
Multi-step Multi-sensor Hider-Seeker Games

Erik Halvorson, Vincent Conitzer and Ronald Parr
Duke University Department of Computer Science
{erikh, conitzer, parr}@cs.duke.edu

Abstract

We study a multi-step hider-seeker game where
the hider is moving on a graph and, in each step,
the seeker is able to search c subsets of the graph
nodes. We model this game as a zero-sum Bayesian
game, which can be solved in weakly polynomial
time in the players’ action spaces. The seeker’s
action space is exponential in c, and both play-
ers’ action spaces are exponential in the game hori-
zon. To manage this intractability, we use a col-
umn/constraint generation approach for both play-
ers. This approach requires an oracle to determine
best responses for each player. However, we show
that computing a best response for the seeker is NP-
hard, even for a single-step game when c is part of
the input, and that computing a best response is NP-
hard for both players for the multi-step game, even
if c = 1. An integer programming formulation of
the best response for the hider is practical for mod-
erate horizons, but computing an exact seeker best
response is impractical due to the exponential de-
pendence on both c and the horizon. We therefore
develop an approximate best response oracle with
bounded suboptimality for the seeker. We prove
performance bounds on the strategy that results
when column/constraint generation with approxi-
mate best responses converges, and we measure the
performance of our algorithm in simulations. In our
experimental results, column/constraint generation
converges to near-minimax strategies for both play-
ers fairly quickly.

1 Introduction
Consider a sensor network (the seeker) that has been tasked
with locating a single, mobile target (the hider) given a proba-
bility distribution over initial hider locations. How should the
hider move to avoid being located? How should the seeker
sensors be aimed to maximize the probability of locating the
target? These questions are linked: depending on the aims
chosen by the seeker, the hider should move differently, and
vice versa. Consequently, solving this problem requires using
techniques from game theory. This paper models this hider-

seeker problem as a two-player, zero-sum Bayesian game,
and then searches for an equilibrium.

Zero-sum games can be formulated as linear programs.
However, this requires enumerating all of the actions for both
players, which can be difficult for our hider-seeker game if
the seeker has many sensors or if the game consists of multi-
ple steps of searching. We address this difficulty by using the
classical techniques of column and constraint generation. As
presented by McMahan et al., [2003], this can be viewed as a
“double oracle” algorithm. The algorithm starts with a small
set of actions available to each player, solves a restricted game
where the players can use only actions in the set, generates
new actions for the players by computing best responses to
the equilibrium strategies in the restricted game, and repeats
until convergence. This algorithm is sound and complete, and
is often capable of computing the minimax solution after gen-
erating only a small subset of the full action spaces.

The double oracle approach requires best response oracles
for both players. While in many games best responses can be
computed quickly, we show that, in our hider-seeker game,
computing such responses is NP-hard for both players for
the multi-step case, and NP-hard for the seeker even for the
single-step case. An integer programming formulation of the
best response for the hider is practical for moderate horizons,
but computing an exact seeker best response is impractical
due to the exponential dependence on both the number of sen-
sors available to the seeker and the horizon. Consequently,
we develop an approximation algorithm for the seeker best
response problem, and use this algorithm in conjunction with
the double oracle algorithm to generate an approximate min-
imax solution.

2 Previous Work
Pursuit-evasion games were first proposed by Isaacs [1965] as
a continuous-space problem. Parsons [1976] introduced a dis-
crete formulation which takes place on a graph, and consid-
ered the problem of computing the number of pursuers nec-
essary to capture an arbitrarily quick evader who is aware of
the locations of the pursuers. Megiddo et al. [1988] proved
that computing the smallest number of pursuers (the search
number) required to clear a general graph is NP-hard, but can
be computed in linear time on a tree. Adler et al. [2003] study
the pursuit-evasion problem on a graph where the evader can
move arbitrarily, but is unaware of the location of the pursuer.

They develop pursuit strategies which give the pursuer a high
probability of capture in a bounded number of steps. Isler
et al. [2004] consider a pursuit-evasion problem where both
the pursuer and the evader have a limited sight range. They
demonstrate that a single pursuer is not sufficient to capture
such an evader, but give an algorithm directing two pursuers
which provably captures the evader in finite time.

The hider-seeker game discussed in this paper differs from
the classical graph-based pursuit-evasion games in two ways.
First, the seeker is not constrained to move on the graph, but
rather chooses to search c elements from a discrete set of pos-
sible observations, each of which is a subset of the vertices.
Another difference is that our hider-seeker game has a fixed
length. An example of such a game would be a fugitive hider
moving through a 2-dimensional grid while a seeker directs
several cameras on unmanned aerial vehicles with finite fuel
supplies to search for the hider. In this example, the graph
would be a regular grid and the observations would corre-
spond to aim points for the cameras on the UAVs. This is a
reasonable abstraction of how a group of UAVs could monitor
an area by flying in a circular pattern over an area of interest
and using pan/tilt cameras to quickly focus on small regions
of the larger area.

3 Preliminaries
Our hider-seeker game takes place on a directed graph G =
(V,E). In each step, the hider can move from a vertex v to
a vertex v′ ∈ N(v), where N(v) = {v′ ∈ V |(v, v′) ∈ E)}.
Let Φ be the set of aims available to the seeker, each of which
sees some subset φ ⊂ V of vertices. In each step, the seeker
chooses a subset φc ⊂ Φ, with |φc| = c, of aims to search.
Φc will denote the set of φc, i.e., the set of size c subsets of
Φ. We assume that there is a prior π (known to both players)
over the hider’s starting location. The seeker has captured the
hider in step t if the hider moves into a vertex v′ during time
step t such that v′ ∈ φ for one of the seeker’s chosen aims in
the step t. The length of the game is T steps.

