
Chapter 7

Game-Theoretic Foundations of
Mechanism Design

As mentioned in Chapter 4, a result known as the revelation principle is often used to justify restrict-
ing attention to truthful mechanisms. Informally, it states that, given a mechanism (not necessarily
a truthful or even a direct-revelation mechanism) that produces certain outcomes when agents be-
have strategically, there exists a truthful mechanism that produces the same outcomes. Of course,
this informal statement is too unspecific to truly understand its meaning. Which type of truthful-
ness is obtained—implementation in dominant strategies, Bayes-Nash equilibrium, or something
else? More importantly, what exactly does it mean for the agents to “behave strategically”? It turns
out that there are really multiple versions of the revelation principle: different types of strategic
behavior lead to different types of truthfulness. In this chapter, we will review some basic con-
cepts from game theory, which will provide us with basic definitions of strategic behavior. We will
also present two versions of the revelation principle. This will give us a deeper understanding of
the motivation for restricting attention to truthful mechanisms, which will be helpful in the next
two chapters, where we argue that non-truthful mechanisms need to be considered when agents are
computationally bounded.

7.1 Normal-form games

Perhaps the most basic representation of a strategic settings is a game in normal or strategic form.
In such a game, there are n agents (or players), and each player i has a set of strategies Si to select
from. The players select their strategies simultaneously, and based on this each player i receives a
utility ui(s1, . . . , sn). In the case where n = 2 and the number of strategies for each agent is finite,
we can represent the game in (bi)matrix form. To do so, we label one player the row player, and
the other the column player; then, we add a row to the matrix for each row player strategy, and a
column for each column player strategy; finally, in each entry of the matrix, we place the players’
utilities (starting with the row player’s) for the outcome of the game that corresponds to this entry’s
row and column.

For example, the well-known game of rock-paper-scissors has the following normal-form rep-
resentation:
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R P S

R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

(Note that here, each row and each column is given a label (R, P , S); such labels do not have any
strategic importance, so we will sometimes omit them.) Rock-paper-scissors is what is known as a
zero-sum game, because within each entry of the matrix, the payoffs sum to zero—what one player
gains, the other loses. If the payoffs in each entry of the matrix sum to a constant other than zero,
the game is effectively still a zero-sum game, because affine transformations of utility do not affect
a player’s behavior.

7.1.1 Minimax strategies

How should we play rock-paper-scissors (and other zero-sum games)? Let us suppose, pessimisti-
cally, that the other player has good insight into how we play. Then, having a deterministic strategy
(say, playing “rock” with probability one) is not a good idea, because the other player can play “pa-
per” and win. Instead, it is better to randomize—for example, play each action with probability 1/3.
The set of randomizations ∆Si over player i’s (original) set of strategies in the game is known as
the set of player i’s mixed strategies. (For contrast, we will refer to Si as the set of pure strategies.)

The most conservative way to play a two-player zero-sum game is to assume that the other player
is able to predict one’s mixed strategy perfectly. Then, one should choose one’s mixed strategy to
minimize the maximum utility that the other player can obtain (given that that player knows the
mixed strategy). Formally, using the common notation−i to denote “the player other than i,” player
i should choose a strategy from argminσi∈∆(Si)maxs−i∈S−i u−i(σi, s−i). (When we give a utility
function a mixed strategy as an argument, it simply produces the expected utility given that mixed
strategy.) This cautious manner of play may appear very favorable to player −i (given that that −i
really does know player i’s strategy). However, in rock-paper-scissors, the minimax strategy is to
play each pure strategy with probability 1/3, and in this case, any action that the opponent takes will
result in an expected utility of 0 for both players. So at least in this game, there is no benefit to being
able to choose one’s strategy based on the opponent’s mixed strategy. This is no accident: in fact,
the famous Minimax Theorem [von Neumann, 1927] shows that the players’ expected utilities will
be the same regardless of which player gets to choose last. Formally, we have (if the utilities in each
entry sum to 0): argminσ1∈∆(S1)maxs2∈S2

u2(σ1, s2) = − argminσ2∈∆(S2)maxs1∈S1
u1(σ2, s1).

