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Abstract

Many scheduling problems can be viewed as allocating rates to jobs, subject to convex packing constraints on
the rates. In this paper, we consider the problem of rate allocation when jobs of unknown size arrive online (non-
clairvoyant setting), with the goal of minimizing weighted delay or flow time. Though this problem has strong lower
bounds on competitive ratio in its full generality, we show positive results for natural and fairly broad sub-classes.
More specifically, the subclasses we consider not only generalize several well-studied models such as scheduling
with speedup curves and related machine scheduling, but also capture as special cases hitherto unstudied scheduling
problems such as routing multi-commodity flows, routing multicast (video-on-demand) trees, and multi-dimensional
resource allocation.

We establish several first positive results by making connections with two disparate disciplines: Economics and
Queueing theory. First, we view the instantaneous allocation of rates as a resource allocation problem. We analyze the
natural proportional fairness algorithm from economics. To do this, we extend results from market clearing literature,
particularly the Eisenberg-Gale markets and the notions of Walrasian equilibria and Gross Substitutes. This yields the
first constant competitive algorithm with constant speed augmentation for single-sink flow routing, routing multicast
trees, and multidimensional resource allocation with substitutes resources.

Next, we consider the general scheduling problem with packing constraints on rates, but with the restriction that
the number of different job types is fixed. We model this problem as a non-stochastic queueing problem. We generalize
a natural algorithm from queueing literature and analyze it by extending queueing theoretic ideas. We show that the
competitive ratio, for any constant speed, depends polynomially only on the number of job types. Further, such a
dependence on the number of job types is unavoidable for non-clairvoyant algorithms. This yields the first algorithm
for scheduling multicommodity flows whose competitive ratio depends polynomially on the size of the underlying
graph, and not on the number of jobs.

I. INTRODUCTION

The PACKING SCHEDULING PROBLEM or PSP was first defined in [24] as a natural generalization of many
scheduling problems considered in literature. In this general problem, a scheduling instance consists of n jobs, and
each job j has weight wj , size pj , and arrives at time rj . At any time instant t, the scheduler must assign rates
{yj} to the current jobs in the system. We assume the set of feasible rates y is constrained by a downward-closed
convex region P . Here, downward-closed means that if y ∈ P , then any z ∈ P , where z is coordinate-wise at
most y. Let yAj (t) denote the rate at which job j is processed at time t by a scheduler/algorithm A. Then, job j’s

completion time CAj under the schedule of A is defined to be the first time t′ such that
∫ t′
t=rj

yAj (t)dt ≥ pj . Job
j’s flow time is the length of time job j waits to be completed since its arrival and is defined as FAj = CAj − rj .
Similalry, job j’s weighted flow time is defined as wjFAj factoring in the job’s weight. When the algorithm A and
time t are clear from the context, we may drop them from the notation.

In this paper, we will focus on the flow time objective, specifically the objective of minimizing total weighted
flow time,

∑
j wjFj . The class of scheduling algorithms we consider are constrained by several properties. It is

online and learns about job j only when it arrives. Before this point, yj = 0. The scheduler is required to be non-
clairvoyant, i.e., it does not know a job’s size pj until completing the job. Furthermore, the algorithm is allowed
to re-compute y(t) at any real time t. Our algorithms will however perform recomputations only when jobs either
arrive or complete.

As discussed in [24], the PSP problem is very general and captures several widely studied scheduling problems,
such as broadcast scheduling [19], [7], [8], [15], [26], [6], unrelated machine scheduling [4], [23], [24], [25], and
single machine scheduling with speedup curves [38], [13], [15], [16], [18]. Furthermore, the PSP problem becomes
relevant in the context of modern data centers. Consider a typical data center setting, where there is a cluster of
machines with a distributed file system implementation (such as HDFS [39]) layered on top of the cluster. Users
submit executables (or jobs) to this cluster. In a typical MAPREDUCE implementation such as Hadoop [2], each



job is a collection of parallel map and reduce tasks requiring certain CPU, disk space, and memory to execute. The
job therefore comes with a request for different types of resources (or dimensions); these can either be explicitly
specified, or can be estimated by the task scheduler from a high-level description of the job. The rate at which
jobs execute is a pre-specified concave utility function of the resource allocation. This multi-dimensional resource
allocation scenario has gained a lot of attention recently; see [20] and followup work [14], [41], [21], [3], [1], [37],
[32]. For many commonly arising resource allocation functions, this problem is indeed a special case of PSP.

We will use the standard notion of competitive ratio for analyzing our algorithms. An online algorithm is said
to be α-competitive if for every finite input instance, the cost incurred by the algorithm is at most α times the cost
of an optimal offline solution to the instance.

A. High-level Overview of Results

The generality of the PSP problem leads to strong lower bounds: It is shown in [24] that there is an instance
of PSP for which no deterministic algorithm is O(n1−ε)-competitive on the flow time objective for any constant
0 < ε < 1, unless the algorithm runs with Ω(

√
log n) speed compared to the optimal algorithm. The above negative

result is in sharp contrast with positive results for special cases such as broadcast scheduling and unrelated machine
scheduling. This motivates the following question:

Are there natural sub-classes of PSP for which it is possible to design competitive algorithms for flow
time? Can these algorithms be designed using a few unifying algorithmic techniques?

In this paper, we answer both of these questions in the affirmative. We consider three natural and fairly broad
classes of scheduling problems that not only generalize several well-studied models such as scheduling with speedup
curves and related machine scheduling [23], [24], [25], but also capture as special cases hitherto unstudied problems
such as routing multi-commodity flows, routing multicast trees, and the multi-dimensional resource allocation
problem discussed above. We use two different viewpoints to make progress on these problems. In each case,
we build on results in an entirely different field, by combining them with new technical ideas.

• Resource Allocation View: In the PSP problem, the instantaneous allocation of rates to jobs can be viewed
as a resource allocation problem. A natural algorithm for performing resource allocation is the proportional
fairness (PF) algorithm from economics [36], [11], [31]. In [24], we used KKT conditions for this program
to analyze its completion time. In this paper, we consider the harder question of flow time, and this requires
us to view the PF algorithm explicitly as a market clearing mechanism. We build on the notions of Gross
Substitutes [22] and Eisenberg Gale markets [28] to show properties of the PF algorithm, and use it to show
O(1) competitiveness for a well-characterized sub-class of the PSP problem that we term MONOTONE PSP.
This captures resource allocation with substitutes, flow routing to a single sink, related machine scheduling,
and routing multicast trees (video-on-demand).

• Queueing View: A practically interesting version of PSP is when there are a limited number of job types.
This can be viewed as a (non-stochastic) queueing problem that we term PSP-Q, and we adapt the well-
known MAX-WEIGHT algorithm [40], [34], [33] from queueing theory. In contrast with stability analysis from
queueing literature, our arrival process is adversarial, which necessitates a normalization step in the algorithm
design, as well as a more careful analysis than standard stability arguments – roughly speaking, some quantities,
that are assumed to remain constant in queueing analysis due to the fixed underlying stochastic nature of arrivals,
may change dynamically in the adversarial setting. Our final competitive ratio depends polynomially on K,
the number of queues (or job types).

Analysis Techniques.: Our algorithms involve solving a convex optimization problem each time instant on the
set of jobs in the system, in order to perform rate allocation. As observed in [24], in contrast with single-machine
scheduling settings, there is no closed form for the rates. In each case, we start with the primal optimality conditions
(Propositions II.1 and III.1) connecting the rates found by our algorithm against any other rate vector. We then
use the framework of amortized local competitiveness [27], where we define a potential function on the difference
between the algorithm’s job set and the optimal solution’s set. Our potential naturally generalizes potentials used for
single machine scheduling [18]; however, our analysis becomes different in that it uses the optimality conditions,
sometimes iteratively, to show competitive ratio.

We note that our optimality conditions are on the convex program solved by the algorithm to perform instantaneous
rate allocation, and this approach is different from previous work [4], [24] that uses the dual of the optimal offline
relaxation, via dual fitting or a primal-dual approach. For the PSP problem, our previous work [24] showed a
O(1) competitive ratio for the completion time objective by a dual fitting analysis. However, we do not know how



to extend it for analyzing the harder flow time objective, since this requires highly structured dual variables for
the instantaneous convex program, which may not exist. In contrast, our approach directly works with the primal
optimality conditions of the instantaneous convex program, which yields a new analysis framework to the best of
our knowledge.

