
A Technique for Reducing Normal-Form
Games to Compute a Nash Equilibrium ∗

Vincent Conitzer
Carnegie Mellon University

Computer Science Department
5000 Forbes Avenue

Pittsburgh, PA 15213, USA

conitzer@cs.cmu.edu

Tuomas Sandholm
Carnegie Mellon University

Computer Science Department
5000 Forbes Avenue

Pittsburgh, PA 15213, USA

sandholm@cs.cmu.edu

ABSTRACT
We present a technique for reducing a normal-form (aka.
(bi)matrix) game, O, to a smaller normal-form game, R, for
the purpose of computing a Nash equilibrium. This is done
by computing a Nash equilibrium for a subcomponent, G,
of O for which a certain condition holds. We also show that
such a subcomponent G on which to apply the technique
can be found in polynomial time (if it exists), by showing
that the condition that G needs to satisfy can be modeled as
a Horn satisfiability problem. We show that the technique
does not extend to computing Pareto-optimal or welfare-
maximizing equilibria. We present a class of games, which
we call ALAGIU (Any Lower Action Gives Identical Utility)
games, for which recursive application of (special cases of)
the technique is sufficient for finding a Nash equilibrium
in linear time. Finally, we discuss using the technique to
compute approximate Nash equilibria.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics; F.2 [Theory of Computa-
tion]: Analysis of Algorithms and Problem Complexity

General Terms
Algorithms, Economics, Theory

Keywords
Game Theory, Computing Nash Equilibria, Preprocessing

∗This material is based upon work supported by the Na-
tional Science Foundation under ITR grants IIS-0121678
and IIS-0427858, a Sloan Fellowship, and an IBM Ph.D.
Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

1. INTRODUCTION
Nash equilibrium is the most important solution concept

for games. A vector of mixed strategies for the players
(that is, for each player, a probability distribution over that
player’s actions in the game) is a Nash equilibrium if no indi-
vidual player can benefit from changing her strategy. Every
finite game has at least one Nash equilibrium [20]. How-
ever, for the concept to be operational, the mere existence
result is not sufficient: it needs to be accompanied by an
algorithm for finding an equilibrium. Unfortunately, even
in 2-player normal-form games, it is still unknown whether
a polynomial-time algorithm exists for computing a Nash
equilibrium. The Lemke-Howson algorithm [15] is the best-
known algorithm for computing a Nash equilibrium in a
2-player normal-form game, but it can require exponential
time [25]. Some special cases can be solved in polynomial
time (for example, zero-sum games [18]); other related ques-
tions, such as finding a welfare-maximizing equilibrium, are
NP-hard [11, 5].

Recently, there has been a renewed surge of interest in
the computation of Nash equilibria. Christos Papadmitriou
has called the basic problem “a most fundamental compu-
tational problem whose complexity is wide open” and “to-
gether with factoring, [...] the most important concrete
open question on the boundary of P today” [22],1 and new
(exponential-time) algorithms have been suggested that
search over the supports of the mixed strategies [23, 24].
Also, there has been growing interest in computing equilib-
ria of games with special structure that allows them to be
represented concisely [13, 16, 2, 12, 1].

The idea we pursue in this paper is the following. For the
basic problem of computing a Nash equilibrium of a normal-
form game, it would be helpful to have a recursive technique
that decomposes a Nash equilibrium computation problem
into one or more smaller such problems, in such a way that a
solution to the original problem can easily be computed from
the solutions to the smaller problems. If there were such a
technique that could be applied to any game, and that de-

1A recent sequence of papers [8, 3, 9, 4] shows that the prob-
lem of finding a Nash equilibrium (even in the two-player
case) is complete for a class of problems called PPAD. This
makes it seem less likely that a polynomial-time algorithm
for finding a Nash equilibrium exists; on the other hand,
unlike (say) NP, PPAD is not known to contain many prob-
lems of interest, so that it would be less of a shock if PPAD
turned out to be contained in P.

composed it into small enough subproblems, then repeatedly
applying this technique would constitute a polynomial-time
algorithm for computing a Nash equilibrium. However, even
if the technique could not be applied to all games, it would
still be of interest. It could be used as a preprocessing step
in computing a Nash equilibrium, thereby reducing the load
on the algorithm that is eventually called to solve the irre-
ducible subproblems. The technique could also be applied
at intermediate stages of any other algorithm that works
by reducing the size of the game. Moreover, there may be
special subclasses of games such that the technique can be
applied on any of those games, as well as on any subprob-
lem resulting from applying the technique on those games.
In that case, the technique would constitute a polynomial-
time Nash equilibrium finding algorithm for the particular
subclass of games.