We model this game as a two-player zero-sum Bayesian
game. Bayesian games give a general framework represent-
ing the players’ uncertainty about the availability of actions
and/or the payoffs of actions. In general, these each depend
on the player’s type, which is privately held information. For-
mally, a two-player zero-sum Bayesian game is described by
a tuple (Θ1,Θ2, A1, A2, α1, α2,Π, u), where: Θ1 and Θ2 are
the type spaces of the players; A1 and A2 are the sets of
actions available to each player; and α1 : Θ1 → 2A1 and
α2 : Θ2 → 2A2 indicate which subsets of actions are avail-
able to each player given his type. Π : Θ1 × Θ2 → [0, 1]
is a prior over types, and u : Θ1 × Θ2 × A1 × A2 → <
is the game’s payoff function (since the game is zero-sum,
we only specify player 1’s utility function). At the beginning
of the game, each player is revealed his own type, which is
drawn randomly according to Π. Each player is uncertain of
the other player’s type.

Our hider-seeker game is a special case of this general
framework in which just one player, the hider, has multiple
types. Hider types correspond to starting vertices (the only
private information that the hider has is his starting vertex),
so we use v ∈ V to denote the hider’s type, and the prior Π

over types is the same as the prior π over hider starting lo-
cations. For each hider type v ∈ V , the available actions to
the hider are the set of length T paths starting in v; the full
action space for the hider (denoted Ah) is then the set of all
length T paths, regardless of starting location. We denote the
set of actions available to the hider given his type v as αh(v).
We use the notation ah = (v0, v1, . . . , vT) to refer to paths
explicitly. The action space for the seeker (denoted As in-
stead of αs, since the seeker has only one type) is equal to
Φc × Φc × . . .× Φc = (Φc)T . We use as(t) ∈ Φc to denote
the aims searched by the seeker in step t if he follows as.
Similarly, we use ah(t) to denote the vertex occupied by the
hider in step t if he follows action ah.1 The utility function u
(representing the seeker’s utility) is defined as:

u(as, ah; v) =


1 if ∃t, ∃φ ∈ as(t) such that ah(t) ∈ φ
0 otherwise

In a Bayesian game, a pure strategy (denoted ss or sh) maps
types to actions. Rather than computing mixed strategies,
which are probability distributions over pure strategies, we
will compute a special kind of mixed strategy called a be-
havioral strategy. In a Bayesian game, a behavioral strat-
egy gives the conditional probability that the player plays an
action given his type. For the hider, the behavioral strategy
σh(ah|v) denotes the probability that the hider plays ah given
that his type is v. Since the seeker has only a single type, we
will omit the conditional notation for his behavioral strategy
and use σs(as) to denote the probability that he plays action
as. The expected utility (to the seeker) is then computed as
the expectation over both types and actions. More formally:

E[u(σs, σh)] =
X
v∈V

π(v)·
X

ah∈αh(v)

X
as∈As

σs(as)·σh(ah|v)·u(as, ah; v)

Note that with the utility function defined previously, the ex-
pected seeker utility is simply the probability that the seeker
captures the hider. A best response to a mixed strategy is a
strategy which maximizes the player’s expected utility, given
that the other player’s strategy is held fixed. Since there are
potentially many strategies which maximize a player’s ex-
pected utility, best responses are generally sets. More for-
mally, the best response sets for the seeker and the hider are:
BRs(σh) = argmax

σs

E[u(σs, σh)] andBRh(σs) = argmin
σh

E[u(σs, σh)]

Although best responses are defined as mixed strategies, it
is a known fact that there exists at least one best response
which is a pure strategy, i.e., a single action for the seeker
and a single mapping from starting locations to actions for
the hider. We wish to find a minimax solution to this game
(in two-player zero-sum games, minimax solutions and Nash
equilibria are equivalent). That is, we wish to find a pair of
mixed strategies (σ∗s , σ

∗
h) such that:

σ
∗
s ∈ argmax

σs

min
sh

E[u(σs, sh)] and σ∗h ∈ argmin
σh

max
ss

E[u(ss, σh)]

3.1 Solving Zero-Sum Bayesian Games
Since the hider-seeker game is zero-sum, a minimax solution
can be discovered directly using linear programming. An op-
timal solution to the LP in Figure 1 gives a minimax solution

1We assume that the seeker cannot capture the hider before the
hider can move, so that as(0) = ∅ and ah(0) is the starting vertex
for the path ah. This assumption is not essential for our techniques.

Variables: u
∀v ∈ V, ah ∈ αh(v): σh(ah|v)

Minimize u
Subject to:
∀v ∈ V

P
ah∈αh(v) σh(ah|v) = 1

∀as ∈ As u ≥
P
v∈V,ah∈αh(v) π(v) · σh(ah|v) · u(as, ah; v)

Figure 1: An LP for the hider-seeker game. The optimal as-
signments to the σh(ah|v) variables give the hider’s minimax
behavioral strategy while the dual variables for the as con-
straints give the seeker’s maximin behavioral strategy.

to the hider-seeker game. This program has |As| + |V | con-
straints and

∑
v∈V |αh(v)|+ 1 variables. Although there are

techniques (such as the Ellipsoid algorithm) which can solve
this LP in time which is weakly polynomial in the number
of constraints and variables, both |As| and |Ah| are exponen-
tial in T (and |As| is also exponential in c), so solving this
program straightforwardly (without column/constraint gener-
ation) does not scale well in T and c.2

4 Algorithms and Complexity Analyses
This section presents the double oracle algorithm for our
hider-seeker game, establishes the computational complexity
of determining best responses, presents exact best response
oracles for both players, and presents an approximate best re-
sponse oracle with bounded suboptimality for the seeker.