Hence, it is natural to play minimax strategies in two-player zero-sum games.
What if the game is not zero-sum? As will become clear shortly, no perfect generalization of

the Minimax Theorem exists; nevertheless, there are still ways of solving these games. One simple,
but not always applicable notion is that of dominance, which will be discussed in the next section.

7.1.2 Dominance and iterated dominance

Consider the following game, commonly known as the Prisoner’s Dilemma:
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S C

S -1,-1 -3,0
C 0,-3 -2,-2

The story behind the Prisoner’s Dilemma game is as follows. Two criminals are arrested in connec-
tion with a major crime, but there is only enough evidence to convict them of a minor crime. The
criminals are put in separate rooms, and are each given the option of confessing to the major crime
(C) or keeping silent (S). If both keep silent, they are convicted of the minor crime and sentenced
to one year in prison. If one confesses and the other does not, no charges at all will be filed against
the criminal that confesses, and the one that does not is convicted of the major crime and sentenced
to 3 years in prison. Finally, if both confess, they are both convicted of the major crime and given a
slightly reduced sentence of 2 years in prison.

How should each criminal play? (Note that it is assumed that there is no opportunity for re-
taliation afterwards, nor do the criminals care about each other’s fate—each prisoner’s objective is
simply to minimize the amount of time that he spends in prison.) If the other criminal confesses, it
is better to confess and get −2 rather than −3. But similarly, if the other criminal keeps silent, it is
better to confess and get 0 rather than −1. So, confessing is always better, and both criminals will
confess—even though this will give each of them a worse outcome than if they had kept silent.1 We
say that confessing is a dominant strategy. Formally:

Definition 31 Player i’s strategy σ′i ∈ ∆(Si) is said to be strictly dominated by player i’s strategy
σi ∈ ∆(Si) if for any vector of strategies s−i ∈ S−i for the other players, ui(σi, s−i) > ui(σ

′
i, s−i).

Player i’s strategy σ′i ∈ ∆(Si) is said to be weakly dominated by player i’s strategy σi ∈ ∆(Si) if

1While prisoners’ confessing to a crime may not appear to be such a bad outcome, there are many other real-world
strategic situations with roughly the same structure where we clearly would prefer the agents to cooperate with each other
and obtain the higher utilities. For example, there are settings where both players would be better off if each invested in a
given public good, but if players act selfishly, neither will invest. Perhaps due to the frustrating nature of such outcomes,
many suggestions have been made as to why an agent may still choose to act cooperatively. For example, the agents may
care about each other’s welfare, or bad behavior may cause failed cooperation, or even retaliation, in the future. Such
arguments amount to nothing more than saying that the game structure and its utilities are inaccurate (or at least incom-
plete). Indeed, one should always be careful to model one’s setting accurately, but this does not resolve the problem in the
many settings that really are modeled accurately by a Prisoner’s Dilemma game. A possible exception is the following
argument. Suppose a player believes that the other player reasons exactly like him, and will therefore always make the
same decision. Then, if the former player cooperates, so will the other player; if he does not, neither will the other player.
Therefore, the first player should cooperate. This type of reasoning has been called “superrationality” [Hofstadter, 1985],
but it quickly leads to difficult questions of causality (does choosing to cooperate “cause” the other player to cooperate?)
and free will (is one’s decision already pre-ordained given that the other player must do the same?). This is closely related
to Newcomb’s paradox [Nozick, 1969], in which a superintelligent or even omniscient being presents an agent with two
boxes, each of which contains some nonnegative amount of money. The agent can choose to take either the contents of
the first box only, or the contents of both boxes. The catch is that when filling the boxes, the being predicted whether the
agent would take one or both boxes, and if it predicted that the agent would choose only one box, it placed significantly
more money in that one box than it otherwise would have placed in both boxes together. Moreover, the being has been
absolutely flawless in predicting other, previous agents’ choices. It can be argued that the agent should choose only the
one box, because then the being presumably would have put much more money in that box; or that the agent should
choose both boxes, since the amounts in the boxes are already fixed at this point. In this dissertation, I will not address
these issues and simply follow the standard model in which one can make a decision without affecting one’s beliefs about
what the other players will decide or have decided (which, for most real-world settings, is an accurate model).
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for any vector of strategies s−i for the other players, ui(σi, s−i) ≥ ui(σ
′
i, s−i), and for at least one

vector of strategies s−i for the other players, ui(σi, s−i) > ui(σ
′
i, s−i).

