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In a preference aggregation setting, a group of agents
must jointly make a decision, based on the individual agents’
privately known preferences. To do so, the agents need some
protocol (or mechanism) that will elicit this information
from them, and make the decision. Examples of such mech-
anisms include voting protocols, auctions, and exchanges.
In most real-world settings, preference aggregation is con-
fronted with the following three computational issues. First,
there is the complexity ofexecutingthe mechanism. Second,
when standard mechanisms do not apply to or are subopti-
mal for the setting at hand, there is the complexity ofdesign-
ing the mechanism. Third, the agents face the complexity of
(strategically)participating in the mechanism.

My thesis statement is that by studying these computa-
tional aspects of the mechanism design process, we can sig-
nificantly improve the generated mechanisms in a hierarchy
of ways, leading to increased economic welfare.

Outcome optimization
Even when all the agents’ preferences are already known,
computing the optimal outcome (for example, the one that
maximizes the sum of the agents’ utilities) can be nontriv-
ial. For example, in acombinatorial auction, bidders are
allowed to place bids on any subset of the items for sale.
While the expressiveness that this provides to the bidders
increases economic welfare, thewinner determination prob-
lemof deciding which bids to accept so as to maximize the
total value is known to be NP-complete (Rothkopf, Pekeč,
& Harstad 1998), even to approximate (Sandholm 2002).

My thesis work includes new work on the winner de-
termination problem in combinatorial auctions (Conitzer,
Derryberry, & Sandholm 2004). It also introduces an ex-
pressive bidding protocol for matching donations to chari-
ties (Conitzer & Sandholm 2004e), as well as an expressive
bidding protocol for general settings in which agents’ ac-
tions impose externalities on the other agents (that is, affect
the other agents’ utilities).

Mechanism design with strategic agents
While having a good outcome optimization algorithm is nec-
essary for preference aggregation to be successful, it is not
sufficient. The reason is that generally, the agents’ prefer-
ences are not known beforehand and will have to be elicited
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from them. Unfortunately, agents will misreport their pref-
erences if it is in their interest to do so. This may lead to
the outcome optimization algorithm choosing an outcome
that is good under the reported preferences, but bad under
the agents’ true preferences. The solution is to choose out-
comes in such a way that agents have no incentive to misre-
port. Economists have invented a number of general mecha-
nisms that achieve this (under various conditions) – most no-
tably, the Vickrey-Clarke-Groves (VCG) mechanism (Vick-
rey 1961; Clarke 1971; Groves 1973). However, applying
these mechanisms in computationally complex settings is
nontrivial. For example, using an approximate outcome op-
timization algorithm will destroy the strategic properties of
the VCG mechanism (Nisan & Ronen 2001).

My thesis work discusses revenue and bidder collusion
problems that the VCG mechanism introduces in combina-
torial auctions and exchanges (Conitzer & Sandholm 2004f).
It also studies the design of mechanisms for strategic agents
in the expressive bidding setting for matching donations to
charities described above.

Automated mechanism design

While general mechanisms such as VCG constitute some of
the great successes of theoretical economics, they are not
always applicable to the preference aggregation setting at
hand. For example, they usually assume that there are no
barriers that prevent agents from making payments to each
other. Moreover, even when the general mechanisms can be
applied to the setting at hand, they may not be optimal. For
example, most of the general mechanisms try to maximize
social welfare, but this leads to suboptimal mechanisms if
the true objective is something else, such as revenue max-
imization. In such cases, theautomated mechanism design
approach, in which a special-purpose mechanism is com-
puted specifically for the preference aggregation setting at
hand, is required to aggregate preferences optimally.

My thesis work discusses the complexity of the gen-
eral automated mechanism design problem, and introduces
mixed integer/linear programming approaches for solving
it (Conitzer & Sandholm 2002b; 2003a; 2004g). It also
discusses special cases and structured representations of the
problem which can be solved faster (sometimes with special-
purpose algorithms (Conitzer & Sandholm 2004a)). Finally,
it discusses the automated design ofmultistagemechanisms.



Designing mechanisms for
computationally bounded agents

The standard approach to designing mechanisms that per-
form well in the face of strategic agents is to assume that
agents will misreport their preferences whenever this is in
their best interest. This often leads to very cautious and
conservative mechanisms that never give the agents incen-
tives to misreport their preferences (that is, they are truth-
ful), but also do not generate much value. (Occasionally,
this approach even leads to an impossibility result that states
that no desirable mechanism exists, such as the Gibbard-
Satterthwaite theorem in the context of voting (Gibbard
1973; Satterthwaite 1975).) However, in complex prefer-
ence aggregation settings, it may actually be computation-
ally too hard for agents to find a beneficial insincere report
of their preferences. An ideal mechanism design process
would exploit these computational weaknesses of the agents
to generate mechanisms which are better for all involved.

My thesis work shows that in some voting protocols,
it can be computationally hard to find a beneficial insin-
cere vote (Conitzer & Sandholm 2002a; Conitzer, Lang,
& Sandholm 2003). It also introduces new voting proto-
cols that are especially hard to manipulate with insincere
votes (Conitzer & Sandholm 2003f). Additionally, it ex-
hibits settings in which there are insincere mechanisms that
always perform at least as well as truthful mechanisms, and
perform strictly better in the face of high computational
complexity (Conitzer & Sandholm 2004c). As an initial step
towards the general design of mechanisms for computation-
ally bounded agents, my thesis work studies the complex-
ity of basic solution concepts in game theory, such as Nash
equilibrium (Conitzer & Sandholm 2003e), (iterated) dom-
inance (Conitzer & Sandholm 2005b), the core (Conitzer
& Sandholm 2003d), and the Shapley value (Conitzer &
Sandholm 2004d); as well as various topics on learning in
games (Conitzer & Sandholm 2003b; 2003c; 2004b).

Work to be completed
There are many important unresolved questions pertaining
to the individual topics discussed above. A more signifi-
cant question, however, is how to combine the above ap-
proaches to mechanism design into a single unifying frame-
work – one in which mechanisms are automatically designed
for the setting at hand, for bounded agents. There are tech-
nical reasons why this is not straightforward: it would re-
quire a more sophisticated approach to automated mecha-
nism design and/or more sophisticated models of bounded
agents. Another important question that we continue to ad-
dress is how to perform the actual elicitation of the agents’
preferences efficiently (Conitzer & Sandholm 2002c; Santi,
Conitzer, & Sandholm 2004; Conitzer & Sandholm 2005a).
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