4.1 Double oracle algorithm
Figure 2 presents the double oracle algorithm for the general
hider-seeker game. BRs(σ

(j)
h) is an oracle that generates a

seeker best response to the hider’s behavioral strategy σ(j)
h

and BRh(σ(j)
s |v) is an oracle which generates a hider best

response to the seeker’s mixed strategy σ(j)
s , given that the

hider’s type is v. MinimaxSolution(Fs, Fh) is a subroutine
which computes a minimax solution to the restricted game
where the seeker can mix only over Fs and the hider can mix
only over Fh.
For a two-player, zero-sum game, the double-oracle algo-
rithm corresponds to column and constraint generation, a
standard technique for solving large linear programs. See,
for example, Bertsimas and Tsitsiklis [1997]. As with
generic column and constraint generation techniques, there
is no guarantee that this will avoid enumerating all rows and
columns (actions for the hider and the seeker, respectively).
Empirically, however, such algorithms often converge or pro-
duce near-optimal solutions with only a small fraction of the
total rows and columns generated.

2For two-player zero-sum extensive-form games, there are lin-
ear programming techniques that operate directly on the game tree
(extensive-form representation), e.g., Koller and Megiddo [1992] or
von Stengel [1996]. These techniques are generally much more ef-
ficient, but they are not helpful for our hider-seeker game, because
neither player ever learns anything about what the other player did
previously; the players are essentially making their choices simul-
taneously. Our linear program has exponential size strictly because
the extensive form itself has exponential size.

Double Oracle Algorithm (G, Φ, T)

// Computes a minimax solution to the length T hider-seeker
game on the graph G with aims Φ.

// G : A graph.
// Φ : A set of possible aims.
// T : The length of the game.

j ← 0
Fs ← { an arbitrary seeker action }
∀v ∈ V , Fh(v)← { an arbitrary hider action in αh(v) }
repeat

(σ(j)
s , σ

(j)
h)←MinimaxSolution(Fs, Fh)

a(j)
s ← BRs(σ

(j)
h)

∀v ∈ V , a(j)
h (v)← BRh(σ(j)

s |v)

if u(a(j)
s , σ

(j)
h) = u(σ(j)

s , σ
(j)
h) and u(σ(j)

s , σ
(j)
h) = u(σ(j)

s , a
(j)
h)

return (σ(j)
s , σ

(j)
h)

else
Fs ← Fs ∪ {a(j)

s }
∀v ∈ V , Fh(v)← Fh(v) ∪ {a(j)

h (v)}.
j ← j + 1

Figure 2: The double oracle algorithm for solving the general
hider-seeker game.

4.2 Complexity of the seeker BR problem
In this subsection we show that the general seeker best-
response problem is intractable for two different cases, when
T = 1 and c is part of the problem input, and when T > 1
and c = 1.

Definition Given G, T , rational z, Φ, c, π (represented as
a list of rational numbers), and a hider behavioral strategy
σh(ah|v) over the actions inAh, SeekerBR asks whether there
exists a seeker strategy giving an expected utility of at least z
against σh. σh is represented as a list of only the paths which
receive positive probability (representing each path as a list
of vertices) and the probabilities they receive as rational num-
bers. OptSeekerBR is the optimization version of SeekerBR
which, given the same input (without z), computes an optimal
seeker best-response to σh(ah|v).

Theorem 1 SeekerBR is NP-hard with T = 1, even when G
is a grid and Φ is the set of all k × k squares.

Proof The problem is in NP because checking whether a
seeker action as gives the seeker expected utility at least z
can be done in time polynomial in |V | and |σh| by comput-
ing: ∑

v∈V

∑
v′∈N(v):v′∈φ∈as

π(v) · σh((v, v′)|v),

Thus, SeekerBR is in NP.
To prove NP-hardness on a grid, we reduce from a spe-

cial case of the rectilinear p-center problem. The p-center
problem is defined as: Given a set of n points P in <d, is
it possible to place p (closed) “balls” of radius r (in some
metric space) such that all the points in P are contained in
at least one ball? This problem is NP-complete (so long as p
is part of the input) even when d = 2 and the metric is L∞
[Fowler et al., 1980].3 The problem remains intractable even
if the points are required to have integer coordinates. We will
reduce this version of p-center to SeekerBR.

3Note that a <2 “ball” in L∞ is a square in the plane.

Given a set P of n points which are on an integer lattice,
translate the points so that they have positive x and y coordi-
nates (note that this cannot change the answer to the original
instance of p-center) and that the minimum x and y coordi-
nates are zero. Now compute the maximum x and y coordi-
nates and create a xmax × ymax grid. In this grid, every node
(x, y) is connected to itself, (x± 1, y) and (x, y ± 1) (except
on the boundary). This grid is guaranteed to be polynomial
in size for instances of the rectilinear p-center problem gen-
erated by the original reduction from 3-SAT [Fowler et al.,
1980]. Define the prior to be:

π(x, y) =
{

1
n if (x, y) ∈ P
0 otherwise

The set of aims Φ consists of all (2r + 1)× (2r + 1) squares
which fit completely in the grid and contain a grid square
(x, y) with π(x, y) > 0. Therefore, k = 2r + 1. Let c = p
and z = 1. Define αh(v) to be the set of pairs (v, v′) in the
grid such that v′ is adjacent to v and σh((v, v)|v) = 1. In
other words, the hider’s mixed strategy is to stand still with
probability 1.

