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Abstract

In most real-world settings, due to limited time or

other resources, an agent cannot perform all poten-
tially useful deliberation and information gathering

actions. This leads to the metareasoning problem
of selecting such actions. Decision-theoretic meth-
ods for metareasoning have been studied in Al, but
there are few theoretical results on the complexity
of metareasoning. We derive hardness results for
three settings which most real metareasoning sys-

tems would have to encompass as special cases.

In the first, the agent has to decide how to allo-
cate its deliberation time across anytime algorithms
running on different problem instances. We show
this to beA"P-complete. In the second, the agent
has to (dynamically) allocate its deliberation or in-

formation gathering resources across multiple ac-
tions that it has to choose among. We show this
to be A'P-hard even when evaluating each individ-

ual action is extremely simple. In the third, the

agent has to (dynamically) choose a limited nhum-
ber of deliberation or information gathering actions

to disambiguate the state of the world. We show
that this is\“P-hard under a natural restriction, and

PSPACE-hard in general.

Introduction

Because limited time (or other resources) prevent the agent
from performing all potentially useful deliberation (or infor-
mation gathering) actions, it has to select among such actions.
Reasoning about which deliberation actions to take is called
metareasoning Decision theory[7, 10 provides a norma-
tive basis for metareasoning under uncertainty, and decision-
theoretic deliberation control has been widely studied in Al
(e.g.[2,4-6,8,9,12-15,18-20

However, the approach of using metareasoning to control
reasoning is impractical if the metareasoning problem itself
is prohibitively complex. While this issue is widely acknowl-
edged (e.g.[8, 12-14), there are few theoretical results on
the complexity of metareasoning.

We derive hardness results for three central metareason-
ing problems. In the first (Section 2), the agent has to de-
cide how to allocate its deliberation time across anytime al-
gorithms running on different problem instances. We show
this to beA/P-complete. In the second metareasoning prob-
lem (Section 3), the agent has to (dynamically) allocate its de-
liberation or information gathering resources across multiple
actions that it has to choose among. We show this /i
hard even when evaluating each individual action is extremely
simple. In the third metareasoning problem (Section 4), the
agent has to (dynamically) choose a limited number of delib-
eration or information gathering actions to disambiguate the
state of the world. We show that this M¢P-hard under a
natural restriction, an®?SP.ACE-hard in general.

These results have general applicability in that most metar-

In most real-world settings, due to limited time, an agent canasoning systems must somehow deal with one or more of
not perform all potentially useful deliberation actions. As these problems (in addition to dealing with other issues). We
a result it will generally be unable to act rationally in the @S0 believe that these results give a good basic overview of
world. This phenomenon, known as bounded rationality, ha§e space of high-complexity issues in metareasoning.

been a long-standing research topic (e[8,17). Most of . . . .

that research has bedascriptive the goal has been to char- 2 Allocating anytime algorithm time across

acterize how agents—in particular, humans—deal with this  problems

constraint. Another strand of bounded rationality researchy, this section we study the setting where an agent has to
has thenormative (prescriptivejoal of characterizing how  gjiocate its deliberation time across different problems—each
agentsshoulddeal with this constraint. This is particularly qf which the agent can solve using an anytime algorithm. We

important when building artificial agents. ) show that this is hard even if the agent can perfectly predict
Characterizing how an agent should deal with bounded rage performance of the anytime algorithms.

tionality entails determining how the agent should deliberate. o
*The material in this paper is based upon work supported by thc,z'1 Motivating example

National Science Foundation under CAREER Award IRI-9703122,Consider a newspaper company that has, by midnight, re-
Grant 11S-9800994, ITR 11S-0081246, and ITR 11S-0121678. ceived the next day’s orders from newspaper stands in the 3



cities where the newpaper is read. The company owns a fleproblem instances to get a total performance of at lddst
of delivery trucks in each of the cities. Each fleet needs itghat is, whether there exists a veci@¥, No, ..., N,,) with
vehicle routing solution by 5am. The company has a default >, N; < Nand > fi(N;) > K.

routing solution for each fleet, but can save costs by improvi<i<m 1<i<m

ing (tailoring to the day’s particular orders) the routing solu- 5 aasonable approach to representing the performance
tion of any individual fleet using an anytime algorithm. In this profiles is to use piecewise linear performance profiles. They
setting, the “solution quality” that the anytime algorithm pro- .4, model any performance profile arbitrarily closely, and

vides on a fleet's problem instance is the amount of savingRaye heen used in the resource-bounded reasoning litera-

compared to the default routing solution. _ ture to characterize the performance of anytime algorithms
We assume that the company can perfectly predict the say: .9.[2]). We now show that the metareasoning problem is

ings made on a given fleet’s problem instance as a function o P-complete even under this restriction. We will reduce

deliberation time spent on it (we will prove hardness of metars,om the KNAPSACK probler?,

easoning even in this deterministic variant). Such functions

are calleddeterministic) performance profil¢g, 6, 8, 9, 20. Definition 2 (KNAPSACK) We are given a sef of m pairs

