, B, C}, 9)

* ({B, D}, 5)



An integer program formulation

X, equals 1 if bid b is accepted, 0 if it is not
maximize 2, VX,

subject to

= foreachitemj, 2, X, =1

f each x, can take any value in [0, 1], we say that
pids can be partially accepted

n this case, this is a linear program that can be
solved in polynomial time

This requires that
— each item can be divided into fractions

— If a bidder gets a fraction f of each of the items in his bundle,
then this is worth the same fraction f of his value v, for the
bundle




Weighted independent set

 Choose subset of the vertices with maximum total
weight,

« Constraint: no two vertices can have an edge
between them

* NP-hard (generalizes regular independent set)



The winner determination problem as a
weighted independent set problem

« Each bid is a vertex
* Draw an edge between two vertices if they share an item

bid 2

| v( &) = $700
bid 3 /
v(=1) = $300 |

V([T @) = 8500

« Optimal allocation = maximum weight independent set

« Can model any weighted independent set instance as a CA
winner determination problem (1 item per edge (or clique))

« Weighted independent set is NP-hard, even to solve
approximately [Hastad 96] - hence, so is WDP
— [Sandholm 02] noted that this inapproximability applies to the WDP



Polynomial-time solvable special cases

* Every bid is on a bundle of size at most two items
[Rothkopf et al. 98]

— ~maximum weighted matching
— With 3 items per bid, NP-hard again (3-COVER)

 |tems are organized on a tree & each bid is on a

connected set of items [sandhoim & Suri 03]

— More generally, graph of bounded treewidth [Conitzer et al. AAAIO4]
— Even further generalization given by [Gottlob & Greco EC07]

item B [ item E|

‘ item A ‘ item C '\| tem F ‘
\‘ —— item G‘

|\|itemH\




Clarke mechanism in CA
(aka. Generalized Vickrey Auction, GVA)




Clarke mechanism in CA....




Collusion under GVA

~ | [ = $1000

<
=
|

V(%) — $700 —» %

v( 1) =$1000

—
—

E.g. [Ausubel and Milgrom 06]; general characterization in [Conitzer & Sandholm AAMASO06]



False-name bidding

[Yokoo et al. AlJ2001, GEB2003]

v @) =$700  v( [J) ) =$800

loses wins, pays $200

v( &) =$300 v( T3 ) = $200

wins, pays $0 wins, pays $0

A mechanism is false-name-proof if bidders never have an
incentive to use multiple 1dentifiers

No mechanism that allocates items efficiently 1s false-name-proof
[Yokoo et al. GEB2003]



Characterization of false-name-proof

voting rules
Theorem [Conitzer 07] g

ANy (neutral, anonymous, IR) false-name-proof
voting rule f can be described by a single
number k: in [0,1]

With probability k;, the rule chooses an
alternative uniformly at random

With probability 1- k;, the rule draws two
alternatives uniformly at random;

— |If all votes rank the same alternative higher among
the two, that alternative is chosen

— Otherwise, a coin is flipped to decide between the
two alternatives



Alternative approaches to
false-name-proofness

* Assume there is a cost to using a false name
[Wagman & Conitzer AAMASO8]

* Verify some of the agents’ identities after the
fact [conitzer TARKO07]



Strategy-proof mechanisms that solve the

WDP approximately

* Running Clarke mechanism using approximation
algorithms for WDP is generally not strategy-proof

« Assume bidders are single-minded (only want a single

bundle)

« A greedy strategy-proof mechanism [Lehmann, O’Callaghan,
Shoham JACM 03]:

1. Sort bids by
(value/bundle
size)

2. Accept
greedily starting
from top

Worst-case
approximation
ratio = (#items)

VvV {a 11 3. Winning bid
Vv {é :(}3} 20 1%(18/2) =9 pays bundle size
b times
{a, d}, 18 . (value/bundle size)
*{a, c}, 16 ) 2 =14 offirst bid forced

out by the winning
?/Q j}g;’g bid
; 0

Can get a better approximation
ratio, \(#items),
by sorting by value/N(bundle
size)



Clarke mechanism with same approximation
algorithm does not work

v {a}, 11
v {b, c}, 20
A A{a, d}, 18
X Aa, c}, 16
A Ach 7
v {d}, 6

Total value to
bidders other
than the {a}
bidder: 26

V {b, c}, 20
V{a, d}, 18
A{a, c}, 16
A Ac}, 7
A {d}, 6

Total value: 38

{a} bidder should
pay 38 - 26 = 12,
more than her
valuation!



Designing mechanisms automatically

e Mechanisms such as Clarke are very general...