Suppose there exists a solution the original problem. Thus
it is possible to place p balls of radius r in the plane to cover
all the points in P . Each of these balls is a closed square of
radius r and, since the points in P have integer coordinates,
each ball can cover at most the points contained by a k × k
square. Thus each ball can be converted into a square cover-
ing at least the same points, and since Φ contains all squares
of size k × k, there exists a subset capturing the hider with
probability 1. Thus there is a “yes” solution to the instance of
SeekerBR, as this subset corresponds with a seeker strategy
giving expected utility 1.

Now suppose that there is a seeker strategy giving expected
utility 1. This strategy will search c = p squares of size k×k
and each grid square (x, y) with π(x, y) > 0 will be con-
tained in one of the searched squares. Since each of the grid
squares with π(x, y) > 0 corresponds to a point in P , placing
radius r balls at the centers of the searched aims will cover
the exact same points. Thus, if there is a “yes” solution to
the instance of SeekerBR, there is also a “yes” solution to the
original instance of p-center. �

We now show that SeekerBR is intractable even with a sin-
gle sensor if T > 1.

Theorem 2 SeekerBR is NP-complete, even if c = 1, and all
aims are of size 1.

Proof The reduction is from SAT. Given a CNF boolean for-
mula over n literals and clauses Q, construct the graph G as
follows: For each literal xi, create the nodes xi, x̄i and Hi.
Connect each of xi, x̄i and Hi to each of xi+1, x̄i+1 and
Hi+1. Additionally, create a starting node S which is con-
nected to x1, x̄1 and H1. See Figure 3 for an example graph.

The set of hider actions is then built from the clauses. For
each clause q ∈ Q, create a path starting at S and gradu-
ally moving through the xi, x̄i and Hi nodes in the following
manner. In step 1, if x1 appears in clause q, the path follows
the edge from S to the vertex x1. If x̄1 appears in q, the path
instead follows the edge between S and x̄1. If neither literal

......

S

x1

x2

xn

¬x2

¬xn

¬x1 H1

H2

Hn

...

Figure 3: The graph constructed by the seeker BR reduction
for a SAT instance with n literals.

appears in q, then the path follows the edge from S to H1.
Similarly, at time i, the path will move to xi+1 if xi+1 ap-
pears in clause q, x̄i+1 if x̄i+1 appears in q, orHi+1 if neither
appears in q. The hider’s behavioral strategy is then to pick
a clause uniformly at random and follow the corresponding
path. Set π(S) = 1, z = 1, c = 1 and Φ to be the sets of size
1 containing only xi or x̄i (for any i).4

This instance of SeekerBR has a seeker strategy capturing
the hider with probability 1 if and only if the original boolean
formula is satisfiable. Suppose that the formula is satisfiable
and ~x is a satisfying assignment. This assignment can be con-
verted into a seeker pure strategy; the strategy will search the
vertex xi in step i if xi is set to true in ~x and x̄i if xi is set
to false in ~x. Since ~x is a satisfying assignment, searching
the corresponding vertices will capture each hider path in the
graph, as at least one of the path’s vertices will be searched.

Now suppose that there exists a seeker strategy that cap-
tures the hider with probability 1. This strategy can be con-
verted into a satisfying assignment by performing the oppo-
site conversion: If the seeker searches xi in step i, then set xi
to true, otherwise (if the seeker searches x̄i) set xi to false.
Suppose (for contradiction) that the assignment does not sat-
isfy the formula and q is a clause that is unsatisfied. Since
this clause was converted directly into a hider path, and the
hider has some probability of choosing this path, the seeker
strategy must search a node on this path to capture the hider
with probability 1. Suppose that a hider following the path
corresponding to q is captured in step k; the corresponding
assignment to xk must then satisfy the clause q, showing the
contradiction.

Also note that SeekerBR is in NP because it is easy to ver-
ify that a seeker strategy gets utility of at least z. Specifically,
given the seeker strategy as = (as(1), as(2), . . . , as(T)),

4The set Φ can be extended to include all the vertices in the
graph by creating two hidden nodes H1

i and H2
i for each literal.

In this new graph, the hider would decide (randomly) to go to ei-
ther H1

i or H2
i every time he moved to Hi in the old graph. This

new set of paths can still be represented compactly by represent-
ing the randomized transitions as a set of possible successor vertices
and the probabilities of moving to each successor. For example,
x1, x̄2, {[H1

3 , 1/2], [H2
3 , 1/2]}, x4, x5, . . . would be one such path

with a random transition in step 3.

Variables: ∀v ∈ V ∀1 ≤ t ≤ T : searchedt(v)
∀ah ∈ Ah : cover(ah)
∀φ ∈ Φ, 1 ≤ t ≤ T : aimt(φ) (binary)

Maximize
P
v∈V

P
ah∈αh(v) π(v) · cover(ah) · σh(ah|v)

Subject to:
∀ah ∈ Ah cover(ah) ≤

P
1≤t≤T searched

t(ah(t))

∀1 ≤ t ≤ T, v ∈ V searchedt(v) ≤
P
φ∈Φ:v∈φ aim

t(φ)

∀1 ≤ t ≤ T
P
φ∈Φ aim

t(φ) ≤ c
∀1 ≤ t ≤ T, v ∈ V 0 ≤ searchedt(v) ≤ 1
∀ah ∈ Ah 0 ≤ cover(ah) ≤ 1
∀1 ≤ t ≤ T, φ ∈ Φ aimt(φ) ∈ {0, 1}