Each fleet's problem instance has its own performance proef positive integergc;, v;), a constraintC’ > 0 and a target

file.! Suppose the performance profiles are as shown in Fig. kalueV > 0. We are asked whether there exists alset S

suchthat) C; < Cand)  v; > V.
4 : ‘ ‘ : jel JjeI

instance 1
instance 2 --------

351 nstance 3 Theorem 1 PERFORMANCE-PROFILES &/ P-complete
S even if each performance profile is continuous and piecewise
linear3

25

Savings

e ] Proof: The problem is in\VP because we can nondetermin-
: istically generate thé/; in polynomial time (since we do not
need to bother trying numbers greater tii@)) and given the
N, we can verify if the target value is reached in polyno-
° L o rme oy ¢ mial time. To showAP-hardness, we reduce an arbitrary
KNAPSACK instance to the following PERFORMANCE-
Figure 1: Performance profiles for the routing problems. PROFILES instance. Let there be performance profiles,
given by f;(n) = 0forn < ¢;, fi(n) =n—c¢; forc; <n <
. 1 Ui, andfl(n) =vy;forn >c+v,. LetN=C+V
and letK = V. We claim the two problem instances are
equivalent. First suppose there is a solution to the KNAP-

ACK instance, that is, a sétC S suchthat) C; < C'and
jerI

05

Then the maximum savings we can obtain with 5 hours o
deliberation time i.5, for instance by spending 3 hours on
instance 1 and 2 on instance 2. On the other hand, if we h
until 6am to deliberate (6 hours), we could obtain a savings

of 4 by spending 6 hours on instance 3. S v; > V. Then set theV; as follows: N; = 0 for i ¢ I,
~
2.2 Definitions and results ;nle- = ci+Y—v;forieI.Then, ¥ N;=3 N; =
D v 1<i<m i€l

We now define the metareasoning problem of allocating de- ey’
liberation across problems according to performance profiless~ (¢, + ¥ 4,) = S, + XS0, = Y+ V <

PR iel PR iel iel

Definition 1 (PERFORMANCE-PROFILES) We are <! jer jer
given a list of performance profiles, fo, ..., fm) (Where  C +V = N since)_ C; < C. Also, since)_ v; > V, it
each f; is a nondecreasing function of deliberation time, Jel Jerl

mapping to nonnegative real numbers), a number of defollows that for every: € I, we havec; < N; Svci + v,
liberation stepsN, and a target valuek. We are asked and hence > fi(Ni) = > fi(Ni) = Z(ﬁvi) =
whether we can distribute the deliberation steps across the 1gigm el i

'Because the anytime algorithm’s performance differs across in- 2This only demonstratesveak NP-completeness, as KNAP-
stances, each instance has its own performance profile (in the se8ACK is weakly NP-complete; thus, perhaps pseudopolynomial
ting of deterministic performance profiles). In reality, an anytime time algorithms exist.
algorithm’s performance on an instance cannot be predicted per- °If one additionally assumes that each performance profile is
fectly. Rather, usually statistical performance profiles are kept thatoncave, then the metareasoning problem is solvable in polynomial
aggregate across instances. In that light one might question the atime [2]. While returns to deliberation indeed tend to be diminish-
sumption that different instances have different performance proing, usually this is not the case throughout the performance profile.
files. However, sophisticated deliberation control systems can conrAlgorithms often have a setup phase in the beginning during which
dition the performance prediction on features of the instance—anthere is no improvement. Also, iterative improvement algorithms
this is necessary if the deliberation control is to be fully normative.can switch to using different local search operators once progress has
(Research has already been conducted on conditioning performanceased using one operator (for example, once 2-swap has reached a
profiles on instance featuré8, 9,19 or results of deliberation on local optimum in TSP, one can switch to 3-swap and obtain gains
the instance so fd#, 8,9, 15, 18-20) from deliberation again)16].