This definition allows the dominating strategy σi and the dominated strategy σ′i to be mixed
strategies, although the restriction where these strategies must be pure can also be of interest (espe-
cially to avoid assumptions on agents’ attitudes towards risk). There are other notions of dominance,
such as very weak dominance (in which no strict inequality is required, so two strategies can domi-
nate each other), but this dissertation will not study those notions.

In iterated dominance, dominated strategies are removed from the game, and no longer have
any effect on future dominance relations. For example, consider the following modification of the
Prisoner’s Dilemma in which the District Attorney severely dislikes the row criminal and would
press charges against him even if he were the only one to confess:

S C

S -1,-1 -3,0
C -2,-3 -2,-2

Now, the dominance argument only works for the column player. However, because (using the
dominance argument) it is clear that the column player will not keep silent, that column becomes
irrelevant to the row player. Thus the row player effectively faces the following game:

C

S -3,0
C -2,-2

In this remaining game, confessing does once again dominate keeping silent for the row player.
Thus, iterated dominance can solve this game completely.

Either strict or weak dominance can be used in the definition of iterated dominance. We note
that the process of iterated dominance is never helped by removing a dominated mixed strategy, for
the following reason. If σ′i gives player i a higher utility than σi against mixed strategy σj for player
j 6= i (and strategies σ−{i,j} for the other players), then for at least one pure strategy sj that σj
places positive probability on, σ′i must perform better than σi against sj (and strategies σ−{i,j} for
the other players). Thus, removing the mixed strategy σj does not introduce any new dominances.

7.1.3 Nash equilibrium

Many games cannot be solved using (iterated) dominance. Consider the following game (commonly
called “chicken”):

S D

S -2,-2 1,-1
D -1,1 0,0
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The story behind this game is the following: to test who has the strongest nerves, two drivers drive
straight at each other, and at the last moment each driver must decide whether to continue straight
(S) or dodge the other car by turning (say) right (D). The preferred outcome is to “win” by going
straight when the other dodges, but if both drivers continue straight, they collide and both suffer
severely.

This game has no dominated strategies. In fact, the matrix has multiple strategically stable
entries: if one player goes straight, and the other dodges, then neither player has an incentive to
change strategies (the player going straight is winning, and the player dodging does not want to go
straight and collide). This leads to the definition of a Nash equilibrium:

Definition 32 Given a normal-form game, a Nash equilibrium is vector of mixed strategies σ1, . . . ,
σn such that no agent has an incentive to deviate from its mixed strategy given that the others do not
deviate. That is, for any i and any alternative mixed strategy σ ′i, we have ui(σ1, . . . , σi, . . . , σn) ≥
ui(σ1, . . . , σ

′
i, . . . , σn).

Indeed, (S,D) and (D,S) are pure-strategy Nash equilibria of “chicken.” There is another Nash
equilibrium where both players play each pure strategy with probability 0.5. Every finite game has
at least one Nash equilibrium if we allow for mixed strategies [Nash, 1950].

7.2 Bayesian games

The normal-form representation of games assumes that players’ utilities for outcomes of the game
are common knowledge. Hence, they cannot directly capture settings in which the players’ have
private information about their utilities, as they would, for example, in an auction. Such settings
can be modeled using Bayesian games.

In a Bayesian game, each player first receives privately held preference information (the player’s
type) from a distribution, which determines the utility that that player receives for every outcome of
(that is, vector of actions played in) the game. After receiving this type, the player plays an action
based on it.2

Definition 33 A Bayesian game is given by a set of players {1, 2, . . . , n}; and, for each player i,
a set of actions Ai, a type space Θi with a probability distribution pi over it, and a utility function
ui : Θi × A1 × . . . × An → R (where ui(θi, a1, . . . , an) denotes player i’s utility when i’s type is
θi and each player j plays action aj). A pure strategy in a Bayesian game is a mapping from types
to actions, si : Θi → Ai, where si(θi) denotes the action that player i plays for type θi.