Before we present more details, we make a brief digression to describe speed augmentation analysis. In our
model, job arrivals are adversarial in nature. This implies strong lower bounds on the competitive ratio for all
problems we consider; in fact, strong lower bounds arise in even simpler single-dimensional settings. We therefore
perform a now standard speed augmentation analysis [29], where we assume the online algorithm can perform c > 1
allocations per time step, while OPT is restricted to performing allocations at rate 1. We will design algorithm that
achieve bounded competitive ratio on flow time, using some speed c that will be an absolute constant. In fact, we
will attempt to make c as close to 1 as possible. If the algorithm is competitive for speed (1 + ε) where ε > 0 can
be made arbitrarily small, then it is termed scalable. We note that though we use speed augmentation for analysis,
our algorithms are simple and natural. Further most of our algorithms are oblivious to this augmentation.

B. Resource Allocation View and MONOTONE PSP

We first consider the economics viewpoint where the scheduler is performing resource allocation among the
active jobs at each time instant. The proportional fairness (PF) algorithm assigns rates yjt as follows:

max
∑
j

wj log yjt s.t. yt ∈ P

Note that P is a convex set in the definition of PSP. The PF algorithm generalizes the weighted round robin
(WRR) algorithm for single machine scheduling. Though this algorithm is constant competitive for completion
time objective [24], the same is not true for flow time; the best previous result requires the speed to depend on the
number of jobs. We therefore analyze the PF algorithm under a natural restriction on the utility functions. Suppose
the current set of jobs is S. Let yj(S) denote the rate allocated by PF to job j ∈ S.

Definition I.1 (Monotonicity of PF). The PF algorithm is said to be monotone if for any S and ` /∈ S, we have
the following condition. For all j ∈ S, yj(S) ≥ yj(S ∪ {`}). The class MONOTONE PSP is the sub-class of PSP
for which the PF algorithm is monotone.

Our main result is the following theorem, which we prove in Section II.

Theorem I.2. For the MONOTONE PSP problem, for any constant ε ∈ (0, 1/2), PF is (e + ε)-speed, O
(
1/ε2

)
competitive for minimizing weighted flow time.

As mentioned before, we show the above theorem by amortized local competitiveness [27]. The potential function
we use is a natural generalization of the potential for single-machine weighted round robin (WRR) considered
in [18]; nevertheless, our analysis is very different since we don’t have a closed form for the allocations or rates.
We crucially use the optimality condition for the PF convex program (Proposition II.1), which we apply iteratively
considering the first k jobs in arrival order versus the first k + 1 jobs. This yields a simple analysis that works for
any MONOTONE PSP instance.

The next question is to identify problem classes that belong to MONOTONE PSP. 1 We present two broad sub-
classes of PSP that are monotone. Showing monotonicity requires making connections to market clearing literature,
particularly Walrasian equilibria and Gross Substitutes [22], and the Submodular Utility Allocation markets defined
in [28].

1) Resource Allocation with Substitutes (RA-S): We revisit the multi-dimensional resource allocation problem
considered above. Formally, there are D divisible resources (or dimensions), numbered 1, 2, . . . , D. We assume
w.l.o.g. (by scaling and splitting resources) that each resource is available in unit supply. If job j is assigned a non-
negative vector of resources x = {x1, x2, . . . , xD}, then the rate at which the job executes is given by yj = uj(x),
where uj is a concave utility function that is known to the scheduler. The constraints P simply capture that each
resource can be allocated to unit amount, so that

∑
j xjd ≤ 1 for all d ∈ {1, 2, . . . , D}. A well-studied special

1We note that no applications mentioned in Section 1.2 of [24] are captured by monotone PSP in their full generality. However, some special
cases such as the related machines scheduling do fall into the category of monotone PSP.



class of utilities in the resource allocation literature are the Constant Elasticity of Scale (CES) utilities, given by:

uj(xj) =

(
D∑
d=1

cjdx
ρj
jd

)1/ρj

(1)

A parameter range of special interest is when ρ ∈ (0, 1] – these utility functions are widely studied in economics,
and capture resources that are imperfect substitutes of each other, where the parameter ρ captures the extent of
substitutability. A special case as ρ→ 0 is termed Cobb-Douglas utilities: uj(xj) =

∏D
d=1 x

αjd
jd , where

∑
d αjd ≤

1 and αjd ≥ 0 for all j, d. These utilities can be used to model task rates in heterogeneous microprocessor
architectures [42]. When ρ = 1, CES utilities reduce to linear utilities.

In this paper, we generalize CES functions to a broader class that we term resource allocation with substitutes
or RA-S.

uj(xj) =

(
D∑
d=1

(fjd(xjd))
ρj

)1/ρ′j

where ρj ∈ (0, 1] and ρ′j ≥ ρj (2)

Here, the {fjd} are increasing, smooth, strictly concave functions, with fjd(0) = 0. As before, the constraints P
simply capture that each resource can be allocated to unit amount, so that

∑
j xjd ≤ 1 for all d ∈ {1, 2, . . . , D}.

The special case as ρ → 0 corresponds to uj(xj) =
∏D
d=1 (fjd(xjd))

αjd , where
∑
d αjd ≤ 1 and αjd ≥ 0 for all

j, d, which can be viewed as Generalized Cobb-Douglas utilities. The single-dimensional case (D = 1) corresponds
to scheduling with concave speedup curves, which has been extensively studied in literature [15], [16], [18]. Though
we do not present details in this paper, our algorithmic results also extend to a slightly different class of utilities
of the form: uj(xj) = gj

(∑D
d=1 fjd(xjd)

)
, where gj is increasing, smooth, and strictly concave, with gj(0) = 0.

Monotonicity of RA-S.: We prove that RA-S is a special case of MONOTONE PSP in Section II-B. We present
the intuition and new technical ideas here. First consider CES utilities given by Eq (1), when ρ ∈ [0, 1]. Recall that
for these utilities, the feasibility constraints P simply encode that each resource is allocated to at most the supply
of one unit. CES utilities are homogeneous of degree one and quasi-concave. Therefore, the PF algorithm computes
the market equilibrium to the equivalent Fisher market. Each job j is an agent with budget wj . Suppose resource
d has price pd. Each agent buys resources to solve the following maximization problem:

Maximize uj(xj) s.t.
D∑
d=1

pdxjd ≤ wj

A Fisher equilibrium (or market clearing solution) is a set of prices {pd} such that the per-agent utility maximizing
allocations clear the market: No resource is over allocated; for each resource with non-zero price, supply equals
demand; and each agent spends its entire budget. This follows from the KKT conditions. These utilities satisfy
a property termed Gross Substitutability (GS) [22]. The GS property means that when the price of a resource
increases, the demand for resources whose prices did not increase only goes up. For utilities satisfying GS, it is
easy to show that a market clearing solution will be monotone. Since the PF algorithm computes this solution, it
satisfies monotonicity (Def. I.1).

For the RA-S utilities (Eq. (2)), the PF algorithm no longer coincides with a Fisher equilibrium. We therefore
prove monotonicity of the PF algorithm from first principles. Our proof proceeds by considering log uj(x) as a
utility function, and viewing the PF algorithm as computing a Walrasian equilibrium [22] of this utility function.
The GS property would imply that the equilibrium can be computed by a monotone tatonnement process, and when
a new agent arrives, the tatonnement only increases prices, therefore lowering utility. The key technical hurdle in
our case is that the utility function log uj(x) is not zero when x = 0; in fact it can be unbounded. We therefore
need to show a stronger condition than the usual GS property in order to establish monotonicity. The end result is
the following corollary to Theorem I.2.

Corollary I.3. For RA-S utilities, the PF algorithm is (e+ε)-speed, O
(
1/ε2

)
competitive for minimizing weighted

flow time, where ε is any constant in (0, 1].

2) Polymatroidal Utilities: This sub-class of PSP is given by the following polyhedron:

P =

∑
j∈S

yj ≤ v(S) ∀ subsets of jobs S





where the function v(S) is a non-decreasing submodular function with v(φ) = 0. The feasible region P is therefore
a polymatroid. Many natural resource allocation problems define polymatroids:

Single-sink Flow Routing.: We are given a directed capacitated graph G(V,E), with capacities c(e) on edge
e ∈ E. Each job j is characterized by a pair of source-sink vertices, (sj , tj), as well as a total flow value pj and
weight wj . If we allocate flow value yjt for job j at time t, then yjt should be a feasible flow from sj to tj . The
{yjt} values should satisfy the capacity constraints on the edges. In the case where all jobs need to route to the
same sink node t, the rate region P is a polymatroid: For a subset of jobs S, let v(S) denote the maximum total rate
that can be allocated to jobs in S, then v(S) is a submodular function [35]. A classical result of Kelly et al. [30]
shows that the TCP congestion control algorithm can be viewed as an implementation of proportional fairness in a
distributed fashion. Our result shows that such an implementation is competitive on delays of the flows, assuming
they are routed to a single sink.