ﬁ > v; =V = K. So we have found a solution to is no silver, the test will be positive with probabili€y This

7 iel test takes 3 units of time. (3) Test for coppercat If there

jerl
the PERFORMANCE-PROFILES instance. On the otheriS Copper, the test will be positive with probabiltyif there
hand, suppose there is a solution to the PERFORMANCEIs no copper, the test will be positive with probability This
PROFILES instance, that is, a vectdy;, Ny, ..., N,,) with  test takes 2 units of time. _ o

SS N; < Nand S fi(N;) > K. Since spending  Given the probabilities of the tests turning out positive un-
1<i<m 1<i<m der various circumstances, one can use Bayes’ rule to com-
more thanc; + v; deliberation steps on profileis useless, pute the expected utility of each digging option given any
we may assume tha¥; < ¢; + v; for all <. We now claim  (lack of) test result. For instance, lettiagoe the event that
that! = {i : N; > ¢;} is a solution to the KNAPSACK in- there is gold atd, andt4 be the event that the test 4tis
stance. First, using the fact that(N;) = Oforallj ¢ I,  positive, we observe tha(t ) = P(tala)P(a) + P(ta] —
we have} v; > > fi(Ni) = > fi(Ni)) 2 K =V. a)P(—a) = 21+ LI = L. Then, the expected utility of

NSO, i = 3 N - S (Neme) = S N — X fi(Nyy < H9gingaud giventhal the lestat was positve i P(elf.),
el il il icl icI whereP(alt4) = Py~ L =590 the expected
1<;m N;— 1<;m filN)) s N-K =C+V -V =C.So0 utility is % Doing a similar analysis everywhere, we can rep-
we have found a solution to the KNAPSACK instance = resent the problem by trees shown in Fig. 2. In these trees, be-
The PERFORMANCE-PROFILES problem occurs natu- 5/8 312 1
and thus its compiexdy leads 10’ Sgnifcant difieulies for

metareasoning. This is the case even under the (unrealistic)
assumption of perfect predictability of the efficacy of deliber-
ation. On the other hand, in the remaining two metareasoning
problems that we analyze, the complexity stems from uncer-
tainty about the results that deliberation will provide.

10/3 599 3 0 2 0

3 Dynamically allocating evaluation effort Figure 2: Tree representation of the action evaluation in-
across options (actions) stance.

In this section we study the setting where an agent is faced

with multiple options (actions) from which it eventually has g 4t the root represents not having done a test yet, whereas
to choose one. The agent can use deliberation (or informatiogeing at a left (right) leaf represents the test having turned
gather_lng) to .evaluate each action. Given limited time, it haaut positive (negative); the value at each node is the expected
to decide which ones to evaluate. We show that this is hargy|ye of digging at this site given the information correspond-
even in very restricted cases. ing to that node. The values on the edges are the probabilities
A of the test turning out positive or negative. We can subse-
3.1 Motivating example quently use these trees for analyzing how we should gather
Consider an autonomous robot looking for precious metals. linformation. For instance, if we have 5 units of time, the op-
can choose between three sites for digging (it can dig at mosimal information gathering policy is to test & first; if the
one site). At sited it may find gold; at siteB, silver; at site  result is positive, test at; otherwise test af’. (We omit the
C, copper. If the robot chooses not to dig anywhere, it getgroof because of space constraint.)
utility 1 (for saving digging costs). If the robot chooses to dig
somewhere, the utility of finding nothing is 0; finding gold, 3.2 Definitions
5; finding silver, 3; finding copper, 2. The prior probability of |, the example, there were foactionsthat we could eval-
there being gold at sitél is 3, that of finding silver at sitd | ,5e: digging for a precious metal at one of three locations,
is 3, and that of finding copper at si@is 3. or not digging at all. Given the results of all the tests that
In general, the robot could perform deliberation or infor- we might undertake on a given action, executing it has some
mation gathering actions to evaluate the alternative (digginggxpected value. If, on the other hand, we do not (yet) know
actions. The metareasoning problem would be the same fe{l| the results of these tests, we can still associate an expected
both, so for simplicity of exposition, we will focus on in- value with the action by taking an additional expectation over
formation gathering only. Specifically, the robot can performthe outcomes of the tests. In what follows, we will drop the
tests to better evaluate the likelihood of there being a preciougord “expected” in its former meaning (that is, when talk-
metal at each site, but it has only limited time for such testSing about the expected value given the outcomes of all the
The tests are the following: (1) Test for gold 4t If there  tests), because the probabilistic process regarding this expec-
is gold, the test will be positive with probabilit}#; if there  tation has no relevance to how the agent should choose to test.
is no gold, the test will be positive with probabilitﬁg. This  Hence, all expectations are over the outcomes of the tests.
test takes 2 units of time. (2) Test for silver &t If there While we have presented this as a model for information
is silver, the test will be positive with probability; if there  gathering planning, we can use this as a model for planning



(computational) deliberation over multiple actions as well. Intakes its first evaluation step on action 1, and gives maximal

this case, we regard the tests as computational steps that thepected utility among online evaluation control policies that

agent can take toward evaluating an acfion. spend at mosi units of effort. (If at the end of the deliber-
To proceed, we need a formal model of how evaluatiomation process, we are at nodeg for tree, then our utility is

effort (information gathering or deliberation) invested on amax;<;<m u.,,;, because we will choose the action with the

given action changes the agent's beliefs about that actiorighest expected value.)