In this paper, we introduce such a technique for 2-player
normal-form games. When possible, this technique finds
a subcomponent, G, of the original game, O, for which a
certain condition holds. G is then solved recursively. Based
on the recursively computed equilibrium of G, the original
game O is then reduced to a smaller game, R, which is also
solved recursively. From the computed equilibria of G and
R, an equilibrium of the original game O can then easily
be constructed. To our knowledge, this is the first recursive
technique for computing a Nash equilibrium (other than the
iterated elimination of dominated strategies2).

2. MAIN TECHNIQUE
In this section, we introduce our main technique. We

are given a 2-player normal-form game O, in which the
row player chooses a pure strategy from Σ1 and the col-
umn player chooses a pure strategy from Σ2. Suppose that
the strategies in Σ1 can be labeled as ui, si, and those in Σ2

as vj , tj , so that the game can be written as follows:

v1 v2 · · · vl t1 t2 · · · tn

u1 c11, b1 c12, b1 · · · c1n, b1
u2 c21, b2 c22, b2 · · · c2n, b2
.
.
. H .

.

.
.
.
.

.

.

.
uk ck1, bk ck2, bk · · · ckn, bk

s1 a1, d11 a2, d12 · · · al, d1l

s2 a1, d21 a2, d22 · · · al, d2l

.

.

.
.
.
.

.

.

.
.
.
. G

sm a1, dm1 a2, dm2 · · · al, dml

The condition that allows for writing the game like this is
the following:

Condition 1. Against any fixed vj, all the si give the
row player the same utility (aj); and against any fixed ui,
all the tj give the column player the same utility (bi).

The intuition for why this condition is useful is the follow-
ing. Suppose that the row player has decided to play one
of the si, but has not yet decided which si. If the column
player plays one of the vj , then it does not matter which of
the si the row player plays. Thus, in deciding which si to

2Most variants of iterated dominance can be executed in
polynomial time [14, 19, 10, 6]. We have recently proposed
a more general strategy eliminability criterion that can help
in computing a Nash equilibrium [7], but it is not a recursive
technique.

play, the row player only needs to consider the probabilities
that the column player places on the tj . Symmetrically, if
the column player has decided to play one of the tj (but has
not yet decided which tj), then the column player only needs
to consider the probabilities that the row player places on
the si. Hence, intuitively, the parts of the players’ mixed
strategies that concern the si and tj should themselves be
in equilibrium.

So, let us compute a Nash equilibrium of the game G
(using any technique):

t1 t2 t3 · · · tn

s1
s2

s3 G
.
.
.

sm

Let pG
si

be the row player’s probabilities in that Nash equi-

librium, and let pG
tj

be the column player’s probabilities.

Also, let πG
s be the expected utility for the row player, and

let πG
t be the expected utility for the column player. We

can use these to reduce the original game O, as follows. We
replace the lower left quadrant of O with a single row. The
row player’s payoff in the jth entry is aj (which is the row
player’s payoff in the jth entry for any of the original rows).

The column player’s payoff in the jth entry is
m∑

i=1

pG
si

dij—

that is, the average of the column player’s payoffs in the
jth entry, taken across the replaced rows, weighted by the
probability with which the corresponding si is played in the
computed equilibrium of G. We replace the upper right
quadrant of O with a single column in a similar fashion.
Finally, we replace the lower right quadrant (G) with a sin-
gle entry πG

s , πG
t (the expected utilities of the players in the

computed equilibrium of G). Thus, the reduced game R is
the following:

v1 v2 · · · vl t

u1

n∑

j=1
pG

tj
c1j , b1

u2

n∑

j=1
pG

tj
c2j , b2

.

.

. H .
.
.

uk

n∑

j=1
pG

tj
ckj , bk

s a1,
m∑

i=1
pG

si
di1 a2,

m∑

i=1
pG

si
di2 · · · al,

m∑

i=1
pG

si
dil πG

s , πG
t

We then compute a Nash equilibrium for R (using any
technique), obtaining equilibrium probabilities pR

ui
, pR

s for

the row player and equilibrium probabilities pR
vj

, pR
t for the

column player. Then (as we will show later in the section),
setting pO

ui
= pR

ui
, pO

si
= pR

s pG
si

, pO
vj

= pR
vj

, and pO
tj

= pR
t pG

tj

constitutes a Nash equilibrium of O.
Before proving formally that the technique is correct, we

first illustrate it with a small example. Consider the follow-
ing game O:

v1 t1 t2
u1 2, 2 0, 3 2, 3
s1 1, 2 4, 0 0, 4
s2 1, 4 0, 4 4, 0

Condition 1 holds for this game. Thus, we first solve the
subcomponent G:

t1 t2
s1 4, 0 0, 4
s2 0, 4 4, 0

This is a matching-pennies game where in equilibrium, each
player places probability 1/2 on each pure strategy and re-
ceives expected utility 2.3 Thus, the reduced game R be-
comes:

v1 t

u1 2, 2 1, 3
s 1, 3 2, 2

Again, this is a matching-pennies game where in equilib-
rium, each player places probability 1/2 on each action.
Thus, we have discovered an equilibrium for the original
game O where u1 and v1 are played with probability 1/2
each, and s1, s2, t1, t2 are played with probability (1/2) ·
(1/2) = 1/4 each. We now prove the technique is correct
in general.