Figure 4: A mixed integer program for OptSeekerBR. In this
MIP, the variable aimt(φ) indicates that the strategy includes
the aim φ in step t, searchedt(v) indicates that at least one
of the aims searches the vertex v in step t, and cover(ah)
indicates that a hider using the action ah would be captured
by the seeker best response.

one can verify that:∑
1≤t≤T

∑
v∈V

∑
ah∈Ah;∃t′ah(t′)∈φ∈as(t′)

σh(ah|v) · π(v) ≥ z

This can be computed in timeO(T |V ||σh|), where |σh| is the
size of σh on the input tape. Note that T , although exponen-
tial in |T | (the size of T in the input), is bounded by the size
of a single path in the input tape, thus ensuring that this ver-
ification can be accomplished in time polynomial in the size
of the input. Thus, SeekerBR is in NP, and the problem is
NP-complete. �

4.3 MIP for the seeker BR problem
The seeker BR optimization problem (OptSeekerBR) can be
formulated as a mixed integer program. Any optimal solu-
tion to the MIP in Figure 4 is a solution to OptSeekerBR.
The MIP has three variable types. The aimt(φ) variables are
explicitly binary, but the MIP solver will also assign binary
values to searchedt(v) and cover(ah) even when they are
declared as continuous variables. This is because increasing
these variables further will never decrease the objective, and
if they can be increased beyond 0, then they can be increased
all the way to 1.

4.4 Approximate seeker BR
The MIP for the true seeker BR takes considerable run time in
practice, motivating the development of an approximate BR.
We present a greedy BR algorithm in Figure 5. The algorithm
greedily picks the aim that captures the most hider probabil-
ity mass. All the paths covered by the chosen aim (and the
mass on them) are then removed from consideration, and the
process repeats until no more aims are possible.

Theorem 3 ApproxSeekerBR is a 2-approximation to Opt-
SeekerBR.

Proof LetGi be the ith aim chosen by ApproxSeekerBR and
let Ξi be the set of new hider paths captured by Gi (i.e. those
not captured by G1 . . . Gi−1). Let O be an optimal solution
and let Oi be the ith aim in O (ordered such that Oi is a view
in the same step as Gi). Let Ξ∗i be the set of new hider paths

ApproxSeekerBR (σh,Φ, π)

// Computes a seeker pure strategy which approximately maximizes
his expected utility in response to σh.

// σh : A hider mixed strategy.
// Φ : The set of aims available to the seeker.
// π : The prior over hider starting positions.

Ξ← ∅
∀1 ≤ t ≤ T , as(t)← ∅
repeat until ∀1 ≤ t ≤ T , |as(t)| = c
for each t such that |as(t)| < c
z∗(t)← maxφ∈Φ

P
v∈V π(v)

P
ah ∈ αh(v)
σh(ah|v) > 0

ah 6∈ Ξ
ah(t) ∈ φ

σh(ah|v)

φ(t)← argmaxφ∈Φ
P
v∈V π(v)

P
ah ∈ αh(v)
σh(ah|v) > 0

ah 6∈ Ξ
ah(t) ∈ φ

σh(ah|v)

t∗ ← argmax1≤t≤T z
∗(t)

as(t
∗)← as(t

∗) ∪ {φ(t∗)}
Ξ← Ξ ∪ {ah ∈

S
v∈V {ah ∈ α(v)|σh(ah|v) > 0}|ah(t∗) ∈ φ(t∗)}

return as = (as(1), as(2), . . . , as(T))

Figure 5: An approximation algorithm for OptSeekerBR.

captured by Oi (again, those not captured by O1 . . . Oi−1).
Let ZG be the expected seeker utility from following the
approximate strategy and Z∗ be the expected seeker utility
of the optimal BR. In this proof, we will use the shorthand
σh(Ξi) (and σh(Ξ∗i)) to mean:

σh(Ξi) =
X
v∈V

π(v) ·
X

ah∈Ξi

σh(ah|v)

σh(Ξi) gives the marginal probability (marginalizing out the
hider’s starting location) that the hider chooses a path in Ξi.
Clearly:

Z
G

=
X
i

σh(Ξi) and Z∗ =
X
i

σh(Ξ
∗
i)

Define the loss to be the difference between Z∗ and ZG:

loss =
X
i

ˆ
σh(Ξ

∗
i)− σh(Ξi)

˜
≤
X
i

max{0, σh(Ξ
∗
i)− σh(Ξi)}

Now consider some k such that σh(Ξ∗k) ≥ σh(Ξk); in other
words, an aim contributing to the final summation in the
previous statement. When the aim Gk was chosen by Ap-
proxSeekerBR, there was no other aim φ which had a larger
contribute to σh(Ξk), despite the fact that Ok was available.
Thus, enough paths in Ξ∗k were viewed by G1, . . . Gk−1 that
Gk appeared as good of an option as Ok. In other words,
σh(Ξk) ≥ σh(Ξ∗k− (

⋃
j<k Ξj)). Let ∆k = Ξ∗k ∩ (

⋃
j<k Ξj),

i.e. ∆k is the set of paths in Ξ∗k that were viewed by pre-
vious aims in the greedy algorithm. Now, since σh(Ξk) ≥
σh(Ξ∗k − (

⋃
j<k Ξj)),

loss ≤
X
i

max{0, σh(Ξ
∗
i)− σh(Ξi)}

≤
X
i

max{0, σh(Ξ
∗
i)− σh(Ξ

∗
i − (

[
j<k

Ξj))}

Now the second quantity in the max is exactly equal to
σh(∆i). Inserting this:

loss ≤
X
i

max{0, σh(∆i)} =
X
i

σh(∆i)