For this model, we generalize the above example to the case

where we can take multiple evaluation steps on a certain a8.3 Results

:;)kne(::trr;%g2;":;’:’/&5{}52?‘;‘:\’ haé?gﬁfigr%\’en when we C@We now show that even a severely restricted version of this
pp ' problem is\V‘P-hard?

Definition 3 Anaction evaluation trees a tree with )
] - Theorem 2 ACTION-EVALUATION is\V"P-hard, even when
e Arootr, representing the start of the evaluation; all trees have depth either 0 or 1, branching factor 2, and all

e For each nonleaf node, a costk,, for investing another  leaf values are -1, 0, or 1.

step of evaluation effort at this point; . . )

Fo h edae b 4 child nod Proof: If action evaluation treg has depth 1 and branch-
e For each edge: between parent nodeand child node ing factor 2, we represent it bip?, p3, v}, ul, k7) wherep!

¢, a probabilityp. = p(, . of transitioning fromptoc . . . o :

upon taking a step of evaluation effortiat is the transition probablhty to leaf, u] is the value at Iegf
i, andk’ is the cost of taking the (only) step of evaluation.

» For each leaf nodé, a valueu;. We reduce an arbitrary KNAPSACK instance to the follow-

According to this definition, at each point in the evalua-ing ACTION-EVALUATION instance. Letl = m + 3, let
tion of a single action, the agent’s only choicenbetherto 6 = m andlete =20 > v = ﬁzv"
invest further evaluation effort, but nbibw to continue the e l<ism o

evaluation. This is a reasonable model when the agent do&ge set tree 1p!, pl, ul, ul, k') = (¢,1 — ¢,1,—1,1), and

evaluation through deliberation and has one algorithm at itgree 2 (p2, p2, w2, ul, k') = (1 — €)™ (e + 6V),1 — (1 —

disposal. However, in general the agent may have differergyn(EJr(;V)’ 1,—1,C+1)8. Tree 3 has depth 0 and a value of
information gathering actions to choose from at a given poing_ Finally, for each paifc;, v;) in the KNAPSACK instance,

in the evaluation, or may be able to choose from among seVqre is an evaluation tre@i*3, pit3, uits uits kit3) =

eral deliberation actions (e.g., via search confitoll4]). In Sus, 1 — v, 1, —1, 1) We setN — C + 1. We claim
Section 4, we will discuss how being able to choose betwee[(he“instancgs ,are’eLqL.JivaIent. First we make some obser-

tests may introduce drastic complexity even when evaluatingions about the constructed ACTION-EVALUATION in-
a single thing. In this section, however, our focus is on theg;o e First, once we determine the value of a action to

complexities introduced by having to choose between differy,q 1, choosing this action is certainly optimal regardless of

ent 2ctions on Whigh to in_vest_ evaluationdeffolrt next. ._the rest of the deliberation process. Second, if at the end of
_The agent can determine its expected value of an actiofe geliperation process we have not discovered the value of
given its evaluation so far, using the subtree of the actlor}Jlny action to be 1, then for any of the trees of depth 1, ei-

evaluation tree that is rooted at the node where evaluation hagar \we have discovered the corresponding action's value to
brought us so far. This value can be determined in that sUbsa .1 or we have done no deliberation on it at all. In the

tree by propagating upwards from the leafs: for pagewith  |5ter case, the expected value of the action is always below
a set of childrerC’, we haveu,, = Zc(p(p,c)uc)' 0 (6 is carefully set to achieve this). Hence, we will pick

We now present the metareacseoning problem. In generaﬁCt!O” .3 for value 0. It. fo_IIows that an optjmal de:liberati_on
the agent could use amlineevaluation control policy where POlicy is one that maximizes the probability of discovering
the choices of how to invest future evaluation effort can defhat a action has value 1. Now, consider test sebf a pol-
pend on evaluation results obtained so far. However, to avoitf¥ys Which is the set of actions that the policy would evaluate
trivial complexity issues introduced by the fact that such & N@ action turned out to have value 1. Then, the probabil-
contingencstrategy for evaluation can be exponential in size, Y Of discovering that a action has value 1 is simply equal

we merely ask what action the agent should invest its firsL0 the probability that at least one of the actions in this set
evaluation step on. as value 1. So, in this case, the quality of a policy is de-

termined by its test set. Now we observe that any optimal
Definition 4 (ACTION-EVALUATION) We are giveri ac-  action is either the one that only evaluates action 2 (and then
tion evaluation trees, indexed 1 throughcorresponding to  runs out of deliberation time), or one that has action 1 in its
[ different actions. (The transition processes of the treesare
independent.) Additionally, we are given an intedér We SACTION-EVALUATION is trivial for [ = 1: the answer is
are asked whether, among the online evaluation control poli-yes” if itis possible to take a step of evaluation. The same is true if

cies that spend at mo3f units of effort, there exists one that there is no uncertainty with regard to the value of any action; in that
case any evaluation is irrelevant.