Theorem 1. Suppose O is reduced to R using the equilib-
rium pG

si
, pG

tj
of G. If pR

ui
, pR

s , pR
vj

, pR
t constitute a Nash equi-

librium of R, then setting pO
ui

= pR
ui

, pO
si

= pR
s pG

si
, pO

vj
= pR

vj
,

and pO
tj

= pR
t pG

tj
constitutes a Nash equilibrium of O.

Proof. To show that these mixed strategies constitute a
Nash equilibrium for O, we first observe that the row player
has no incentive to redistribute the probability placed on
strategies si to another strategy si′ . That is, given that the
row player plays one of the strategies si (note that given this,
the probability that the row player plays a given strategy si

is pR
s pG

si
/pR

s = pG
si

), there is no incentive to switch to another
strategy si′ . The reason is as follows. Given that the column
player plays a given strategy vj , both pG

si
and si′ will give

the same utility. Given that the column player plays one of
the strategies tj (note that given this, the probability that
the column player plays a given strategy tj is pR

t pG
tj

/pR
t =

pG
tj

), pG
si

is a best response because pG
si

, pG
tj

constitute a Nash
equilibrium for G. As a result, to show that we have an
equilibrium for O, we do not need to consider deviations to
an arbitrary si; instead, we only need to consider deviations
to the mixed strategy pG

si
.

Next, we observe that the expected utility for the row
player of playing a given ui is the same as in the equilib-
rium computed for R. The reason is as follows. The prob-
ability that the column player plays a given vj is the same
in both R and O, and so is the row player’s utility for the
outcome (ui, vj). Moreover, the probability that the column

3We emphasize that there is no restriction that the game G
or R should be a zero-sum game (or any other special type
of game).

player plays one of the strategies tj in O is pR
t , and the ex-

pected utility for the row player of playing ui in that case is
n∑

j=1

pG
tj

cij , which is the same as in R.

We also observe that the expected utility for the row
player of playing pG

si
(that is, the row player’s mixed strat-

egy given that the row player plays one of the strategies
si) is the same as the expected utility of playing s in the
equilibrium computed for R. The reason is as follows. The
probability that the column player plays a given vj is the
same in both R and O, and the row player’s utility in either
case is aj . Moreover, the probability that the column player
plays one of the strategies tj in O is pR

t , and the expected
utility for the row player of playing pG

si
in that case is the

expected utility the row player gets in the equilibrium of G,
namely, πG

s , which is the same as the row player’s utility for
the outcome (s, t) in R.

But from these last two observations, and the fact that we
used an equilibrium for R, it follows that the row player has
no incentive to deviate to any ui or to pG

si
; and from the first

observation, the fact that the row player has no incentive to
deviate to pG

si
implies that the row player has no incentive

to deviate to any si. Hence, the row player has no incentive
to deviate; by symmetry, neither does the column player. ¥

3. DETECTING WHETHER THE
TECHNIQUE CAN BE APPLIED

It is easy to verify whether Condition 1 holds when the
pure strategies of the game are labeled ui, si, vj , tj . How-
ever, in general, this labeling will not be given to us. As an
example, suppose we are given the following game:

β1 β2 β3

α1 4, 0 1, 2 0, 4
α2 0, 3 2, 2 2, 3
α3 0, 4 1, 4 4, 0

This game is, in fact, the same game that was used as an
example in Section 2, with the rows and columns permuted
(α1 = s1, α2 = u1, α3 = s2, β1 = t1, β2 = v1, β3 = t2). But
we cannot apply the technique without knowing the labeling
of the strategies as ui, si, vj , and tj .

Hence, we need an algorithm that finds a labeling of the
strategies as ui, si, vj , and tj such that Condition 1 holds.
Note that it does not matter whether we label a given strat-
egy (e.g.) s1 or s2. That is, all we need to do is partition the
row player’s strategies Σ1 into two subsets, the ones labeled
ui and the ones labeled si; and partition the column player’s
strategies Σ2 into two subsets, the ones labeled vj and the
ones labeled tj .

There are two trivial ways of labeling the strategies so
that the condition holds: 1. Label all strategies si or tj . 2.
Label at most one strategy si, and at most one strategy tj .
These trivial labelings are not useful: the first would give
us G = O to recurse on, and the second would not reduce
the game at all (R = O). Any other labeling for which
Condition 1 is satisfied, though, would give us a game G
that is smaller than O to recurse on, and reduce the game
to a game R that is smaller than O. Moreover, the number
of rows (columns) by which R is smaller than O is equal to

the number of rows (resp. columns) in G, minus 1. Hence,
our objective is to find a labeling for which the condition is
satisfied, other than the two trivial ones described above.