As an example, consider an unusual first-price sealed-bid auction with two bidders, in which the
bidders can only bid 1 or 2. If the bids are tied, then the winner is chosen randomly. Each bidder
draws a valuation from Θ1 = Θ2 = {2, 2.5} uniformly at random. We can represent the utility
function of player 1 (the row player) as follows:

2In general, a player can also receive a signal about the other players’ preferences, but we will not concern ourselves
with that in this dissertation.
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bid 1 bid 2
bid 1 .5 0
bid 2 0 0

Row player utilities when θ1 = 2.

bid 1 bid 2
bid 1 .75 0
bid 2 .5 .25

Row player utilities when θ1 = 2.5.

The utility function for the column player is similar.
Any vector of pure strategies in a Bayesian game defines an (expected) utility for each player,

and therefore we can simply translate a Bayesian game into a normal-form game. For example, the
auction game above gives (letting x, y denote the strategy of bidding x when one’s type is 2, and y
when one’s type is 3):

1,1 1,2 2,1 2,2
1,1 .625, .625 .3125, .5 .3125, .375 0, .25
1,2 .5, .3125 .3125, .3125 .3125, .1875 .125, .1875
2,1 .375, .3125 .1875, .3125 .1875, .1875 0, .1875
2,2 .25, 0 .1875, .125 .1875, 0 .125, .125

Using this transformation, we can take any solution concept that we have defined for normal-
form games (such as dominance or Nash equilibrium), and apply it to Bayesian games. For example,
in the game above, the strategy 2,1 is strictly dominated by 1,2. The strategy 2,2 is weakly dom-
inated by 1,2. After removing 2,2 for both players, 1,1 weakly dominates every other strategy, so
iterated weak dominance can solve this game entirely, leaving only 1,1 for each player. Both play-
ers playing 2,2 is nevertheless a Nash equilibrium so is both players playing 1,2; and both players
playing 1,1. There are no mixed-strategy equilibria.

One remark that should be made is that the normal-form representation of the Bayesian game
is exponentially larger than the original representation, because each player i has |Ai|

|Θi| distinct
pure strategies. For the purpose of defining solution concepts and other conceptual purposes, this
causes no problem. But, later, when we will be interested in computing Bayesian games’ solutions,
it will not be sufficient to simply apply this transformation and solve the normal form, since this
will require exponential time (and space).

So, one can define solution concepts for Bayesian games by applying normal-form solution
concepts to the normal-form representation of a Bayesian game. In spite of the simplicity of this
approach, the typical approach in mechanism design is nevertheless to define the solution concepts
directly, as is done below. For simplicity of notation, in the remainder of this chapter, I discuss pure
strategies only; the generalizations to mixed strategies (where agents choose a distribution over
actions based on their types) are straightforward.

First, let us consider a direct definition of dominance that is typically used in mechanism design:

Definition 34 Given a Bayesian game, the vector of strategies (s1, . . . , sn) is a dominant-strategy
equilibrium if for every agent i, for every type θi ∈ Θi, every alternative action ai ∈ Ai, and every
action vector a−i ∈ A−i of the other agents, we have ui(θi, si(θi), a−i) ≥ ui(θi, ai, a−i).
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There are a few differences between this definition and using the normal-form representation
definition of dominance given above. First, this definition only applies to games where each agent
has a strategy that dominates all others, i.e. dominance can solve the game entirely (without iter-
ation). Second, none of the inequalities are required to be strict—this is very weak dominance. A
third, subtle, minor difference is that in this definition the strategy is supposed to give an optimal
action for every type of the agent, against any opponent actions. The definition that appeals to the
normal-form representation only requires that the strategy maximizes the total expected utility over
the agent’s types, against any opponent actions. The normal-form definition still requires that the
strategy chooses the optimal action for any type with positive probability; the only difference is
that the normal-form definition does not require optimal actions to be chosen on types that have
probability zero. For games with finitely many types, this is an insignificant difference, since it does
not make sense to even bother defining a type that occurs with zero probability. Under continuous
type spaces, the difference is a little more significant since the normal-form definition may choose
to play in a bizarre manner on a set of types with measure zero. Since we will be mainly concerned
with finite type spaces, the difference between the definitions is immaterial.