“For this to be a useful model, it is necessary that updating be- ®Note that usingn in the exponent does not make the reduction
liefs about the value of an action (after taking a deliberation step) i€xponential in size, because the length of the binary representation
computationally easy relative to the evaluation problem itself. of numbers withn in the exponent is linear im.



test set. (For consider any other policy; since evaluating acever a hole, or simply walk away. If the gap turns out to be
tion 1 has minimal cost, and gives strictly higher probability a staircase and the robot descends down it, this gives utility
of discovering a action with value 1 than evaluating on any2. If it turns out to be a hole and the robot jumps over it, this
other action besides 2, simply replacing any other action irgives utility 1 (discovering new floors is more interesting). If
the test set with action 1 is possible and improves the polthe robot walks away, this gives utility 0 no matter what the
icy.) Now suppose there is a solution to the KNAPSACK gap was. Unfortunately, attempting to jump over a staircase
instance, that is, a sdt C S such thatd_ C; < C and or canyon, or trying to descend into a hole or canyon, has the
i€l , disastrous consequence of destroying the robot (utiity).

%:Ivi > V. Then we can construct a policy which has as|t fo|lows that if the agent cannot determine with certainty
: _ o : what the gap is, it should walk away.

test set/ = {1}ULj : j =3 € I}. (Evaluating all these In order to determine the nature of the gap, the robot can

actions costs at most + 1 deliberation units.) The proba- d ; . h d .
bility of at least one of these actions having value 1 is at leasfPdUCt various tests (@uerieg. The tests can determine

the probability that exactly one of them has value 1, which istbef answers to the following questions: (1) Am I inside a
> v M >y pj(l_g)m — (=)™ (e+ Y 60;) > _ U|Id|ng? Ayesanswer is consistent only with; anoanswer
i 1 ke TRt 2= i 1 = is consistent wittb, H, C. (2) If | drop a small item into the
(1 — €)™ (e + V) = p?. Using our previous observation we 9P, do | hear it hit the ground? yesanswer is consistent
can conclude that there is an optimal action that has action With 5 f1; ano answer is consistent with, C'. (3) Can |
in its test set, and since the order in which we evaluate ac¥alk around the gap? esanswer is consistent with, H;
tions in the test set does not matter, there is an optimal polic§t "0 @nNSWer is consistent withi, #, C'

which evaluates action 1 first. On the other hand, suppose ASSume that if multiple answers to a query are consistent
there is no solution to the KNAPSACK instance. Consider aVith the true state of the gap, the distributions over such an-

policy which has 1 in its test set, that is, the test set can b&WVers are uniform and independent. Note that after a few
expressed ag = {1} J{j : j — 3 € I} forsome sef. Then ~ queries, the set of states consistent with all the answers is
we must havey™ C; < (', and since there is no solution to the intersection of the sets consistent with the individual an-

icl swers; once this set has been reduced to one element, the
the KNAPSACK instance, it follows that v; <V —1. But  robot knows the state of the gap.
i€l Suppose the agent only has time to run one test. Then,

the probability that at least one of the actions in the test sef; nayimize expected utility, the robot should run test 1, be-
has value 1is at mOSEP{ =€+ 2 6v; <e+d0(V—1)=  cause the other tests give it no chance of learning the state of
J ; the gap for certain. Now suppose that the agent has time for
¢ + 6V — 4. On the other handy . (1=e)™(e+0V) > yyq £t;eé)ts. Then the optimal ICtjgst policy is as ?ollows: run test
(1 —me)(e+0V) =2 e+ 0V —2me. Ifwe now observe that 5 - if the answer iges run test 1 second; otherwise, run
2me” = G S e S Tom( S w7 0, itfollows  est 3'second. (If the true stateds this is discovered with
1<i<m 1<i<m probability%; ifitis H, this is discovered with probabiliti',

that the policy of just evaluating action 2 is strictly better. S0,44 yot5) expected utility is’,. Starting with test 1 or test 3 can
there is no optimal policy which evaluates action 1 firstm

We have no proof that the general problem is\ip. It~ Only give expected utility.)
is an interesting open question whether stronger hardness re- .
sults can be obtained for it. For instance, perhaps the generdt2  Definitions

problem isPSPACE-complete. We now define the metareasoning problem of how the agent
should dynamically choose queries to ask (deliberation or in-