We now show how to reformulate this problem as a Horn
satisfiability problem. (Recall that a satisfiability clause is a
Horn clause if it can be written as (¬x1∨¬x2∨. . .∨¬xn∨y),
or equivalently, x1 ∧ x2 ∧ . . . ∧ xn ⇒ y.) Let the variable
v(σ) be true if σ is labeled as one of the si or tj , and false
if σ is labeled as one of the ui or vj . The key observation is
that to satisfy Condition 1, if row player strategies α1 and
α2 obtain different payoffs for the row player against column
player strategy β, then it cannot be the case that α1 and α2

are both labeled as one of the si and β is labeled as one of
the vj—in other words, v(α1) ∧ v(α2) ⇒ v(β). Similarly, if
column player strategies β1 and β2 obtain different payoffs
for the column player against row player strategy α, then
v(β1) ∧ v(β2) ⇒ v(α).

Using this, the game described at the beginning of this
section has the following Horn clauses:4

1. v(α1) ∧ v(α2) ⇒ v(β1) ∧ v(β2) ∧ v(β3),

2. v(α1) ∧ v(α3) ⇒ v(β1) ∧ v(β3),

3. v(α2) ∧ v(α3) ⇒ v(β2) ∧ v(β3),

4. v(β1) ∧ v(β2) ⇒ v(α1) ∧ v(α2),

5. v(β1) ∧ v(β3) ⇒ v(α1) ∧ v(α3),

6. v(β2) ∧ v(β3) ⇒ v(α1) ∧ v(α2) ∧ v(α3).

It is straightforward to check that the only nontrivial satis-
fying assignment, that is, the only assignment that

• satisfies all these clauses,

• does not set all variables to true, and

• sets either at least two v(αi) to true or at least two
v(βj) to true;

sets v(α1), v(α3), v(β1), and v(β3) to true and everything
else to false. We note that this corresponds to the label-
ing that we presented. The Horn clauses can be computed
efficiently:

Lemma 1. The set of Horn clauses for a normal-form
game can be computed in time O(|Σ1|2 · |Σ2|+ |Σ1| · |Σ2|2).

We now show that the Horn clauses fully capture the prob-
lem, that is, the Horn clauses being satisfied is a necessary
and sufficient condition for Condition 1 to be satisfied.

Theorem 2. A labeling of the strategies as ui, si, vj, and
tj satisfies Condition 1 if and only if it satisfies all the Horn
clauses.

Proof. First, suppose that not all of the Horn clauses are
satisfied. Then (without loss of generality) there exist αi1 , αi2 ,
and βj such that v(αi1)∧ v(αi2) ⇒ v(βj), v(αi1) and v(αi2)
are set to true, and v(βj) is set to false. (Alternatively the
roles of the αi and βj could be reversed, but by symmetry
we can without loss of generality restrict our attention to the

4When we have Horn clauses v(α1) ∧ v(α2) ⇒ v(β1) and
v(α1) ∧ v(α2) ⇒ v(β2), we aggregate them into v(α1) ∧
v(α2) ⇒ v(β1) ∧ v(β2) to improve readability.

first case.) That is, αi1 and αi2 are among the strategies si,
βj is among the strategies vj , and αi1 and αi2 give the row
player different payoffs against βj . But then Condition 1 is
not satisfied.

Now, suppose that all of the Horn clauses are satisfied.
We must show, for any vj , that any si1 and si2 give the row
player the same payoff against vj . (We must show the same
for the ui and the tj , but this will follow by symmetry.)
Suppose they do not; then one of the Horn clauses must be
v(si1)∧ v(si2) ⇒ v(vj). But this clause would then be false,
which is contrary to our assumption. ¥

A general systematic approach to finding a nontrivial sat-
isfying assignment is to start by setting two v(αi) (or two
v(βj)) to true, and subsequently iteratively apply the impli-
cation clauses; if this process ends without all the variables
being set to true, we have found an assignment with the
desired properties. If we do this once for every initial pair
of v(αi) and every initial pair of v(βj), then we will find an
assignment with the desired properties if it exists.

For instance, in the above example, we start by setting
v(α1) and v(α2) to true; then, applying the first implica-
tion, we find that all the v(βj) must be set to true as well,
and hence by the last implication so must v(α3), so that all
variables are set to true. Then, we try again, starting by
setting v(α1) and v(α3) to true; by the second implication,
we find that v(β1) and v(β3) must also be set to true. Then
we apply the fifth implication, but this does not set any
new variables to true, so the process ends here, and we have
found an assignment with the desired properties.

Theorem 3. The algorithm described above requires
O((|Σ1|+ |Σ2|)4) applications of a Horn clause.