Video-on-Demand (Multicast).: Consider a video-on-demand setting [10], where different sources of video
streams on a network need to stream content to all network vertices via spanning trees. Formally, there is a
capacitated undirected graph G(V,E) with a sink node s ∈ V . Job (video stream) j arrives at node vj . If job j is
assigned xT units of spanning tree T , the rate it gets is xT ; this rate is additive across trees. Any feasible allocation
is therefore a fractional assignment of spanning trees to jobs, so that along any edge, the total amount of trees that
use that edge is at most the capacity of the edge. This rate polytope P is a polymatroid [10].

Related Machine Scheduling.: There are M machines, where machine m has speed sm. The machines are
fractionally allocated to jobs; let job j be assigned xjm units of machine m. The feasibility constraints P require
that each machine can be fractionally allocated by at most one unit, so that

∑
j xjm ≤ 1 for all m; and each job is

allocated at most one unit of machines, so that
∑
m xjm ≤ 1 for all j. The rate of job j is uj(x) =

∑
m smxjm.

It is known [17] that the space P of feasible rates define a polymatroid. While there already exists an O(1)-speed
O(1)-competitive algorithm for this problem, we find this result interesting since the algorithm is very different
from [25].

Monotonicity of Polymatroidal Utilities.: Jain and Vazirani [28] generalize Fisher markets to polymatroidal
utilities, which they term Submodular Utility Allocation (SUA) markets. They show that the PF algorithm computes
the market clearing solution. For such markets, they define the notion of competition monotonicity: A new agent
entering the market leads to greater competition, and hence to lower utilities for existing agents. They show that this
market is competition monotone, which directly implies the PF algorithm is monotone for polymatroidal utilities,
leading to the following corollary of Theorem I.2.

Corollary I.4. For polymatroidal utilities, the PF algorithm is (e+ ε)-speed O
(
1/ε2

)
competitive for minimizing

weighted flow time, where ε is any constant in (0, 1].

C. Queueing View and the PSP-Q Problem

We now take a queueing viewpoint of the PSP problem. One special case of the PSP problem that arises in
practice is the case when the jobs can be grouped into a small number of types or queues. Jobs within a queue have
different sizes and weights, but are interchangeable for the purpose of scheduling. Our goal will be to derive an
algorithm whose competitive ratio depends on the number of queues instead of the number of jobs. (See Section I-C.)
We define PSP-Q as follows: There are K queues. Job j has processing length pj , weight wj , and arrives at queue
qj . At each step t, let yjt denote the rate assigned to job j. Let Sqt denote the set of jobs in queue q at time t. A
feasible allocation at time t is given by the following, where we drop subscript t:zq =

∑
j∈Sq

yj ∀q; and z ∈ Pq


where Pq is a downward closed convex space. Note jobs in the same queue are completely interchangeable, in that
feasibility is determined by the total rate at which jobs are processed in each queue.

Normalized MAX-WEIGHT Algorithm.: The MAX-WEIGHT algorithm was first presented in the seminal work
of Tassiulas and Ephrimedes [40]. As with most queueing literature, their work focuses on stability, and assumes
jobs are unit-sized and unweighted. To generalize this algorithm for the PSP-Q problem, we need a normalization
step that we describe below. While we believe our extension is flexible enough to be combined any single machine
scheduling algorithm for each queue, for simplicity, we will only consider two algorithms: Highest Density First
(HDF) and an extension of Weighted Round Robin (WRR).



The algorithm MAX-WEIGHT+WRR is defined as follows. Let gq = max{zq|z ∈ Pq} be the maximum possible
rate that can be assigned to queue q. At time t, let Sqt denote the set of jobs in queue q. Let Wqt =

∑
j∈Sqt wj .

The MAX-WEIGHT algorithm assigns rates zqt as follows:

max
∑
q

Wq
zqt
gq

s.t. zt ∈ Pq

Given the rate zqt for queue q, the algorithm sets yjt =
wj
Wq
zqt for j ∈ Sqt. In contrast with queueing literature,

the above algorithm maximizes the weight of the queue times the normalized rate zqt
gq

.
We show the following theorem in Section III-A. The (1 + ε) speed algorithm is obtained by replacing WRR

within a queue with a scalable single machine scheduling algorithm; see Section III-A for details.

Theorem I.5. For the PSP-Q problem with K queues, for any constant ε > 0, there is a non-clairvoyant algorithm
that is (1+ε)-speed O(K3/ε3)-competitive for weighted flow time. In addition, the MAX-WEIGHT+WRR algorithm
with speed (2 + ε) is O(K3/ε3) competitive for PSP-Q.

We can replace the WRR algorithm for individual queues with the HDF algorithm, thereby obtaining a clairvoyant
algorithm, MAX-WEIGHT+HDF which is also (1 + ε)-speed, O(K/ε2)-competitive; see Section III-B for details.

The above results are quite surprising – it is easy to obtain algorithms whose speed depends on K; we instead
find an algorithm whose speed is an arbitrarily small constant. At a high level, this is similar to stability analysis
in queueing, and indeed, we show the above result by using ideas from that field. A queueing system with an
ergodic arrival process is said to be stable if the expected queue sizes are finite. The proof that the MAX-WEIGHT
algorithm is stable [40], [34], [33] uses a Lyapunov function argument: The Lyapunov function is the sum of the
squares of the queue weights. The rate of change of this function is simply the sum over the queues of the weight
of the queue times the rate of change of this weight. Since the arrival process is admissible, it is easy to show that
the expected rate of change is larger for the MAX-WEIGHT algorithm than for the arrival process, hence showing
that the drift in queue size is always negative.

Though the arrival process is adversarial in our case, we show that Lyapunov functions of a certain form can be
converted to a potential function that is defined on the difference in weights between the algorithm’s and optimal
solution’s queues, leading to an amortized local competitiveness analysis [27]. This connection is not straightforward.
The key challenge is that while in stability, we need to analyze the change of the Lyapunov function due to arrivals
which are fixed and stochastic, in our setting, we have to analyze the change in potential due to the optimal solution’s
processing. Therefore, though the Lyapunov function method shows stability not just for MAX-WEIGHT, but also
for any scheduling policy that maximizes some weighted function of rates (such as proportional fairness, square of
weights), this does not imply we can convert all these Lyapunov functions into potential functions. In hindsight,
our result is the first to use queueing theoretic ideas (stability) to perform adversarial (competitive) analysis for a
natural class of scheduling problems.

Since the PSP-Q problem reduces to the PSP problem when each job defines its own queue, the polynomial
dependence on K is unavoidable for all non-clairvoyant algorithms if we insist on constant speed [24].

1) Applications of PSP-Q: Though any PSP instance has an equivalent PSP-Q instance, we present some
problems that can be naturally modeled by PSP-Q framework.

Flow Routing [30].: Consider the FLOW ROUTING problem from Section I-B2. When the (si, ti) pairs for the
jobs can be arbitrary, we can group jobs that require the same source-sink pair into one queue, so that there are at
most K = |V |2 queues. This yields a competitive ratio of O(|V |6) with (1 + ε) speed. Note that |V | is the number
of vertices in the underlying graph G(V,E), which is fixed and independent of n, the number of flows that arrive
and depart over time.

Resource Allocation with Complementarities (RA-C): Consider the multi-dimensional resource allocation
problem presented in Section I-B1. The class of Leontief utilities is given by uj(xj) = minDd=1 (cjdxjd), where
cj is the resource vector of the job. Such utilities capture resources that are complements of each other. We term
this problem the Resource Allocation with Complementarities or RA-C problem. These utilities are widely used to
model job rates in data centers [20], [41], [3], [1], [37]. In the RA-C problem, a job is characterized by its resource
requirement vector cj. In practice [33], the number of distinct resource vectors is a small number K, and it can
be checked that this is a special case of PSP-Q with K queues. We show in Section III-C that even in the full
generality of RA-C, a simple preprocessing shows that O((logD)D) queues suffice, albeit with the knowledge of
job sizes, which makes the overall algorithm clairvoyant.