In the above equation, the max disappears because σh(∆i)
is strictly positive. Since each Ξ∗i is disjoint (from the other
Ξ∗j), ∆i is also disjoint from the other ∆j . Thus each hider
path appears in at most one ∆i and, since each is a subset of⋃
i Ξi, we have the following:

loss ≤
X
i

σh(∆i) ≤
X
i

σh(Ξi)

Rearranging terms:

loss =
X
i

σh(Ξ
∗
i)−

X
i

σh(Ξi) ≤
X
i

σh(Ξi)

⇒
X
i

σh(Ξ
∗
i) ≤ 2

X
i

σh(Ξi)

Thus, ApproxSeekerBR is a 2-approximation. �

4.5 Complexity of the hider BR problem
The previous several subsections studied the seeker BR prob-
lem for the hider-seeker game. This subsection considers the
BR problem for the hider. Recall that a hider action is a single
path of length T through the graph, and a hider pure strategy
is a mapping sh from hider types (vertices) to actions (paths).
A hider best response is a pure strategy which, given a seeker
mixed strategy σs, minimizes the seeker’s expected utility.
We show that deciding if there exists a hider strategy that re-
sults in less than a given utility for the seeker is NP-complete.

Definition Given a graph G = (V,E), rational z, T , a
hider starting location v0, and a seeker mixed strategy σs :
As → [0, 1] over the set of seeker actions As (with c sen-
sors), HiderBR asks whether there exists a pure hider strategy
starting in v that gives the seeker expected utility at most z.
σs is represented as a list of only the seeker strategies which
receive positive probability in σs, each of which consists of
T size c lists of searches. OptHiderBR is the optimization
version of HiderBR which, given the same input (without z),
computes an optimal hider best-response to σs starting in v0.

Theorem 4 HiderBR is NP-complete, even if c = 1, and Φ
contains only sets of size 1.

Proof The reduction is from MINSAT, which is defined as:
Given a set of m boolean clauses Q over the set of literals
X = {x1, x2, . . . , xn}, does there exist an assignment to the
literals in X such that at most k clauses are satisfied? Kohli
et al. [1994] demonstrated that this problem is NP-complete.

Our reduction is fairly similar to the reduction for the
seeker best response problem. Given an instance of MIN-
SAT, create two graph nodes for each literal: x+

i and x−i , cor-
responding to setting the literal xi to true and false. Connect
both of the nodes for xi−1 to both nodes for xi. Additionally,
create a starting node v0 = S, which is connected to x+

1 and
x−1 . See Figure 6 for an example graph.

Now convert the clauses into seeker actions. For each
clause q ∈ Q, construct an action as(q) which searches the
assignments to literals which would satisfy the clause. For
example, if xi appears negated in the clause q, as(q) would
search x−i at time i. Note that not all seeker actions will
search a vertex at each time step, and also that Φ is the set
of vertices in the graph. The seeker’s mixed strategy σs is to
pick a clause uniformly at random and perform the associated
search action. Set z = k/m.

... ...
x1+

x2+

x3+

xn+

x1-

x2-

x3-

xn-

S

Figure 6: The graph constructed by the hider BR reduction
for a MINSAT instance with n literals. Also shown is the
seeker searching strategy for the clause x̄1 ∨ x2 ∨ x3.

These two problems are now equivalent for the following
reasons. Suppose there exists a solution to this instance of
HiderBR; this path will, at each time step i, visit either x+

i

or x−i , and the seeker’s probability of capture for this path is
at most k/m. Since the seeker’s mixed strategy selects ac-
tions uniformly at random (i.e., each with probability 1/m),
this path is “caught” by less than k distinct seeker actions.
Thus, the corresponding assignment to the literals will satisfy
at most k clauses in the set Q. Now suppose that there is an
assignment to the literals which satisfies at most k clauses.
This assignment can be converted directly into a hider path:
Starting at S, go to vertex x+

1 if x1 is true in the assignment
or x−1 if x1 is false, then proceed similarly for the remaining
time steps. Since this assignment satisfies at most k clauses
in Q, this path will be captured by at most k seeker actions,
thus giving the seeker expected utility of at most k/m. Thus,
HiderBR is NP-hard.

HiderBR is in NP because it is easy to determine whether
a given hider strategy gives the seeker expected utility less
than z against σs. To verify this, given the hider strategy sh,
simply verify:

z ≥
∑

1≤t≤T

∑
v∈V

∑
as∈As:∃t′sh(v)(t′)∈φ∈as(t′)

σs(as) · π(v)

This can be checked in time O(Tc|V ||σs|), where |σs| is the
size of the representation of σs on the input tape. Since even
a single seeker strategy in |σs| is larger than T and c, this can
be done in time polynomial in the size of the problem input.
Thus, HiderBR is also in NP and is NP-complete. �

4.6 MIP for the hider BR problem
This subsection describes a mixed integer program which can
be used for the optimization version of the hider BR prob-
lem for the specific case where the hider’s starting location is
known a priori. Recall that, in the hider-seeker game, a hider
pure strategy is a mapping from starting vertices to length T
paths. This subsection considers the problem of generating
a single element of this mapping – the path corresponding to
starting in v0. Solving this problem for all v ∈ V would yield
the full best-response strategy for the hider.