Now we will consider Bayes-Nash equilibrium, under which agents strategies are optimal only
given the other agents’ strategies, and given that one does not know the other agents’ types.

Definition 35 The vector of strategies (s1, . . . , sn) is a Bayes-Nash equilibrium if for every agent i,
for every type θi ∈ Θi, and every alternative action ai ∈ Ai, we haveEθ−i [ui(θi, si(θi), s−i(θ−i))] ≥
Eθ−i [ui(θi, ai, s−i(θ−i))].

This definition is identical to the one where we simply apply Nash equilibrium to the normal
form of the Bayesian game—with the exception that agents can no longer behave arbitrarily for
types that have zero probability.

Now that we have some methods for predicting strategic behavior in arbitrary games, we can
return to mechanism design and begin to assess the quality of mechanisms that are not truthful,
direct-revelation mechanisms. In the next section, we will use this ability to prove two variants of
the revelation principle, showing that if agents play according to the solution concepts defined here,
then there is no reason not to use a truthful, direct-revelation mechanism.

7.3 Revelation principle

To prove the revelation principle, we first need to assess what outcomes will be produced by a
mechanism that is not a truthful, direct-revelation mechanism, based on the solution concepts for
Bayesian games given above. Such a mechanism can be represented by a set of actions Ai for each
agent i, and an outcome selection function o : A1 × . . . × An → O. (To minimize notational
overhead, payments should be considered part of the outcome here. Also, the outcome function
may in general produce distributions over outcomes; everything below can be extended to allow for
this as well simply by replacing O with ∆(O).)

We first define when a mechanism implements a given social choice rule:

Definition 36 A social choice rule is a function f : Θ1×. . .×Θn → O. A mechanism o implements
rule f in dominant strategies if there is a dominant strategy equilibrium (s1, . . . , sn) such that for
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all (θ1, . . . , θn) ∈ Θ1 × . . .×Θn, o(s1(θ1), . . . , sn(θn)) = f(θ1, . . . , θn). Similarly, a mechanism
o implements rule f in Bayes-Nash equilibrium if there is a Bayes-Nash equilibrium (s1, . . . , sn)
such that for all (θ1, . . . , θn) ∈ Θ1 × . . .×Θn, o(s1(θ1), . . . , sn(θn)) = f(θ1, . . . , θn).

One should note that a game may have multiple equilibria, and may therefore implement mul-
tiple social choice rules. For example, consider the two-type first-price auction example in the
previous section: two of its equilibria always allocate the item at random, but the third allocates the
item to the bidder with the higher valuation if the valuations are not equal. If there are multiple equi-
libria, then we will assume that we can choose our favorite equilibrium. This strengthens the power
of indirect/non-truthful mechanisms, and therefore strengthens the revelation principle result below.
(It should be remarked that truthful direct-revelation mechanisms may have multiple equilibria as
well; however, one may argue that the truth-telling equilibrium is “focal”, i.e. the most natural one.)

We are now ready to review two known variants of the revelation principle, corresponding to
dominant-strategies equilibrium and Bayes-Nash equilibrium. Before doing so, recall the simple
intuition behind the revelation principle: the new, truthful direct-revelation mechanism that we con-
struct requests the agents’ types, and then plays “on their behalf” in the old mechanism (according
to the equilibrium of that mechanism) to produce the outcome. There is no reason for an agent to
misreport his type, since this will only result in the new mechanism playing the part of that agent
suboptimally in the old mechanism.

Revelation Principle, version 1 Suppose there is an (indirect/non-truthful) mechanism that imple-
ments social choice rule f in dominant strategies. Then there exists a dominant-strategies incentive-
compatible direct-revelation mechanism with outcome selection function o that also implements f
in dominant strategies (using the truth-telling equilibrium).