Proof. There are O((|Σ1| + |Σ2|)2) iterations of the outer
loop (choosing which pair of variables to start with). More-
over, within each iteration, we never need to apply the same
clause twice, and there are only O((|Σ1|+ |Σ2|)2) clauses. ¥

4. LIMITATIONS OF THE TECHNIQUE
One may wonder whether the technique can be extended

to find Nash equilibria with special properties. For example,
if we compute a Pareto optimal or social-welfare maximizing
Nash equilibrium in each recursive call, will this give us a
Pareto optimal or social-welfare maximizing Nash equilib-
rium for the original game? The following game O shows
that this is not the case.

v1 t1 t2
u1 1, 1 4, 0 0, 0
s1 0, 4 3, 3 0, 0
s2 0, 0 0, 0 2, 2

The subcomponent G is as follows:

t1 t2
s1 3, 3 0, 0
s2 0, 0 2, 2

It has multiple equilibria, but the only Pareto optimal Nash
equilibrium is (s1, t1). Thus the reduced game R becomes:

v1 t

u1 1, 1 4, 0
s 0, 4 3, 3

This is a Prisoner’s Dilemma game where the only equilib-
rium is (u1, v1), and thus we will compute the equilibrium
(u1, v1) for the original game O. Unfortunately, this is not
a Pareto optimal equilibrium for O, because (s2, t2) is also
a Nash equilibrium for O. Of course, in practice, choosing a
Nash equilibrium with high social welfare in each recursive
call may still be a useful heuristic for finding good equilibria.

5. ALAGIU GAMES: A CLASS OF GAMES
THAT CAN BE SOLVED BY APPLYING
THE TECHNIQUE RECURSIVELY

In general, we may only be able to apply the technique
a limited number of times, after which we need to resort to
other algorithms to obtain Nash equilibria for games in the
recursive calls on which the technique cannot be applied.
However, in this section, we present a subclass of normal-
form games such that the technique works on any of these
games, and any game resulting from a recursive call is itself
in the subclass as well. Thus, the technique is sufficient for
finding a Nash equilibrium.

Definition 1. We say that a 2-player normal-form game
is an ALAGIU (Any Lower Action Gives Identical Utility)
game if each player’s strategy set Σi is a subset of R, and
the game has the property that for any pure opponent strat-
egy σ−i ∈ Σ−i, for any σ1

i , σ2
i ∈ {σi ∈ Σi : σi < σ−i}, we

have πi(σ
1
i , σ−i) = πi(σ

2
i , σ−i). That is, given that a player

chooses a lower strategy than the opponent, it does not mat-
ter to that player which of the lower strategies she chooses.

Before showing how the technique can be applied to (fi-
nite) ALAGIU games, we first give some examples. The first
one is very simple:

Example 1 (Matching n-sided pennies). In match-
ing n-sided pennies, both players choose an integer in
{1, 2, . . . , n}; player 1 wins if the players’ integers are the
same, and player 2 wins if they are different.

Incidentally, this example shows that ALAGIU games can
have nontrivial equilibria:

Proposition 1. There exist ALAGIU games (of arbitrary
size) that have only one equilibrium in which each player
randomizes uniformly over all strategies.

Proof. We claim that matching n-sided pennies has the
property. This is a zero-sum game, and thus any equilibrium
strategy is a minimax strategy. For player 1, the only min-
imax strategy is to place probability 1/n on each integer,
because if player 1 plays some integer with lower probabil-
ity, the other player will be better off playing that integer.
Similarly, for player 2, the only minimax strategy is to place
probability 1/n on each integer, because if player 2 plays
some integer with higher probability, the other player will
be better off playing that integer. ¥

We note that state-of-the-art equilibrium finding algo-
rithms tend to have difficulty computing equilibria with large

supports (i.e. in which the players randomize over many
strategies). For example, the PNS algorithm [23] for find-
ing a Nash equilibrium explicitly searches over all (exponen-
tially many) possible supports, searching the smaller sup-
ports first. Other algorithms similarly tend to require more
time on games that only have equilibria with large supports.

Matching n-sided pennies does not illustrate the full gen-
erality of ALAGIU games. The next (somewhat playful)
example allows for richer structure:

Example 2 (Vendors on a one-way street). Say
we have a hot dog vendor and an ice cream vendor that must
each choose a location on a one-way street. Assume that,
given that a vendor chooses a location earlier on the street
than the other vendor, it does not matter to the earlier ven-
dor where exactly she locates herself (all traffic must pass her
anyway). However, it may matter to the later vendor where
he locates himself. (For example, it may be bad for the ice
cream vendor to immediately follow the hot dog vendor, be-
cause potential customers will have their hands full with the
hot dog. In contrast, it may be good for the ice cream ven-
dor to locate himself significantly later on the street than the
hot dog vendor, to provide some dessert.) Then, this is an
ALAGIU game.

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

Figure 1: Three outcomes for the vendor game. Un-
der the ALAGIU restriction, the hot dog vendor’s
utility must be the same for the top two outcomes.
However, the ice cream vendor’s utility need not be
the same in any of the three outcomes.