4 Dynamically choosing how to disambiguate formation gathering actions to take) so as to disambiguate the
state state of the world. While the illustrative example above was

) for information gathering actions, the same model applies to

We now move to the setting where the agent has only ongeliberation actions for state disambiguation (such as image

thing to evaluate, but can choose the order of deliberation (ghrocessing, auditory scene analysis, sensor fusing, etc.).
information gathering) actions for doing so. In other words,

the agent has to decide how to disambiguate its state. Weefinition 5 (STATE-DISAMBIGUATION) We are given
show that this is hard. (We consider this to be the most sig-
nificant result in the paper.)

o AsetO = {0,0,,...,0,} of possible world states;
e A probability functiorp overo;

4.1 Motivating example -
Consider an autonomous robot that has discovered it is on the . If there are two situations that are equivalent from the agent's

edge of the floor; there is a gap in front of it. It knows this gappomt of view (the agent’s optimal course of action is the same and

. . ; the utility is the same), then we consider those situations to be one
can only be one of three things: a staircaSk @ hole @), or state. Note that two such situations may lead to different answers

acanyon(’) (assume a uniform prior distribution over these). (5 the queries. For example, one situation may be that the gap is
The robot would like to continue its exploration beyond thean indoor staircase, and another situation may be that the gap is an
gap. There are three courses of physical action available tutdoor staircase. These situations are considered to be the same
the robot: attempt a descent down a staircase, attempt to jurgate, but will give different answers to the query “Am | inside?”.



e A utility functionu : © — R2° whereu(6;) gives the First suppose there is a solution to the SET-COVER in-
utility of knowing for certain that the world is in state ~ stance, that is, a subcollectidgn C 7 such thatji/| =
at the end of the metareasoning process; (not knowingy/ and J,..,, = S. Then our policy for the STATE-
the state of the world for certain always gives utility 0); DISAMBIGUATION instance is simply to ask the queries
corresponding to the elements ©@f in whichever order and
of ©. Each such subset corresponds to an answer tcyn_condltlona_lllly on th_?_ answers 8{ the q?ehry. If the true state
the query, and indicates the states that are consistent M S, we will get utility 0 regardiess. If the true statetis

with that answer. We require that for each state, at leas each query will eliminate the elements of the corresponding

one of the answers is consistent with it: that is, for any i [FOT consideration. Sinc is a set cover, it follows that
— (a1, az,...,an), we have ), . a;, — ©. When after all the queries have been asked, all elements of S have
4 ) ey 1<j<m ™J been eliminated, and we know that the true state of the world

a query is asked, the answer is chosen (uniformly) rAMisp, to get utility 1. So the expected utility % so there

domly by nature from the answers to that query that are, : g
consistent with the world's true state (these drawings areS & Solution to the STATE-DISAMBIGUATION instance.
independent): On the other hand, suppose there is a solution to the
_ ' STATE-DISAMBIGUATION instance, that is, a policy for
e AnintegerN; A targetvalueG. asking at mostV queries that gives expected utility at least
We are asked whether there exists a policy for asking at mo§f- Because given the true state of the world, there is only

N queries that gives expected utility at leét(Lettingr (6, ) one answer consistent with it for each query, it fc_)IIows that
be the probability of identifying the state when itfig the the queries that will be asked, and the answers given, follow

e A query setl), where eachy € @ is a list of subsets

expected utility is given b 0V (0.)u(6,).) determinis;ically from the true state of the world. Since we
P yisg fgjgrp( Jr(@)u:)) cannot derive any utility from cases where the true state of the
world is notb, it follows that when it ish, we must be able to
4.3 Results conclude that this is so in order to get positive expected utility.

Consider the queries that the policy will ask in this latter case.
Each of these queries will eliminate precisely the correspond-

the case where for each query, only one answer is consiste- gT;. Since at the end of the deliberation, all the elements of

with the state of the world. This situation occurs when the OTGLL‘ZE h:gﬁcge?fnwi'ggiﬁg?hg Z‘gllloevgtsi(:gégf%geseh ﬁfst
states are so specific as to provide enough information to ar% a solﬁtion 0 fhe SET-COVER instance SEi,
swer every query. Our reduction is from SET-COVER. -

Definition 6 (SET-COVER) We are given a set S, a collec- We are now ready to present oRSPACE-hardness re-

tion of subset§” = {I; C S}, and a positive integed!. We %“gﬂ@%fgﬁﬁ'g{;['ﬂom stochastic satisfiability, which is

are asked whether any/ of these subsets covéy, that is, T i
whether there is a subcollectigs C 7 such thatie/| = 7 Definition 7 (STOCHASTIC-SAT (SSAT)) We are given a
andJ;, o, = S- Boolean formula in conjunctive normal form (with a set of