D. Summary of Our Results

We summarize our contributions in Table I. We note that even with clairvoyance, better previous results were not
known for any of these problems. All these problems require speed augmentation to achieve O(1)-competitiveness
since even minimizing the weighted flow time on a single machine does [5].

Problem Class Problem Best Previous Our Result Speed Augmentation

MONOTONE PSP

RA-S O(1) for D = 1 [16] O(1) for any D e+ ε

Single-source Routing — O(1) e+ ε

Video-on-demand — O(1) e+ ε

Related Machines O(1) [25] O(1) e+ ε

PSP-Q

PSP-Q O(logn) with O(K3) 1 + ε

O(logn) speed [24] Lower Bound: Ka for a > 0 [24]

Multicommodity Flow — O(|V |6) 1 + ε

Table I
SUMMARY OF OUR MAIN RESULTS.

E. Outline of Paper

In Section II, we consider the MONOTONE PSP problem. We prove Theorem I.2 in Section II-A and show the
monotonicity of RA-S in Section II-B. In Section III, we shift to the PSP-Q problem. We prove Theorem I.5 in
Section III-A, and analyze a similar algorithm but using HDF as the single-queue policy in Section III-B. Finally,
we present our result on the RA-C problem in Section III-C, and discuss some open questions in Section IV.

II. THE PROPORTIONAL FAIRNESS (PF) ALGORITHM AND MONOTONE PSP

Let At denote the set of jobs that are alive at time t; we will often drop t when the time t in consideration is
clear from the context. These include jobs j for which t ∈ [rj , Cj ]. The proportional fairness algorithm computes
a rate vector yt that optimizes:

Maximize
∑
j∈At

wj log yj s.t. y ∈ P

Let y∗j (S) denote the optimal rate the PF algorithm allocates to job j ∈ S when working on a set of jobs, S.
We will use the following well-known proposition repeatedly in our analysis.

Proposition II.1 (Optimality Condition). Let y ∈ P denote any feasible rate vector for the jobs in S. If the space
of feasible rates P is convex, then ∑

j∈S
wj

yj
y∗j (S)

≤
∑
j∈S

wj

Proof: For notational simplicity, let y∗j := y∗j (S). Let f(y) =
∑
j∈S wj log yj . We have ∂f(y∗)

∂yj
=

wj
y∗j

. The
optimality of y∗ implies ∇f(y∗) · (y−y∗) ≤ 0 for all y ∈ P . The proposition now follows by elementary algebra.

Recall that we analyze the PF algorithm under a natural restriction on the utility functions. Recall from Defini-
tion I.1 that the PF algorithm is said to be monotone if for any S and ` /∈ S, we have the following condition: for
all j ∈ S, y∗j (S) ≥ y∗j (S ∪ {`}). We term this class of PSP problems as MONOTONE PSP.

A. Competitive Analysis: Proof of Theorem I.2

We use amortized local competitiveness to show this theorem. The potential function we use is the same as that for
one-dimensional concave speedup curves [18]; however, our analysis is different and repeatedly uses Proposition II.1
to bound how the potential function changes when the algorithm processes jobs.

Focus on some time instant t, and define the following quantities. Let At denote the subset of jobs alive in the
PF schedule, and let Ot denote those alive in OPT’s schedule. For job j, let pjt denote the remaining size of the
job in the PF’s schedule, and let pOjt denote the remaining size of the job in OPT’s schedule. Define a job j’s lag



as p̃jt = max(0, pjt − pOjt). The quantity p̃jt indicates how much our algorithm is behind the optimal schedule in
terms of job j’s processing. Let Lt = {j ∈ At | p̃jt > 0}. Note that At \ Lt ⊆ Ot.

Consider the jobs in increasing order of arrival times, and number them 1, 2, . . . in this order. Let A≤jt =
At∩{1, 2, . . . , j}. Recall that y∗j (S) denote the optimal rate the PF algorithm allocates to job j ∈ S when working
on a set of jobs, S. We define the following potential function:

Φ(t) =
1

ε

∑
j∈At

wj
p̃jt

y∗j (A≤jt )

We first show the following simple claim, similar to the one in [18]. This crucially needs the monotonicity of the
PF algorithm, and we present the proof for completeness.

Claim II.2. If Φ(t) changes discontinuously, this change is negative.

Proof: If no jobs arrive or is completed by PF or OPT, the p̃ values change continuously, and the y∗j (A≤jt ) values
do not change. Hence, the potential changes continuously. Suppose a job j′ arrives; for notational convenience,
we assume that the current alive jobs are At plus the job j′ that just arrived, and j′ /∈ At. For this job, p̃j′t = 0.
Furthermore, this job does not affect y∗j (A≤jt ) for any j ∈ At, since j′ /∈ A≤jt . Therefore, the potential does not
change when a job arrives. Similarly, suppose a job j′ is completed by OPT but At remains unchanged. Then, none
of the terms in the potential change, and hence Φ(t) does not change. Finally, consider the case where j′ departs
from At. We have p̃j′t = 0. This departure can change y∗j (A≤jt ) for j ∈ At s.t. j′ ≤ j. By the monotonicity of the
PF algorithm, these rates cannot decrease. Therefore, all terms in the potential are weakly decreasing, completing
the proof.

Assuming that PF uses a speed of (e+ ε) compared to OPT, we will show the following at each time instant t
where no job arrives or is completed either by PF or OPT. Here, W (S) =

∑
j∈S wj .

W (At) +
d

dt
Φ(t) ≤ 2

ε2
W (Ot) (3)

Suppose all jobs are completed by PF and OPT by time T . Then integrating the above inequality over time, and
using the fact that the discontinuous changes to Φ are all negative, we have:∫ T

t=0

W (At)dt+ (Φ(T )− Φ(0)) ≤ 2

ε2

∫ T

t=0

W (Ot)dt

Note that the first term above is the weighted flow time of PF, the second term is zero, and the RHS is the weighted
flow time of OPT. This will complete the proof of Theorem I.2.

1) Proving Inequality (3): Consider a time instant t when no job arrives or completes. To simplify notation, we
omit the subscript t from the proof. Let d

dtΦ|O and d
dtΦ|A denote the potential changes due to OPT ’s processing

and PF ’s processing respectively. Note that d
dtΦ = d

dtΦ|A + d
dtΦ|O.

Lemma II.3. d
dtΦ|O ≤

1
εW (A).

Proof: For job j ∈ A, suppose OPT assigns rate yOj . Then, d
dt p̃j ≤ yOj for j ∈ A, due to OPT’s processing.

Therefore, the change in potential is upper bounded by:

d

dt
Φ|O ≤

1

ε

∑
j∈A

wj
yOj

y∗j (A≤jt )
≤ 1

ε

∑
j∈A

wj
yOj

y∗j (A)

The inequality above follows from the monotonicity of the PF algorithm, since A≤j ⊆ A. Using Proposition II.1,
the RHS is at most W (A). This completes the proof.

We now bound d
dtΦ|A, the change in potential due to PF. We first assume PF runs at speed 1, and we will scale

this up later. We consider two cases:
Case 1.: Suppose W (L) ≤ (1− ε)W (A). Since A \L ⊆ O, we have W (O) ≥ εW (A). Since d

dtΦ|A ≤ 0, we
have:

W (A) +
d

dt
Φ ≤W (A) +

d

dt
Φ|O ≤

2

ε
W (A) ≤ 2

ε2
W (O)

where the second inequality follows from Lemma II.3.



Case 2.: The more interesting case is when W (L) ≥ (1 − ε)W (A). For j ∈ L, we have d
dt p̃j = y∗j (A) due

to PF’s processing, by the definition of y∗j (A). Therefore,

ε · d
dt

Φ|A ≤ −
∑
j∈L

wj
y∗j (A)

y∗j (A≤j)

For notational convenience, let |S| = κ, and number the jobs in A in increasing order of arrival time as 1, 2, . . . , κ.

For k > j and k ≤ κ, let αjk =
y∗j (A

≤k−1)

y∗j (A
≤k)

. By the monotonicity of PF, we have αjk ≥ 1. Define δjk = αjk − 1.
Note that δjk ≥ 0.