More practically, our final example shows that ALAGIU
games also encompass typical auctions.

Example 3 (Higher-bidder-wins auctions). Any
two-player single-item auction in which a lower bidder never
wins and never pays anything is an ALAGIU game. Note
that arbitrary allocation rules are allowed in case of ties.
Also, arbitrary payment rules for the winning bidder are al-
lowed, including first price and second price (but also bizarre,
e.g. nonmonotonic, payment rules).

Perhaps surprisingly, in contrast to auctions, bargaining
games typically do not have the structure of ALAGIU games.5

5We thank Piotr Gmytrasiewicz for asking the question
whether bargaining games are ALAGIU games.

We discuss this in more detail in the appendix, but we now
move on to showing how ALAGIU games can be solved us-
ing the technique described in this paper. It turns out that
any finite ALAGIU game takes one of three special forms de-
scribed below, each of which satisfies Condition 1. Consider
the highest strategy in the game, that is, σM = max{σ :
σ ∈ Σ1 ∪Σ2}. If only the row player has σM in her strategy
set (σM ∈ Σ1 −Σ2), then the game must have the following
form:

t1 t2 t3 · · · tn

u1 = σM c11, b1 c12, b1 c13, b1 · · · c1n, b1
s1
s2

s3 G
.
.
.

sm

On the other hand, if only the column player has σM in
his strategy set (σM ∈ Σ2 − Σ1), then the game must have
the following form:

v1 = σM t1 t2 t3 · · · tn

s1 a1, d11
s2 a1, d21

s3 a1, d31 G
.
.
.

.

.

.
sm a1, dm1

Finally, if both the row and the column player have σM

in their strategy sets (σM ∈ Σ1 ∩ Σ2), then the game must
have the following form:

v1 = σM t1 t2 t3 · · · tn

u1 = σM h1, h2 c11, b1 c12, b1 c13, b1 · · · c1n, b1
s1 a1, d11
s2 a1, d21

s3 a1, d31 G
.
.
.

.

.

.
sm a1, dm1

Our technique can be applied to every one of these three
forms. Moreover, in each case the subcomponent G is still
an ALAGIU game, and thus we can apply the technique
recursively. The reduced game R is a 2× 1, 1× 2, or 2× 2
game (for the three cases, respectively), so it can easily be
solved.

Theorem 4. Using the technique described in this paper,
a Nash equilibrium of a finite ALAGIU game can be com-
puted in time O(|Σ1| · |Σ2|) (that is, in time linear in the
size of the game).

Proof. The subcomponent G that the algorithm recurses on
is one row and/or column smaller than the current game.
Whenever G is one row smaller (which happens O(|Σ1|)
times), after the recursion we need to compute a weighted
average of the cij , which requires O(|Σ2|) time. Similarly,
whenever G is one column smaller (which happens O(|Σ2|)
times), after the recursion we need to compute a weighted
average of the dij , which requires O(|Σ1|) time. ¥

6. USING THE TECHNIQUE TO COMPUTE
APPROXIMATE EQUILIBRIA

It is known that approximate Nash equilibria can be com-
puted faster than (we know how to compute) exact Nash
equilibria [17]. In this section, we study how the technique
can be used to compute approximate equilibria. Specifi-
cally, if we have found that there is no subcomponent G
that satisfies the condition, we can modify the game so that
in the modified game O′, there does exist a subcomponent
G′ that satisfies the condition. Of course, the equilibria
of O and O′ are, in general, not the same, so that the
equilibrium that we compute for O′ using the technique
is not actually an equilibrium for O. However, as we will
show, if O′ is close to O, then the equilibrium that we
compute for O′ is an approximate equilibrium for O. As
our notion of distance between two games (of equal dimen-
sions), we will use the maximum difference between two
payoffs that occur in the same position in the matrices:

d(O, O′) = maxi∈{r,c} maxα,β |πO
i (α, β)− πO′

i (α, β)| (where
πr is the row player’s utility function and πc is the column
player’s utility function). We will use ε-equilibrium as our
notion of approximate equilibrium. An ε-equilibrium is a
pair of strategies for the agents such that neither can im-
prove its expected payoff by more than ε by deviating.

Lemma 2. If O and O′ have equal dimensions, and
d(O, O′) ≤ ε/2, then any equilibrium for O′ is an ε-equilibrium
for O.