Variables: ∀as ∈ As : caught(as)
∀0 ≤ t ≤ T, ∀v ∈ V : int(v) (binary)

Minimize
P
as∈As σs(as) · caught(as)

Subject to:
∀0 ≤ t < T, v ∈ V int(v)−

P
v′∈N(v) in

t+1(v′) ≤ 0

∀0 ≤ t ≤ T
P
v∈V in

t(v) = 1
∀as ∈ Fs, 1 ≤ t ≤ T,
v ∈ φ ∈ as(t) caught(as) ≥ int(v)
∀v ∈ V, 0 ≤ t ≤ T int(v) ∈ {0, 1}
∀as ∈ Fs 0 ≤ caught(as) ≤ 1

in0(v0) = 1

Figure 7: A mixed integer program for OptHiderBR. In this
MIP, the variables int(v) indicate that the hider’s path passes
through v in time step t and caught(as) indicates that the
hider is captured by the seeker action as.

Figure 7 presents a MIP for OptHiderBR. The first con-
straint ensures that the path follows the graph’s connectivity
(i.e., the hider can only go from v to some v′ ∈ N(v)), and the
second constraint ensures that the hider must be in exactly one
location in each time step. The third constraint enforces the
relationship between the int(v) variables and the caught(as)
variables. As in the seeker BR MIP, the caught(as) vari-
ables can be continuous: the mechanics of the MIP will en-
sure that they always take on binary values. In practice, this
MIP solves quite quickly for reasonable values of T .

4.7 Final planning algorithm
Even though the hider BR problem is intractable, the MIP
for the hider BR solves quickly enough in practice that it can
be used in the double oracle algorithm. For the seeker BR
problem, however, we use the approximate algorithm. Fig-
ure 8 presents a modified version of the double oracle algo-
rithm that uses these algorithms as subroutines. Using these
subroutines as oracles, the double-oracle algorithm converges
when the hider’s mixed strategy σh is a BR to the seeker’s
mixed strategy σs, and the seeker’s mixed strategy σs gives
an expected utility against σh that is at least as high as the
expected utility obtained by the strategy chosen by Approx-
SeekerBR against σh. Our final theoretical result bounds the
gap between the utility (to the seeker) of the strategies pro-
duced by this approximation algorithm, and the utility in a
true minimax equilibrium of the game.
Theorem 5 Let (σs, σh) be the output of the approximate
double oracle algorithm and let (σ∗s , σ

∗
h) be the true minimax

solution. Then: u(σs, σh) ≥ 1/2 · u(σ∗s , σ
∗
h).

Proof Using the termination condition of the algorithm,
and the fact that ApproxSeekerBR is a 2-approximation to
the true BR: u(σs, σh) ≥ u(ApproxBR(σh), σh) ≥ 1

2 ·
u(BR(σh), σh). Because (σ∗s , σ

∗
h) is a minimax solution,

∀σ′s, σ′h : u(σ∗s , σ
′
h) ≥ u(σ∗s , σ

∗
h) ≥ u(σ′s, σ

∗
h). Combin-

ing these gives: u(BR(σh), σh) ≥ u(σ∗s , σh) ≥ u(σ∗s , σ
∗
h),

which implies u(σs, σh) ≥ 1
2 · u(σ∗s , σ

∗
h). �

5 Experimental results
Our algorithm works for games on arbitrary graphs, but a grid
is a more natural representation for many real world scenar-
ios. We used a 100 × 100 grid, and the prior over initial

Approximate Double Oracle Algorithm (G, Φ, T)

// Computes an approximate minimax solution to the length T hider-seeker
game on the graph G with aims Φ.

// G : A graph.
// Φ : A set of possible aims.
// T : The length of the game.

j ← 0
Fs ← { an arbitrary seeker action }
∀v ∈ V , Fh(v)← { an arbitrary hider action in αh(v) }
repeat

(σ(j)
s , σ

(j)
h)←MinimaxSolution(Fs, Fh)

a(j)
s ← ApproxSeekerBR(σ

(j)
h)

∀v ∈ V , a(j)
h (v)← HiderBRMIP (σ(j)

s |v)

if u(a(j)
s , σ

(j)
h) ≤ u(σ(j)

s , σ
(j)
h) and u(σ(j)

s , σ
(j)
h) = u(σ(j)

s , a
(j)
h)

break
else

Fs ← Fs ∪ {a(j)
s }

∀v ∈ V , Fh(v)← Fh(v) ∪ {a(j)
h (v)}.

j ← j + 1

return (σ(j)
s , σ

(j)
h)

Figure 8: The approximate double oracle algorithm for the
hider-seeker game.

hider locations was a mixture of truncated Gaussians, each of
which covered 21 grid squares. The seeker’s set of aims Φ
was the set of all 3 × 3 grid squares. We chose T = 3 and
ran the double oracle algorithm using both the approximate
seeker BR oracle and the true seeker BR oracle for 10 runs,
each with a different random seed. For each run, the hider and
seeker action spaces were initialized with a single randomly
generated action (for the hider, there was one such action for
each starting location). We also developed a best response
scheduling technique which more evenly divided computa-
tion time between the hider and seeker best responses. Rather
than generating best responses for both players at the same
time, this technique generates a BR for the player whose pre-
vious BR value is furthest from the current equilibrium value.
This does not affect the optimality guarantees, but we found
that it greatly reduced total runtime to convergence.