We now apply Proposition II.1 to the set {1, 2, . . . , k} as follows: For jobs j ∈ {1, 2, . . . , k}, the rate assigned
by PF when executed on this set is y∗j (A≤k), and this goes into the denominator in Proposition II.1. We consider
y∗j (A≤k−1) for j < k, and y∗k(A≤k−1) = 0 as a different set of rates that go into the numerator in Proposition II.1.
This yields:

k−1∑
j=1

wj
y∗j (A≤k−1)

y∗j (A≤k)
≤

k∑
j=1

wj

Observing that
y∗j (A

≤k−1)

y∗j (A
≤k)

= 1 + δjk, we obtain
∑k−1
j=1 wjδjk ≤ wk for k = 1, 2, . . . , κ. Adding these inequalities

for k = 1, 2, . . . , κ and changing the order of summations, we obtain:

κ∑
k=1

k−1∑
j=1

wjδjk =

κ∑
j=1

wj

 κ∑
k=j+1

δjk

 ≤W (A) =⇒
∑
j∈L

wj

 κ∑
k=j+1

δjk

 ≤W (A)

Let ∆j =
∑κ
k=j+1 δjk, so that the above inequality becomes

∑
j∈L wj∆j ≤W (A). Now observe that

y∗j (A)

y∗j (A≤j)
=

κ∏
k=j+1

1

αjk
=

κ∏
k=j+1

1

1 + δjk
≥ exp

− κ∑
k=j+1

δjk

 = exp(−∆j)

We used the fact that δjk ≥ 0 for all j, k. Therefore,

ε · d
dt

Φ|A ≤ −
∑
j∈L

wj
y∗j (A)

y∗j (A≤j)
≤ −

∑
j∈L

wj exp(−∆j)

Since
∑
j∈L wj∆j ≤W (A), the RHS is maximized when ∆j = W (A)/W (L) ≤ 1/(1− ε). This implies:

ε · d
dt

Φ|A ≤ −
∑
j∈L

wj exp(−W (A)/W (L)) ≤ −W (L) exp(−1/(1− ε)) ≤ −1− 2ε

e
W (A)

for 0 < ε < 1/2. Therefore, if we run PF at speed (e+ 3ε), we have: d
dtΦ|A ≤ −

(
1 + 1

ε

)
W (A). Therefore,

W (A) +
d

dt
Φ|O +

d

dt
Φ|A ≤W (A) +

1

ε
W (A)−

(
1 +

1

ε

)
W (A) ≤ 0 ≤W (O)

This completes the proof of Inequality (3) and hence of Theorem I.2.

B. Monotonicity of RA-S: Proof of Corollary I.3

We will show the following theorem, which when combined with Theorem I.2 shows Corollary I.3.

Theorem II.4. The RA-S utility functions defined in Eq (2) are concave (which implies the space P is convex).
Furthermore, the PF algorithm is monotone for these functions.

The first part follows by easy algebra. The CES utility function given by Eq (1), when ρ ∈ (0, 1], is homogeneous
of degree one and quasi-concave. This implies it is concave [9]. The RA-S utilities are obtained by a monotone
concave transformation of the variables and the entire function. This preserves concavity. This implies the space P
of feasible utilities is convex.



The remainder of this section is devoted to proving the second part of the theorem. Recall that for RA-S, the
space P is given by the following (where ρ ∈ [0, 1] and ρ′ ≥ ρ):

P =

yj = uj(xj) =

(
D∑
d=1

(fjd(xjd))
ρj

)1/ρ′j

,
∑
j

xjd ≤ 1 ∀d


Let hjd(xjd) = (fjd(xjd))

ρj . This function is increasing and strictly concave, assuming the same is true for fjd.
Further hjd(0) = 0. Define:

vj(xj) = wj log uj(xj) =
wj
ρ′j

log

(
D∑
d=1

hjd(xjd)

)
For price vector p = {p1, p2, . . . , pD} ≥ 0, define the demand function Xj(p) as follows:

Xj(p) = argmaxxj≥0 (vj(x)− p · xj) and Uj(p) = uj(Xj(p))

Note that Xj(p) is uniquely defined for given p due to the strict concavity of vj(x) (see the first part of
Theorem II.4), so Uj(p) is well-defined.

Lemma II.5. Consider an arbitrary price vector p, and a different price vector p′ that only differs from p in the
rth dimension. Assume p′r > pr. Let xj = Xj(p) and x′j = Xj(p

′). Then:
1) If xjr > 0, then Uj(p′) < Uj(p). Furthermore, x′jr < xjr, and for all d 6= r, x′jd ≥ xjd.
2) If xjr = 0, then Uj(p′) = Uj(p). Furthermore, for all d, x′jd = xjd.

Further, we have a stronger property that if xjr > c, then Uj(p)− Uj(p′) ≥ c′(pr − p′r) for a finite c′ > 0 when
the following conditions are satisfied:
• For all j, d, hjd has a bounded curvature over the domain [c, C] for finite values c, C > 0, i.e. there exist
γ = γ(c, C) and δ = δ(c, C) such that γ(y2−y1) ≤ h′jd(y1)−h′jd(y2) ≤ δ(y2−y1) for all c ≤ y1 ≤ y2 ≤ C.

• Both vectors p and p′ are upper bounded by a finite vector.

Proof: Since we focus on a single job j, we omit the subscript j in the proof. Focus on dimension r. Let
q = wj/ρ

′
j . Let W (x) = (Uj(x))ρ

′
j ; since Uj(x) is strictly monotone in x, the same holds for W (x). Note that

W (·) also can be viewed as a function of p since p uniquely determines x. Partially differentiating vj(x)−p · xj
w.r.t. xd, we have the following (sufficient and necessary) optimality condition:

xd > 0 ⇒ q

W (x)
h′d(xd) = pd and xd = 0 ⇒ q

W (x)
h′d(xd) ≤ pd

Consider price vector p′ with p′r > pr and p′d = pd for all d 6= r. If xr = 0, this does not change the optimality
condition above for any dimension d, so that the second part of the lemma follows.

If xr > 0, suppose W (p′) ≥ W (p). This implies h′(xr) < h′(x′r) since p′r > pr. To satisfy the optimality
condition, we must therefore have x′r < xr by the strict concavity of hr. The same argument shows that for all
dimensions d 6= r, x′d ≤ xd. But this implies W (p′) < W (p), which is a contradiction. Therefore, we must have
W (p′) < W (p).

Now consider any dimension d 6= r. Since p′d = pd and W (p′) < W (p), the optimality condition implies that
h′d(x

′
d) ≤ h′d(xd). This implies x′d ≥ xd. However, since the utility strictly decreased, this must imply x′r < xr.

It now remains to show the stronger property under the extra conditions. Imagine that we increase p to p′

continutously by slowly increasing pr to p′r. For simplicity, we assume that for all d, pd remains either non-zero
or zero throughout this process, excluding the start and the end – the general case can be shown by starting a new
process when pd’s status, whether it is non-zero or zero, changes. Since if pd remains 0 in the process, d has no
effect on W (x), let’s focus on d with non-zero pd.

Observe that boundedness of p implies boundedness of x since x minimizes vj(x)−p ·xj and vj(x) is strictly
concave. Since the remaining proof follows from a tedious basic algebra, we only give a sketch here. In the following
we crucially use the boundedness of p,p′,x,x′. For the sake of contradiction, suppose Wj(p) and Wj(p

′) are very
close such that the claim is not true for any fixed c′. Then, for all d 6= r with non-zero pd, the bounded curvature
of hd and the optimality condition imply that xd and x′d are very close. Likewise, we can argue that xr and x′r
are significantly different so that the differnece is lower bounded by c′′(p′r − pr) for a fixed c′′. This leads to the
conclusion that Wj(p

′) and Wj(p) are significantly different, which is a contradiction. An easy algebra gives the
desired claim.



Proof of Theorem II.4.: We now use Lemma II.5 to show the second part of the theorem. The KKT conditions
applied to the PF convex program imply the following:

1) There exists a price vector p such that {Xj(p)} define the optimal solution to PF.
2) For this price vector p, if pd > 0, then

∑
j xjd = 1.

Start with this optimal solution. Suppose a new job arrives. At the price vector p, compute the quantities Xj(p).
If some resource is over-demanded, we continuously increase its price. We perform this tatonnement process until
no resource is over-demanded. By Lemma II.5, any job that demands a resource whose price is increasing, sees
its overall utility strictly decrease, while jobs that do not demand this resource see their utility remain unchanged.
Therefore, if we define the potential function to be the total utility of the jobs, this potential strictly decreases.
Further, by Lemma II.5, the total demand for the resource whose price is increasing strictly decreases, while the
demands for all other resources weakly increase. Therefore, any resource with price strictly positive must have total
demand at least one at all points of time.