Proof. Let pr be the row player’s mixed strategy in
the computed equilibrium for O′, and let pc be the col-
umn player’s mixed strategy in the computed equilibrium
for O′. Let p′r be a best response to pc in the original
game O. Because we computed an equilibrium, we have

πO′
r (pr, pc) ≥ πO′

r (p′r, pc). Moreover, because d(O, O′) ≤
ε/2, we have πO

r (pr, pc) ≥ πO′
r (pr, pc)−ε/2 and πO′

r (p′r, pc) ≥
πO

r (p′r, pc) − ε/2. Hence, πO
r (pr, pc) ≥ πO′

r (pr, pc) − ε/2 ≥
πO′

r (p′r, pc)− ε/2 ≥ πO
r (p′r, pc)− ε, as desired. By symmetry,

the same holds for the column player. ¥

For sufficiently large ε, we can always find a game O′

with d(O, O′) ≤ ε for which there is a subcomponent G
satisfying the condition. For example, if ε is larger than
all of the payoffs in the game, then O′ can simply be the
game in which all payoffs are 0. Of course, this weakens the
guarantee on how much the agents can gain by deviating.
Thus, the challenge is to find a game O′ that is as close as
possible to O while still having a subcomponent G satisfying
the condition. One greedy way of finding such a game is the
following: for a given column (row), take two utilities that
the row (column) player can obtain in this column (row)
that are very close, and change both of them (wherever they
occur in the column (row)) to the average of the two. Then,
check if the modified game has a subcomponent G satisfying
the condition using the technique in Section 3; if not, repeat
with the modified game.

7. CONCLUSIONS
In this paper, we presented a technique for reducing a

game, O, to a smaller game, R, for the purpose of comput-
ing a Nash equilibrium. This is done by computing a Nash
equilibrium for a subcomponent, G, of O for which a certain

condition holds. We also showed that such a subcomponent
G on which to apply the technique can be found in polyno-
mial time (if it exists), by showing that the condition that
G needs to satisfy can be modeled as a Horn satisfiability
problem. We showed that the technique does not extend to
computing Pareto-optimal or welfare-maximizing equilibria.
We presented a class of games, which we call ALAGIU (Any
Lower Action Gives Identical Utility) games, for which re-
cursive application of (special cases of) the technique is suf-
ficient for finding a Nash equilibrium in linear time. Finally,
we discussed using the technique to compute approximate
Nash equilibria.

Future research includes extending the techniques pre-
sented here to games with more than two players (we note,
however, that from the viewpoint of complexity theory, the
two-player case is as hard as the n-player case [4]). It also in-
cludes testing experimentally whether the technique is help-
ful in finding equilibria in games for which we do not have a
theoretical result (as we do for ALAGIU games), for instance
on test suites of game generators (such as GAMUT [21]). Of
course, the games generated will need to have some structure
in order for the technique to have a chance—for example,
if the payoffs are drawn independently from an interval of
real numbers, then the probability that the technique can
be applied is 0, because the probability of any two payoffs
being the same is 0. (However, this does not prevent us from
searching for approximate equilibria using the technique, as
described in Section 6.) Yet another avenue is to find other,
complementary game reduction techniques that can be ap-
plied when the techniques presented here cannot. Ideally,
this would lead to a portfolio of efficient techniques of which
at least one can always be applied, giving us a polynomial-
time algorithm for computing a Nash equilibrium.

8. REFERENCES
[1] N. A. R. Bhat and K. Leyton-Brown. Computing

Nash equilibria of action-graph games. In Proceedings
of the 20th Annual Conference on Uncertainty in
Artificial Intelligence (UAI), Banff, Canada, 2004.

[2] B. Blum, C. R. Shelton, and D. Koller. A continuation
method for Nash equilibria in structured games. In
Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI),
Acapulco, Mexico, 2003.

[3] X. Chen and X. Deng. 3-Nash is PPAD-complete.
Electronic Colloquium on Computational Complexity,
Report No. 134, 2005.

[4] X. Chen and X. Deng. Settling the complexity of
2-player Nash equilibrium. Electronic Colloquium on
Computational Complexity, Report No. 150, 2005.

[5] V. Conitzer and T. Sandholm. Complexity results
about Nash equilibria. In Proceedings of the
Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI), pages 765–771,
Acapulco, Mexico, 2003.

[6] V. Conitzer and T. Sandholm. Complexity of
(iterated) dominance. In Proceedings of the ACM
Conference on Electronic Commerce (ACM-EC),
pages 88–97, Vancouver, Canada, 2005.

[7] V. Conitzer and T. Sandholm. A generalized strategy
eliminability criterion and computational methods for
applying it. In Proceedings of the National Conference

on Artificial Intelligence (AAAI), pages 483–488,
Pittsburgh, PA, USA, 2005.

[8] C. Daskalakis, P. Goldberg, and C. Papadimitriou.
The complexity of computing a Nash equilibrium.
Electronic Colloquium on Computational Complexity,
Report No. 115, 2005.

[9] C. Daskalakis and C. Papadimitriou. Three-player
games are hard. Electronic Colloquium on
Computational Complexity, Report No. 139, 2005.

[10] I. Gilboa, E. Kalai, and E. Zemel. The complexity of
eliminating dominated strategies. Mathematics of
Operation Research, 18:553–565, 1993.

[11] I. Gilboa and E. Zemel. Nash and correlated
equilibria: Some complexity considerations. Games
and Economic Behavior, 1989.