Figure 9 shows the results of running the approximate dou-
ble oracle algorithm in two distinct experiments. In the first
experiment (left) we varied the number of observations avail-
able to the seeker in each step. In the second experiment
(right) we varied the number of Gaussians in the prior from
1 to 7 with c = 3. The first set indicates how our approach
scales with c, and the second set shows scaling with |V |. All
reported runtimes are in CPU seconds on a 3.0 GHz Core 2
architecture using CPLEX 10. The suboptimality plots (bot-
tom row) show u(BR(σh), σh) − u(σs, σh), where (σs, σh)
is the output of the double oracle algorithm using ApproxBR
to generate seeker actions. This bounds the seeker’s loss from
using an approximate BR. We did not compare with the full
linear program that contains all hider and seeker strategies
because it is impractical to generate and solve such a large
LP.

In the first experiment (varying c), Figure 9 (top left)
demonstrates that ApproxBR results in a considerable reduc-
tion in runtime to convergence. Even for large numbers of

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6

T
i
m
e

(
s
)

Cameras

Cameras vs Runtime

Exact BR
Approx BR

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7

T
i
m
e

(
s
)

Normals

Normals vs Time

Exact BR
Approx BR

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

S
u
b
o
p
t
i
m
a
l
i
t
y

Cameras

Cameras vs Suboptimality

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

S
u
b
o
p
t
i
m
a
l
i
t
y

Normals

Normals vs Suboptimality

Figure 9: (top left and right) Run time vs. number of observa-
tions and number of Gaussians in the prior. Error bars show
1 standard deviation. (bottom left and right) Suboptimality
of Approximate Double Oracle Algorithm vs number of ob-
servations and number of Gaussians. All experiments on a
100× 100 grid with T = 3.

observations, the ApproxBR version of the double oracle al-
gorithm converged in minutes, vs. hours when the true BR
was used. Figure 9 (bottom left) demonstrates that the utility
of the solution is not far from optimal. Suboptimality de-
creases with c because it is easier to catch the evader with
more observations.

In the second experiment (varying the number of Gaussians
in the prior), the runtime in Figure 9 (top right) shows widely
varying behavior. Unlike the previous experiment, we should
expect the run time to scale polynomially for both algorithms,
though we should still expect ApproxBR to be faster. The five
Gaussian case is an unexpected but reproducible anomaly.
Our log files confirm that CPLEX spends significantly less
time computing exact BRs for the four Gaussian case than for
three Gaussians. The reason for this behavior is a subject of
ongoing investigation. The suboptimality, Figure 9 (bottom
right), is consistently low and decreasing.

6 Conclusion
This paper presented a multi-step, multi-sensor hider-seeker
game where the hider is constrained to move on a graph and,
at each time step, the seeker chooses up to a constant number
of observations from a set of possible observations. We mod-
eled this game as a two-player zero-sum Bayesian game, and
showed that standard techniques for solving the game directly
do not scale well with the number of steps or the number of
sensors. Consequently, we applied a column and constraint
generation technique which uses best response oracles for
both players. We also showed, however, that computing the
true best response is NP-hard for both the hider and seeker in
the multi-step game and NP-hard for the seeker in the single-
step game. We then developed an approximation algorithm
for the seeker best response and a mixed-integer program for
the hider best response. Experimentally, the combined algo-
rithm fairly quickly results in a solution that is near optimal.

7 Acknowledgments
This work was partially supported by the Sloan Foundation,
and by NSF IIS awards 0209088 and 0812113, NSF CA-
REER award 0546709, and by the DARPA CSSG program.
Any opinions, findings, conclusions or recommendations are
those of the authors only. The authors also wish to thank
Pankaj Agarwal for many useful suggestions.

References
[Adler et al., 2003] M. Adler, H. Racke, N. Sivadasan,

C. Sohler, and B. Vocking. Randomized pursuit-evasion
in graphs. Combinatorics, Probability and Computing,
12:225–244, 2003.

[Bertsimas and Tsitsiklis, 1997] Dimitris Bertsimas and
John N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1997.

[Fowler et al., 1980] R. J. Fowler, M. S. Paterson, and S. L.
Tanimoto. Optimal packing and covering in the plane are
NP-complete. Information Processing Letters, 12(3):133–
137, 1980.

[Isaacs, 1965] R. Isaacs. Differential Games: A Mathemati-
cal Theory with Applications to Warfare, Pursuit, Control
and Optimization. Wiley, 1965.

[Isler et al., 2004] V. Isler, S. Kannan, and S. Khanna. Ran-
domized pursuit-evasion with limited visibility. In ACM-
SIAM Symposium on Discrete Algorithms, pages 1060–
1069, 2004.

[Kohli et al., 1994] R. Kohli, R. Krishnamurti, and P. Mir-
chandani. The minimum satisfiability problem. SIAM
Journal on Discrete Mathematics, 7(2):275–283, 1994.

[Koller and Megiddo, 1992] D. Koller and N. Megiddo. The
complexity of two-person zero-sum games in extensive
form. Games and Economic Behavior, 4(4):528–552,
1992.

[McMahan et al., 2003] H. B. McMahan, G. Gordon, and
A. Blum. Planning in the presence of cost functions con-
trolled by an adversary. In International Conference on
Machine Learning (IMCL), 2003.

[Megiddo et al., 1988] N. Megiddo, S. Hakimi, M. Garey,
D. Johnson, and C. Papadimitriou. The complexity of
searching a graph. JACM, 35(1):18–44, 1988.

[Parsons, 1976] T. Parsons. Pursuit-evasion in a graph. In
Y. Alavi and D. Lick, editors, Theory and Applications of
Graphs, pages 426–441. Springer-Verlag, 1976.

[von Stengel, 1996] B. von Stengel. Efficient computation
of behavior strategies. Games and Economic Behavior,
14(2):220–246, 1996.