... but will instantiate to something specific for specific
settings
— This 1s what we care about

 Different approach: solve mechanism design problem
automatically for setting at hand, as an optimization
problem [Conitzer & Sandholm UAIO2]



SO RN

P,
« Outcomes: I%“

« Each agent is of high type with probablllty 0.2 and of low
type with probability 0.8

— Preferences of high type:
 u(get the painting) = 100
 u(other gets the painting) =0
* u(museum) =40
» u(get the pieces) = -9
 u(other gets the pieces) = -10

— Preferences of low type:
 u(get the painting) = 2
 u(other gets the painting) =0
* u(museum)=1.5
* u(get the pieces) = -
 u(other gets the pieces) = -10




Optimal dominant-strategies incentive compatible
randomized mechanism for maximizing expected

sum of utilities

high

low

high

low
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How do we set up the optimization?

Use linear programming
Variables:
— p(o|06,, ..., 0,)=probability that outcome o 1s chosen given types 0,, ..., 0
— (maybe) (0, ..., 0 ) =1’s payment given types 0, ..., 0_
Strategy-proofness constraints: for all 1, 0,, ...0_,0.”:
2 p(o]0,...,0)u(0,0)+mn(0,...,0,)=>
2 p0]0,...,06°,...,0 )u(0,0)+m(0,,...,0°,...,0)
Individual-rationality constraints: for all 1, 0,, ...0.:
2 p(o]0,...,0)u(,0)+m0,...,0)=0
Objective (e.g. sum of utilities)
Zor.....0aPO1s - B)Z(ZP(0] 6, -... 0,)u (8, 0) + (B, ..., 6,))

Also works for other incentive compatibility/individual rationality
notions, other objectives, etc.

n

For deterministic mechanisms, use mixed integer programming
(probabilities in {0, 1})

— Typically designing the optimal deterministic mechanism is NP-hard



Computational limitations on the agents

« Will agents always be able to figure out what action 1is
best for them?

* Revelation principle assumes this
— Effectively, does the manipulation for them!
» Theorem [Conitzer & Sandholm 04]. There are settings where:

— Executing the optimal (utility-maximizing) incentive compatible mechanism
1s NP-complete
— There exists a non-incentive compatible mechanism, where
* The center only carries out polynomial computation
» Finding a beneficial insincere revelation 1s NP-complete for the agents

« If the agents manage to find the beneficial insincere revelation, the new
mechanism 1s just as good as the optimal truthful one

* Otherwise, the new mechanism is strictly better



Hardness of manipulation
of voting mechanisms

« Computing the strategically optimal vote
(“manipulating”) given others’ votes 1s NP-hard for

certain voting mechanisms (including STV) [Bartholdi et al.
89, Bartholdi & Orlin 91]

* Well-known voting mechanisms can be modified to make
manipulation NP-hard, #P-hard, or even PSPACE-hard
[Conitzer & Sandholm [JCAIO3, Elkind & Lipmaa ISAACO0S5]

 Ideally, we would like manipulation to be usually hard,

not worst-case hard

— Several impossibility results [Procaccia & Rosenschein AAMASO06, Conitzer &
Sandholm AAAIO06, Friedgut et al. 07]



Preference elicitation

« Sometimes, having each agent communicate all
preferences at once is impractical

* E.g. In a combinatorial auction, a bidder can
have a different valuation for every bundle
(2#tems_1 values)

* Preference elicitation:

— sequentially ask agents simple queries about their
preferences,

— until we know enough to determine the outcome



Preference elicitation (CA)

“v({A,B,C})

“30” <707?”
\ “40”
"V({VA})X center/auctioneer/ ‘/{({VB’ C))?”

organizer/...

“What would you buy
if the price for A is 30, “nothing”
the price for B is 20,

the price for C is 20?”

[Parkes, Ausubel & Milgrom,
Wurman & Wellman, Blumrosen &
Nisan, Conen & Sandholm, Hudson
& Sandholm, Nisan & Segal, Lahaie

& Parkes, Santi et al, ...]




Preference elicitation (voting)

center/auctioneer/
organizer/...

““most
preferred?”

[Conitzer & Sandholm AAAIO2,
ECO05, Konczak & Lang 05,
Conitzer AAMASO7, Pini et al.
IJCAIQ7, Walsh AAAIO7]




Benefits of preference elicitation

e |Less communication needed

* Agents do not always need to determine all of
their preferences

— Only where their preferences matter



Other topics

e Online mechanism design: agents arrive and depart over

time [Lavi & Nisan 00, Friedman & Parkes 03, Parkes & Singh
03, Hajiaghayi et al. 04, 05, Parkes & Duong 07]

 Distributed implementation of mechanisms [Parkes &
Shneidman 04, Petcu et al. 06]



Some future directions

General principles for how to get incentive compatibility
without solving to optimality

Are there other ways of addressing false-name
manipulation?

Can we scale automated mechanism design to larger
instances?

— One approach: use domain structure (e.g. auctions [Likhodedov &
Sandholm, Guo & Conitzer])

Is there a systematic way of exploiting agents’
computational boundedness?

— One approach: have an explicit model of computational costs
[Larson & Sandholm]

Thank you for your attention!
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