[12] G. Gottlob, G. Greco, and F. Scarcello. Pure Nash
equilibria: hard and easy games. In Theoretical
Aspects of Rationality and Knowledge (TARK), pages
215–230, Bloomington, Indiana, USA, 2003.

[13] M. Kearns, M. Littman, and S. Singh. Graphical
models for game theory. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence
(UAI), 2001.

[14] D. E. Knuth, C. H. Papadimitriou, and J. N.
Tsitsiklis. A note on strategy elimination in bimatrix
games. Operations Research Letters, 7(3):103–107,
1988.

[15] C. Lemke and J. Howson. Equilibrium points of
bimatrix games. Journal of the Society of Industrial
and Applied Mathematics, 12:413–423, 1964.

[16] K. Leyton-Brown and M. Tennenholtz. Local-effect
games. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI),
Acapulco, Mexico, 2003.

[17] R. Lipton, E. Markakis, and A. Mehta. Playing large
games using simple strategies. In Proceedings of the
ACM Conference on Electronic Commerce
(ACM-EC), pages 36–41, San Diego, CA, 2003.

[18] R. D. Luce and H. Raiffa. Games and Decisions. John
Wiley and Sons, New York, 1957. Dover republication
1989.

[19] R. Myerson. Game Theory: Analysis of Conflict.
Harvard University Press, Cambridge, 1991.

[20] J. Nash. Equilibrium points in n-person games. Proc.
of the National Academy of Sciences, 36:48–49, 1950.

[21] E. Nudelman, J. Wortman, K. Leyton-Brown, and
Y. Shoham. Run the GAMUT: A comprehensive
approach to evaluating game-theoretic algorithms. In
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), New York, NY, USA,
2004.

[22] C. Papadimitriou. Algorithms, games and the
Internet. In Proceedings of the Annual Symposium on
Theory of Computing (STOC), pages 749–753, 2001.

[23] R. Porter, E. Nudelman, and Y. Shoham. Simple
search methods for finding a Nash equilibrium. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 664–669, San Jose, CA,
USA, 2004.

[24] T. Sandholm, A. Gilpin, and V. Conitzer.
Mixed-integer programming methods for finding Nash

equilibria. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pages 495–501,
Pittsburgh, PA, USA, 2005.

[25] R. Savani and B. von Stengel. Exponentially many
steps for finding a Nash equilibrium in a bimatrix
game. In Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS), 2004.

APPENDIX
In this appendix, we show that, in contrast to auctions,
bargaining games typically do not have the structure of
ALAGIU games, or even the structure required for the tech-
nique to be useful. Consider a dollar-splitting game in which
each of two agents must simultaneously ask for a fraction of
the dollar. If the fractions that the agents ask for sum to
at most a dollar, they each receive their fraction; otherwise,
neither agent receives anything. We note that this game ap-
pears to have somewhat similar structure to ALAGIU games,
in the sense that if an agent asks for an amount that is too
high, then it does not matter to the agent by how much the
amount is too high. However, there is a subtle difference:
informally, in (for example) auctions, bids are too low when
the other bidder’s bid is high, whereas in bargaining games
such as this one, demands are too high if the other bar-
gainer’s demand is also high. We now show formally that
the technique is in general not useful on bargaining games.

For simplicity, suppose that the agents can only ask for
$0.25, $0.50, or $0.75. Then the game is the following.

$0.25 $0.50 $0.75

$0.25 0.25, 0.25 0.25, 0.50 0.25, 0.75
$0.50 0.50, 0.25 0.50, 0.50 0, 0
$0.75 0.75, 0.25 0, 0 0, 0

We will use the technique from Section 3 to show that
there is no subcomponent G on which to apply the tech-
nique. Denoting by αx agent 1’s strategy of demanding x,
and by βx agent 2’s strategy of demanding x, we obtain the
following clauses:

1. v(α$0.25)∧ v(α$0.50) ⇒ v(β$0.25)∧ v(β$0.50)∧ v(β$0.75),

2. v(α$0.25)∧ v(α$0.75) ⇒ v(β$0.25)∧ v(β$0.50)∧ v(β$0.75),

3. v(α$0.50) ∧ v(α$0.75) ⇒ v(β$0.25) ∧ v(β$0.50),

4. v(β$0.25)∧ v(β$0.50) ⇒ v(α$0.25)∧ v(α$0.50)∧ v(α$0.75),

5. v(β$0.25)∧ v(β$0.75) ⇒ v(α$0.25)∧ v(α$0.50)∧ v(α$0.75),

6. v(β$0.50) ∧ v(β$0.75) ⇒ v(α$0.25) ∧ v(α$0.50).

It is straightforward to see that this set of clauses only has
trivial solutions (all variables set to true, or at most one per
player set to true). Hence the technique cannot be applied
on this game (which also implies that the game is not an
ALAGIU game).