Now parameterize the tatonnement process by the total price of resources. When the price of over-allocated
resource r is raised, there must exist a job j such that xjr ≥ 1/n. This, when combined with the optimal condition,
implies that pr is bounded. Since we only increae the price of over-demanded resources, the boundness of p follows.
Hence by the stronger property of Lemma II.5, the potential must decrease by at least c′ times the increase of the
total price for some finite c′ > 0; the potential decreases at least as much as j’s utility does. This implies that the
process must terminate since the potential is lower bounded by zero. When it terminates, suppose the price vector is
p′, and let x′j = Xj(p

′). Any resource d with p′d > 0 must have
∑
j x
′
jd = 1. If pd = 0, we must have

∑
j x
′
jd ≤ 1.

This therefore is the new optimal solution to the PF program. Since the utilities of all existing jobs either stay the
same or decrease in the tatonnement process, this shows the PF algorithm is monotone. This completes the proof
of Theorem II.4.

A similar proof to the above shows the following; we omit the details.

Corollary II.6. The PF algorithm is monotone for utility functions of the form uj(xj) = gj

(∑D
d=1 fjd(xjd)

)
,

where gj , fjd are increasing, smooth, and strictly concave functions.

III. ALGORITHMS FOR PSP-Q
In this section we develop two algorithms, one non-clairvoyant and one clairvoyant, for the PSP-Q problem. The

two algorithms are derived by combining NORMALIZED MAX-WEIGHT algorithm with the following two widely
used scheduling algorithms, respectively: 1) (an extension of) WEIGHTED ROUND ROBIN (WRR) and 2) HIGHEST
DENSITY FIRST (HDF).

A. Non-Clairvoyant Algorithm: Normalized Max-Weight + WEIGHTED ROUND ROBIN

This section is devoted to proving Theorem I.5. We show that the algorithm NORMALIZED MAX-WEIGHT gives
us the desired result when combined with WEIGHTED LATEST ARRIVAL PROCESSOR SHARING (WLAPS), which
is a scalable generalization of WRR [16]. We begin by describing the algorithm.

1) Algorithm Description: Recall that zqt denotes the rate assigned to q at time t, and gq is the maximum rate
that can be assigned to queue q (gq = max{zq | z ∈ Pq}). For the sake of analysis we scale the input instance
such that gq = 1 for all queues q ∈ [K]. This can be done by scaling the polytope such that gq = 1 for all queues
and modifying the size of each job j in q to pj/gq . It is easy to verify that an optimal solution remains unchanged
due to this scaling. We emphasize that this scaling and modification is done only for the sake of analysis, and
our algorithm does not have to know the job sizes – this conversion can be thought as being done at the end of
algorithm’s run. Indeed, our algorithm will only need to know the set of alive jobs in each queue along with their
weights, but not their remaining sizes. Hence our algorithm will remain non-clairvoyant. For the remainder of this
section we assume that gq = 1 for all q ∈ [K].

The NORMALIZED MAX-WEIGHT algorithm calculates a feasible set of rates zqt for each queue at each time
instant t by solving the following convex program. Recall that Wqt is the total weight of jobs alive in the algorithm’s
queue q.

max
∑
q∈[K]

Wqt · zqt s.t zt ∈ Pq

The total rate allocated to a queue q is distributed among the jobs in the queue q using the WLAPS policy. Let
Aqt denote the set of jobs that are in the algorithm’s queue q at time t. Let Aεqt denote the minimal set of latest



arriving jobs in Aqt such that their total weight is at least ε ·Wqt, for some parameter ε ∈ [0, 1]. Our algorithm
distributes the total rate zqt among the jobs in the set Aεqt.

yjt = zqt ·
wj

ε ·Wqt
∀j ∈ Aεqt,

with the exception that the rate assigned to the earliest arriving job j′ in Aεqt is

yj′t = zqt ·
ε ·Wqt −

∑
i∈Aεqt\{j′}

wi

ε ·Wqt

In other words, job j′ gets the remaining rate from zqt after assigning rates to other jobs in Aεqt. Observe that
if ε = 1, then the algorithm distributes total available rate zqt using WRR. This completes the description of our
algorithm. To make our analysis more transparent, we will assume that

∑
i∈Aεqt

wi = εWqt which allows us to
ignore the exception. This simplifying assumption can be easily removed.

We observe two simple properties. Let Wmax,t denote the highest weight over all queues; that is, Wmax,t =
maxq∈[K]Wqt.

Observation 1.
∑
q∈[K]Wqt · zqt ≥Wmax,t

Observation 2.
∑
q∈[K]Wqt · zqt ≥ 1

K ·
∑
qWqt

The above observations follow by considering two feasible schedules of assigning a rate of 1 to the highest
weight queue, and assigning a rate of 1

K to each queue.
Since our algorithm computes an optimal feasible solution to maxz′

∑
qWqt · z′qt, we immediately have the

following optimality condition. Recall that zqt is the rate our algorithm assigns to queue q at time t.

Proposition III.1 (Optimality Condition). For any z′t ∈ Pq,
∑
q∈[K]Wqt · zqt ≥

∑
q∈[K]Wqt · z′qt

Next, we will show that this algorithm, when given a speed of (1 + ε), is O(K
3

ε3 )-competitive for the PSP-Q
problem.

2) Analysis: Proof of Theorem I.5: Our analysis is based on a potential function argument. Towards defining a
potential function we will set up some notation. Define WO

qt as the total weight of jobs that are alive in the queue q
in a fixed optimal schedule OPT. Let pjt, pOjt denote the job j’s remaining size in our algorithm’s schedule and the
optimal schedule at time t, respectively. Define a job j’s lag as p̃jt := max(pjt−pOjt, 0). The quantity p̃jt indicates
how much our algorithm is behind the optimal schedule in terms of job j’s processing. Note that jobs always have
non-negative lags. Furthermore, if a job is alive in the algorithm’s schedule and has zero lag then it implies that
the job is also alive in the optimal schedule.

It is assumed w.l.o.g. that no two jobs arrive at the same time. For a job j ∈ Aqt, define Aqt,≤j as the set of
jobs in Aqt that arrive no later than job j. That is, Aqt,≤j = {j′ | j′ ∈ Aqt and r′j ≤ rj}. Let Wqt,≤j denote the
total weight of jobs in Aqt,≤j . In other words, Wqt,≤j denotes the total weight of jobs in our algorithm’s queue q
at time t that arrive no later than job j.

We now define the potential function:

Φ(t) =
K

ε
·
∑
q∈[K]

∑
j∈Aqt

Wt,≤j · p̃jt (4)

Since jobs have non-negative lags, Φ(t) ≥ 0 at all time instants t. Let T be a sufficiently large time when all
jobs are completed by our algorithm and OPT. Clearly, Φ(0) = Φ(T ) = 0.

We first consider non-continuous changes of the potential.

Lemma III.2. When a job arrives or is completed by our algorithm or OPT, the potential does not increase.

Proof: First, observe that arrival of a new job j does not change the potential as p̃jt = 0 for the job j, and
for all other jobs j′ ∈ Aqt the quantity Wt,≤j′ remains the same since rj′ < rj . OPT completing a job has no
effect on the potential. Finally, when our algorithm completes a job j, the potential can only decrease as Wt,≤j′

decreases for each rj′ > rj and remains the same for each rj′ < rj .
Therefore, we have

∫ T
t=0

d
dtΦ(t)dt ≥ 0. Our main goal is to show the following lemma that involves continuous

changes of the potential.



Lemma III.3. For all time instants t in the execution of our algorithm where no jobs arrive or are completed by
our algorithm or OPT,

∑
q∈[K]Wqt + d

dtΦ(t) ≤ O(K
3

ε3 ) ·
∑
q∈[K]W

O
qt .

Indeed, integrating the inequality in the lemma over the time period [0, T ] yields Theorem I.5 since
∫ T
t=0

∑
qWqt dt,

and
∫ T
t=0

∑
qW

O
qt dt are our algorithm’s total weighted flow time and OPT’s, respectively.