‘ clausesC over variablesey, xa, ..., Ty, Y1, Y2, - - -, Yn). We
Theorem 3 STATE-DISAMBIGUATION igVP-hard, even play the following game with nature: we pick a value fqr,
when for each state-query pair there is only one consisten§ubsequently nature (randomly) picks a valuefprwhere-
answer. upon we pick a value fat, after which nature picks a value

, ) for y,, etc., until all variables have a value. We are asked

Proof. We reduce an arbitrary SET-COVER instance to theyhether there is a policy (contingency plan) for playing this

following STATE-DISAMBIGUATION instance. Le®© = game such that the probability of the formula being eventu-
SJ{b}. Letp be uniform. Letu(b) = 1 and for anys € S, ally satisfied is at leas.

letu(s) =0.LetQ ={(©-T;,T;): T, € T}. LetM = N

and letG = 5. We claim the instances are equivalent. Now we can present oWrSP ACE-hardness result.

S Theorem 4 STATE-DISAMBIGUATION i®SP.ACE-hard.
8There are several natural generalizations of this metareasoni

n .

problem, each of which is at least as hard as the basic variant. Or{gemOf: Let © = CU{b} U V' where V' consists of the
allows for positive utilities even if there remains some uncertaintyelements of an upper triangular matrix, that &, =
about the state at the end of the disambiguation process. In this mof@/11, V12, - - « s Uln, V22, U23, « « « s V2, U353, « « -« - - yUnn}. P IS
general case, the utility function would hasebsetof © as its do-  uniform over this setw is defined as followsu(c) = 0 for
main (or perhaps even probability distributions over such subsetshll ¢ € C, u(b) = 1, andu(v;;) = H = 2 [] Nans(q) for

In general, specifying such utility functions would require space ex- q€Q

ponential in the number of states, so some restriction of the utilityall v;; € V, whereN,,(q) is the number of possible an-
function is likely to be necessary; nevertheless, there are utility funcsyers tog. The queries are as follows. For every € V,

tions specifiable in polynomial space that are more general than thg\ere is a query;; = ({vi;},© — {v;;}). Additionally, for

one given here. Another generalization is to allow for different dis'each variabler tfjlere areJtHe foIIOWijng two queries: ,Ietting
tributions for the query answers given. One could also attribute dif-, _ = .72 ; s : 1o
ferent execution costs to different queries. Finally, it is possible ton _ {vij C] _2 i} (that ISF] rowi in the matrix), and letting
drop the assumption that queries completely rule out certain stateg,z ={ceC:zec} wehave

and rather take a probabilistic approach. o ¢, =V;,C,0-V,—-C,, —Cy,,0-V,=Cy, —C_,,);

Before presenting oPSP.ACE-hardness result, we will first
present a relatively straightforwartl"’P-hardness result for



®q ., =WV, C,06-V,-C_,, -C,,,06-V; —C_,, —  our expected utility is at mos{t% — @ I1 W)H +
nyl). qu ans

. . . L= (-2 41 . Now, it is straightfowar
We haven steps of deliberation. Finally, the goal (& = I |@\.( . +.2) < G. Now, itis straightfoward
2V |H+1 to show that this implies that so long as no answer has been

IR First suppose there is a solution to the SSAT iN-gne of theV; or C, queryi (1 < i < n) is eitherg,, or
stance, that is, there exists a contingency plan for setting theQZi. Queryn may still beg,,,, under these conditions, but
x; such that the probability that the formula is eventually Ssatsince querieslwn and q—z, are both more informative than
isfied is at least. Now, if we ask query,, (¢--,), we say 4. we may assume that the policy that achieves the target
this corresponddo us selectinge; (—x;); if the answer to  yalue asks one of the former two in this case as well. It fol-
queryg., is©—V; —C,, —C,, (0-V;—C,, —Cy,),Wwesay  |ows that the part of this policy that handles the cases where
this corresponds to nature selectind—y;). Then, consider no answers have been either one of ther C corresponds

the following contingency plan for asking queries: exactly to a valid SSAT policy, according to the correspon-

e Start by asking the query corresponding to how the firsdence between queries/answers and variable selections out-
variable is set in the SSAT instance (thatds, if z; is Ilned_earller in the pr(_)of. But now we observe, as before,
settotrue, q_,, if 2 is set tofalse); that if the true state i$, the probability that we discover

" Y—X1 1

] this with the STATE-DISAMBIGUATION policy is precisely
e So long as all the queries and answers correspond tghe probability that this SSAT policy satisfies all the clauses.
variables being selected, we follow the SSAT contin-Thjs probability must be at leagtin order for the STATE-
gency plan; thatis, whenever we have to ask a query, wg)|SAMBIGUATION policy to reach the target expected util-

ask the query that corresponds to the variable that woulgty value. So there is a solution to the SSAT instances
be selected in the SSAT contingency plan if variables so

far had been selected in a manner corresponding to the The following theorem allows us to make any hardness re-

restricting ourselves to a uniform prior over states, or to a
* If, on the other hand, we gé&f as an answer, we proceed constant utility function over the states.