Proof: We show how to transform the given mechanism that implements f into a truthful direct-
revelation mechanism that implements f . For each i, let soldi : Θi → Aold

i be the strategy played
by agent i in the equilibrium that implements f in the given mechanism, and let oold be the given
game’s outcome selection function, so that oold(sold1 (θ1), . . . , s

old
n (θn)) = f(θ1, . . . , θn), and the

soldi constitute a dominant strategies equilibrium. Then let our new mechanism have the outcome
function o given by o(θ1, . . . , θn) = oold(sold1 (θ1), . . . , s

old
n (θn)) = f(θ1, . . . , θn). All we need

to show is that truthtelling is a dominant strategies equilibrium. To show this, we observe that for
any i and θi ∈ Θi, for any alternative type θ̂i ∈ Θi, and for any θ−i ∈ Θ−i, ui(θi, o(θi, θ−i)) =
ui(θi, o

old(soldi (θi), s
old
−i (θ−i))) ≥ ui(θi, o

old(soldi (θ̂i), s
old
−i (θ−i))) = ui(θi, o(θ̂i, θ−i)), where the

inequality derives from the fact that the soldi constitute a dominant strategies equilibrium in the
original mechanism.

Revelation Principle, version 2 Suppose there is an (indirect/non-truthful) mechanism that imple-
ments social choice rule f in Bayes-Nash equilibrium. Then there exists a Bayes-Nash equilibrium
incentive-compatible direct-revelation mechanism with outcome selection function o that also im-
plements f in Bayes-Nash equilibrium (using the truth-telling equilibrium).

Proof: We show how to transform the given mechanism that implements f into a truthful direct-
revelation mechanism that implements f . For each i, let soldi : Θi → Aold

i be the strategy played
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by agent i in the equilibrium that implements f in the given mechanism, and let oold be the given
game’s outcome selection function, so that oold(sold1 (θ1), . . . , s

old
n (θn)) = f(θ1, . . . , θn), and the

soldi constitute a Bayes-Nash equilibrium. Then let our new mechanism have the outcome function
o given by o(θ1, . . . , θn) = oold(sold1 (θ1), . . . , s

old
n (θn)) = f(θ1, . . . , θn). All we need to show is

that truthtelling is a Bayes-Nash equilibrium. To show this, we observe that for any i and θi ∈ Θi,
for any alternative type θ̂i ∈ Θi, Eθ−i [ui(θi, o(θi, θ−i))] = Eθ−i [ui(θi, o

old(soldi (θi), s
old
−i (θ−i)))] ≥

Eθ−i [ui(θi, o
old(soldi (θ̂i), s

old
−i (θ−i)))] = Eθ−i [ui(θi, o(θ̂i, θ−i))], where the inequality derives from

the fact that the soldi constitute a Bayes-Nash equilibrium in the original game.

We have assumed that the strategies in the equilibrium of the original mechanism are pure; the
result can be extended to the setting where they are mixed. In this case, though, the resulting truthful
mechanism may become randomized, even if the original mechanism was not.

7.4 Summary

In this chapter we reviewed basic concepts from game theory. We reviewed basic solution concepts
for normal-form games, including minimax strategies, dominance and iterated dominance, and Nash
equilibrium. We then showed how to extend these solution concepts to Bayesian games. Armed with
these concepts, we finally presented the (known) proofs of two variants of the revelation principle,
which (informally stated) show that if agents act strategically (according to these solution concepts),
then there is no reason not to use a truthful, direct-revelation mechanism.

Unfortunately, as we will see in the next chapters, the assumption that agents will behave in a
strategically optimal way is often untenable in mechanisms for expressive preference aggregation.
This is in part due to the fact that the agents’ strategy spaces become too large to search exhaustively.
Of course, exhaustive search is not necessarily required to behave in a strategically optimal way—
perhaps there are efficient algorithms that home in on the optimal strategies quickly. In Chapter 8
we show that for some settings, this is unlikely to be the case, because even the problem of finding
a best response to given strategies by the other players is computationally hard (NP-complete or
harder). Additionally, intuitively, the problem of computing a best response is much easier than that
of acting optimally when the other agents’ actions are not yet known, and must be reasoned about
first. In Chapter 9 we show that indeed, standard solution concepts such as (iterated) dominance and
Nash equilibrium can be hard to compute (even when the strategy spaces are much more manageable
in size).
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