It now remains to prove Lemma III.3. Consider a fixed time instant t where no discontinuous changes occur.
Let Ãεqt denote the set of jobs in Aεqt that have a positive lag; recall that Aεqt denotes the set of latest arriving jobs
whose total weight is ε ·Wqt. We consider two cases depending on the total weight of jobs in the set Ãεqt.

Case 1:: For all queues q ∈ [K],
∑
j∈Ãεqt

wj ≥ ε ·Wqt − ε2

K ·Wmax,t.
Roughly speaking, in this scenario, our algorithm is behind OPT for almost all jobs in every queue q. We first

consider the decrease of the potential due to our algorithm’s processing.

d

dt
Φ(t)|A =

K

ε
·
∑
q∈[K]

∑
j∈Aqt

Wt,≤j ·
d

dt
p̃jt|A

= −K
ε
·
∑
q∈[K]

∑
j∈Ãεqt

Wt,≤j · (1 + 5ε) · zqt ·
wj

ε ·Wqt
[def. of WLAPS and speed augmentation]

≤ −K
ε
·
∑
q∈[K]

∑
j∈Ãεqt

(1− ε) ·Wqt · (1 + 5ε) · zqt ·
wj

ε ·Wqt
[Wt,≤j ≥ (1− ε)Wqt for all j ∈ Ãεqt]

≤ −K
ε2
· (1 + 3ε) ·

∑
q∈[K]

zqt ·
∑
j∈Ãεqt

wj

We now use the condition of Case (1), as well as Observation 1 to complete the proof. Note that this part crucially
requires the normalization step.

d

dt
Φ(t)|A ≤ −

K

ε2
· (1 + 3ε) ·

∑
q∈[K]

zqt · (ε ·Wqt −
ε2

K
·Wmax,t) [Condition of Case 1]

≤ −K
ε
· (1 + 3ε) ·

( ∑
q∈[K]

zqt ·Wqt

)
− ε ·Wmax,t

 [zqt ≤ 1 for all q ∈ [K]]

≤ −K
ε
· (1 + 3ε) ·

∑
q∈[K]

zqt ·Wqt − ε ·
∑
q∈[K]

zqt ·Wqt

 [Observation 1]

≤ −K
ε
· (1 + ε) ·

∑
q∈[K]

zqt ·Wqt (5)

Next, consider the increase of the potential due to OPT’s processing. Let zOqt denote the rate at which OPT
processes q. We note that the last inequality is where the optimality condition of Proposition III.1 plays a crucial
role.

d

dt
Φ(t)|O =

K

ε
·
∑
q∈[K]

∑
j∈Aqt

Wt,≤j ·
d

dt
p̃jt|O

≤ K

ε
·
∑
q∈[K]

∑
j∈Aqt

Wqt ·
d

dt
p̃jt|O [Wqt ≥Wt,≤j for all j]

≤ K

ε
·
∑
q∈[K]

Wqt · zOqt ≤
K

ε
·
∑
q∈[K]

Wqt · zqt [Proposition III.1] (6)



Therefore, from the equations (5) and (6), the total decrease in the potential is at least

d

dt
Φ(t) =

d

dt
Φ(t)|O +

d

dt
Φ(t)|A ≤ −

K

ε
· (1 + ε) ·

∑
q∈[K]

zqt ·Wqt +
K

ε
·
∑
q∈[K]

zqt ·Wqt

≤ −K ·
∑
q∈[K]

zqt ·Wqt ≤ −K ·
∑
q∈[K]

1

K
·Wqt [Observation 2]

≤ −
∑
q∈[K]

Wqt

Therefore, we have
∑
q∈[K]Wqt + d

dtΦ(t) ≤ 0, proving Lemma III.3 for the first case.
Case 2:: For some q ∈ [K],

∑
j∈Ãεqt

wj ≤ ε ·Wqt − ε2

K ·Wmax,t

In this scenario, the total weight of jobs in OPT’s queue is comparable to that of our algorithm. So, we charge
the cost incurred by our algorithm to OPT directly. For this case, we ignore the change of the potential due to our
algorithm’s processing as it is always at most 0. Let q′ be a queue for which the above inequality in the condition
holds. Rearranging terms, we have

ε2

K
·Wmax,t ≤ ε ·Wq′t −

∑
j∈Ãε

q′t

wj =
∑
j∈Aε

q′t

wj −
∑
j∈Ãε

q′t

wj ≤WO
q′t,

since all jobs in Aεq′t \ Ãεq′t are alive in the optimal schedule’s queue q; note that j ∈ Aεq′t \ Ãεq′t implies the
algorithm is ahead of OPT in terms of job j’s processing but still hasn’t completed the job. With this observation
in mind, we derive∑

q∈[K]

Wqt +
d

dt
Φ(t)

≤
∑
q∈[K]

Wqt +
d

dt
Φ(t)|O ≤

∑
q∈[K]

Wqt +
K

ε
·
∑
q∈[K]

Wqt · zqt [Equation (6)]

≤
∑
q∈[K]

Wqt +
K

ε
·
∑
q∈[K]

Wqt [zqt ≤ 1 for all q ∈ [K]]

≤ K + 1

ε
·K ·Wmax,t [Wqt ≤Wmax,t for all q ∈ [K]]

= O(
K3

ε3
) ·
∑
q∈[K]

WO
qt

This completes the proof of Lemma III.3, and gives us Theorem I.5.

B. Clairvoyant Algorithm: Normalized Max-Weight + HIGHEST DENSITY FIRST

In this section, we consider the algorithm NORMALIZED MAX-WEIGHT combined with HIGHEST DENSITY
FIRST (HDF). This algorithm assigns rates zqt to queues giving each queue q a weight that is equal to the total
fractinal weight of jobs in the queue q while fully devoting the rate zqt to the highest density job in the queue.
Our main goal is to show the following theorem.

Theorem III.4. For the PSP-Q problem with K queues, for any constant ε > 0, the algorithm NORMALIZED
MAX-WEIGHT+HIGHEST DENSITY FIRST with speed (1 + ε) is O(K/ε) competitive for fractional weighted flow
time. Therefore, there is an algorithm that is (1 + ε) is O(K/ε2) competitive for (integeral) weighted flow time.

Fractional weighted flow time is a relaxation of its integral counterpart, letting a job j only incur cost wjpjt/pj
at time instant t as opposed to wj incurred in the integral objective while j is alive. Hence the fractional weighted
flow lower bounds the integral weighted flow. Although the integral weighted flow can be significantly greater than
the fractional weighted flow, it is known that an algorithm that is c-competitive for the fractional objective can be
converted online into an algorithm that is O(c/ε)-competitive with an extra speed augmentation of (1 + ε). For
example, see [27]. Henceforth we will focus on proving the first part of Theorem III.4.



1) Algorithm: For simplicity, assume w.l.o.g. that all jobs have size 1. This can be done following the standard
conversion from arbitrary jobs sizes to unit jobs sizes: each job j is replaced with pj jobs with weight wj/pj . It is
well known that the fractional objective remains the same after this conversion. Then, in this simplified instance,
processing the highest density job implies processing the highest weight job. For notational convenience, we will
assume that in the given instance, jobs have unit sizes, i.e. pj = 1 for all j from the beginning. We assume w.l.o.g.
that all jobs have distinct weights. Also as in the previous section, we assume w.l.o.g. that gq = 1 for all q ∈ [K].

Let Jqt denote the jobs that have arrived into queue q by time t, and pjt job j’s remaining size at time t in the
algorithm’s schedule. The NORMALIZED MAX-WEIGHT algorithm calculates a feasible set of rates zqt for each
queue at each time instant t by solving the following mathematical program.

max
∑
q∈[K]

∑
j∈Jqt

wjpjt

 · zqt s.t zt ∈ Pq

We reserve zqt throughout this section to denote the rate our algorithm assigns to queue q at time t. Note that∑
j∈Jqt wjpjt is the total fractional weight of jobs alive in the algorithm’s queue q since if j ∈ Jqt \ Aqt, then

pjt = 0, so
∑
j∈Jqt wjpjt =

∑
j∈Aqt wjpjt. Then, the algorithm processes the highest weight job 1qt that is alive

in each queue q at a rate of zqt, i.e. d
dtp1qtt = −zqt.

Similar to the analysis in the previous section, we make the following observations. Let Ŵqt =
∑
j∈Jqt wjpjt

and ŴO
qt =

∑
j∈Jqt wjp

O
jt.