to askvi;, vi(i11), - - - » Vi(n—1) iN that order; . )
. . . Theorem 5 Every STATE-DISAMBIGUATION instance is
e Finally, if we getC' as an answer, we simply stop. equivalent to another STATE-DISAMBIGUATION instance

We make two observations about this policy. First, if theWith a uniform priorp, and to another with a constant util-
true state of the world is one of the;, we wil certainly ity functionu (u(9,) = 1 for all 6, € ©). Moreover, these
discover this. (Upon asking query which is g,, or —qa,, equivalent instances can be constructed in linear time.
we will receive answel/; and switch tog;; queries; then if

. . ; B ; : - Proof: The only relevance ofp and w in STATE-
J <, queryj + 1 will be ¢;;, we will receive answefuv;}, S AMBIGUATION is to the policy’s expected utility
and know the state; whereasjif= n, we will eliminate all

the other elements df;; with queriesi + 1 throughn, and 1<152:<7‘p(9t)77(9t)u(0t)- So, only the products(6; )u(;) mat-

know the state.) Second, if the true staté,ifor anyi (1 < ter: adding a constant factor to them also makes no difference

i < n), queryi ill be eitherg,, or —q.,. This will certainly it we correct@ accordingly. Hence, any instance is equiva-
eliminate all thel}”, so we will know the state at the end if lent to one where we rep'aqeandu by p/(et) 1 and

and only if we also manage to eliminate all the clauses. But, . : . — el
now notice that each query-answer pair eliminates exactly th& (8e) = |Blp(6:)u(6). Itis also equivalent to one where we

0 )u (¢
same clauses as the corresponding variable selections satigi§gPlacep, v andG by p”(6;) = %, u’(6y) =
It follows that we will know the state in the end if and only if 1<i<r
these corresponding variable selections satisfy all the literals., G/ = & ———. =

> (p(8:)u(6:))”

1<i<r

But the process by which the queries and answers are selected
is exactly the same as in the SSAT instance with the solution

policy. It follows we discover the true state with probability 5 Conclusion and future research

at leastl. Hence, our total expected utility is at least H + . _ .
L1 P P y é%# In most real-world settings, due to limited time or other re-

rerz = G- Sothere is a policy that achieves the goal. sources, an agent cannot perform all potentially useful de-
Now suppose there is a policy that achieves the goal. Wéberation and information gathering actions. This leads to
first claim that such a policy will always discover the true the metareasoning problem of selecting such actions care-
state if it is one of they;;. For if a policy does not manage fully. Decision-theoretic methods for metareasoning have
this, then there is some; such that for some combination been studied in Al for the last 15 years, but there are few
of answers consistent with; , the policy will not discover theoretical results on the complexity of metareasoning.
the state. Suppose this is indeed the true state. Since eachWe derived hardness results for three metareasoning prob-
consistent answer to quegyoccurs with probability at least lems. In the first, the agent has to decide how to allocate
m it follows that the unfavorable combination of an- its deliberation time across anytime algorithms running on
swers occurs with probability at leagf . It follows different problem instances. We showed this to Jdé-
qeq e complete. In the second, the agent has to (dynamically) allo-
that even if we discover the true state in every other scenariaate its deliberation or information gathering resources across



multiple actions that it has to choose among. We showedl11] C Papadimitriou.

this to beNP-hard even when evaluating each individual ac-

tion is very simple. In the third, the agent has to (dynami-[12]

cally) choose a limited number of deliberation or information
gathering actions to disambiguate the state of the world. We
showed that this i$v"’P-hard under a natural restriction, and
PSPACE-hard in general.

Our results have general applicability in that most metar{13]
easoning systems must somehow deal with one or more of

these problems (in addition to dealing with other issues). The

results are not intended as an argument against metareasda4]

ing or decision-theoretic deliberation control. However, they

do show that the metareasoning policies directly suggesteld5]

by decision theory are not always feasible. This leaves sev-
eral interesting avenues for future research: 1) investigating
the complexity of metareasoning when deliberation (and in-
formation gathering) is costly rather than limited, 2) devel-

oping optimal metareasoning algorithms that usually run fast16]

(albeit, per our results, not always), 3) developing fast op-
timal metareasoning algorithms for special cases, 4) devel-

oping approximately optimal metareasoning algorithms that17]
are always fast, and 5) developing meta-metareasoning algo-
rithms to control the meta-reasoning, etc. [
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