Observation 3.
∑
q∈[K] Ŵqt · zqt ≥ 1

K ·
∑
q∈[K] Ŵqt

Proposition III.5. For any z′t ∈ Pq,
∑
q∈[K] Ŵqt · zqt ≥

∑
q∈[K] Ŵqt · z′qt

2) Analysis: Our analysis will be based on a potential function argument which is inspired by [12]. The potential
is defined as,

Φ(t) :=
∑
q∈[K]

C̃q(t)

where

C̃q(t) :=
∑
j∈Jqt

wjpjt

 ∑
j′∈Jqt,wj′≥wj

pj′t −
∑

j′∈Jqt,wj′≥wj

pOj′t

− ∑
j∈Jqt

wjp
O
jt

 ∑
j′∈Jqt,wj′≥wj

pj′t


We will proceed our analysis by taking a close look at how the potential changes over time. We first consider

discontinuous changes. Say a new job i arrives into queue q. So far jobs Jqt and i have arrived into queue q.
For each j ∈ Jqt, the quantity in the first summation does not change since pit = pOit and either pit − pOit or
nothing is added to the quantity in the first parenthesis. Also job i appear in the first summation which can increase
the potential by at most wipit

∑
j′∈Jqt,wj′≥wi

pj′t. However, it is offset by wipOit
∑
j′∈Jqt,wj′≥wi

pj′t. Hence jobs
arrival can only decrease the potential. Jobs completion either in the algorithm’s schedule or the optimal schedule
has no effect on the potential. Hence the potential can only decrease when discontinuous changes occur.

We now focus on continuous changes of Φ(t) which occur when no jobs arrive or complete. As before, let
d
dt (.)|A denote the derivative of the quantity in the parenthesis due to A’s processing freezing OPT’s processing.
We define d

dt (.)|O similarly. So d
dtΦ(t) = d

dtΦ(t)|A + d
dtΦ(t)|O. Knowing that the potential is 0 both at time 0 and

at a time T when all jobs have been completed by our algorithm and OPT, and no discontinuous changes increase
the potential, we have

∫ T
t=0

d
dtΦ(t)dt ≥ 0. Our main goal is to show,∫ T

t=0

d

dt
Φ(t)dt ≤ − ε

K

∫ T

t=0

∑
q∈[K]

Ŵqtdt+O(1)

∫ T

t=0

∑
q∈[K]

ŴO
qtdt (7)

where Ŵqt :=
∑
j∈Jqt wjpjt and ŴO

qt :=
∑
j∈Jqt wjp

O
jt. This, combined with the fact that

∫ T
t=0

d
dtΦ(t)dt ≥ 0, will

immediately yield the first part of Theorem III.4.

It now remains to show Equation (7). Assuming that the algorithm is given (1 + ε)-speed, it processes only the
highest weight job 1q , at a rate of (1 + ε)zqt; here we omitted t from 1qt for notational simplicity. Considering



each queue q, we derive,

d

dt
C̃q(t)|A

≤

∑
j∈Jqt

wjpjt

 · (−(1 + ε)zqt) + w1q (1 + ε)zqt ·

 ∑
j′∈Jqt,wj′≥w1q

pOj′t

+

 ∑
j′∈Jqt,wj≤w1q

wjp
O
jt

 (1 + ε)zqt

≤ −(1 + ε)zqt · Ŵqt + 2(1 + ε)zqt · ŴO
qt

Say OPT processes job i in queue q at a rate of zOqt.

d

dt
C̃q(t)|O ≤

 ∑
j∈Jqt,wj≤wi

wjpjt

 zOqt + wiz
O
qt

 ∑
j′∈Jqt,wj′≥wi

pj′t


≤ zOqt · Ŵqt + zOqt · wipit

For a while, we proceed our analysis ignoring the term zOqt ·wipit – we will bring it in the picture at the end of
the analysis. Then, we have,

d

dt
Φ(t) =

d

dt
Φ(t)|A +

d

dt
Φ(t)|O

≤ −(1 + ε)
∑
q∈[K]

zqt · Ŵqt +
∑
q∈[K]

zOqt · Ŵqt + 2(1 + ε)
∑
q∈[K]

zqt · ŴO
qt

≤ −ε
∑
q∈[K]

zqt · Ŵqt + 2(1 + ε)
∑
q∈[K]

zqt · ŴO
qt [Proposition III.5]

≤ − ε

K

∑
q∈[K]

Ŵqt + 2(1 + ε)
∑
q∈[K]

ŴO
qt [Observation 3 and zqt ≤ 1]

Integrating this inequality gives Equation (7).
We now bring in the term zOqt · wipit we ignored. Note that we need to add this term to d

dtΦ(t) only when the
optimal scheduler processes job i at time t. What this means that OPT processing job i by δ units contributes to∫ T
t=0

d
dtΦ(t) by at most δwi; recall that pit ≤ 1. Hence each job i can add at most wi to

∫ T
t=0

d
dtΦ(t) when the

ignored term is considered. Observe that in OPT with 1-speed, each job i’s weighted fractional flow time is no
smaller than wi/2; here we used the fact zqt ≤ 1. Hence the ignored term can only increase

∫ T
t=0

d
dtΦ(t)dt by at

most twice OPT’s fractional weighted flow time. This shows Equation (7), completing the proof of Theorem III.4.

C. Resource Allocation with Complementarities (RA-C)

Recall the RA-C problem from Section I-C1. There are D divisible resources (or dimensions), numbered
1, 2, . . . , D. We assume w.l.o.g. (by scaling and splitting resources) that each resource is available in unit supply. If
job j is assigned a non-negative vector of resources x = {x1, x2, . . . , xD}, then the rate at which the job executes
is given by yj = uj(x) where uj(xj) = minDd=1 (cjdxjd) are Leontief utilities. Here, cj is the resource vector of
the job.

When the number of distinct resource vectors (or job types) is bounded by K, then this problem is clearly
a special case of PSP-Q with K queues. In this section, we show that even when the resource vectors can be
arbitrary, the RA-C problem can be reduced to PSP-Q with a bounded number of queues. In the reduction, jobs
of “similar” resource vectors will be discretized to the same type.

Lemma III.6. If we use a (1+ε) factor more speed, then we can w.l.o.g. assume that for all jobs j: (1) minDd=1 cjd =
1; and (2) cjd ∈ [1, D/ε] ∪ {∞} for all d ∈ [D].

Here if cjd = ∞, cjd · xjd is defined to be ∞ for any value of xjd (meaning that d is never a bottleneck in
determining j’s utility). More precisely, if we have a s-speed f -competitive algorithm for this simplified instance,
then we can derive an algorithm that is s(1 + ε)-speed f -competitive for the original instance.

Proof: Fix a job j. Let h = minDd=1 cjd. We first normalize cj so that the first property is satisfied. Towards
this end, we scale down c′j and pj by the same factor h. Note that these changes do not affect the schedule. More
precisely, any feasible schedule xjt for the original instance is also feasible for the new modified instance, and



further all jobs completion times remain the same. So far we have shown the first property can be satisfied w.l.o.g.
Henceforth, for notational convenience, let’s assume that the original instance of jobs j with cj satisfies the first
property.

Now turning to the second property, if cjd ≥ D/ε, then we simply set cjd to ∞. Let c′j denote the new vector
for job j. To see why we can make this change w.l.o.g., consider any feasible resource allocation x′jd at a fixed
time t for this new instance. Here, we can assume w.l.o.g. that x′jd = 0 if c′jd =∞, and c′jdx

′
jd is the same for all

d with c′jd <∞ since otherwise resources would be wasted. We would like to construct {xjd} such that each job
gets processed at the same rate under the schedule {xjd} for the original instance as it does under the schedule
{x′jq} for the modified instance. Towards this end, for any d with c′jd = ∞ and cjd < ∞, i.e. D/ε < cjd < ∞,
we set xjd so that cjdxjd are the same for all d with cjd < ∞. We say that a job j′ is tightest for dimension d′

if cj′d′ = 1. The first property implies that every job is tightest for some dimensions; a job can be tightest for
multiple dimensions. Let Jd′ denote the jobs that are the tightest for dimension d′.

The issue is that the resource allocation {xjd} may over-allocate resources. However, we will show that over-
allocation can be fixed by a small amount of speed augmentation. We now show that

∑
j(xjd − x′jd) ≤ ε for all

d ∈ [D]. This will imply that
∑
j xjd ≤ ε +

∑
j x
′
jd ≤ 1 + ε. Hence if we use a resource allocation xjd/(1 + ε)

with a (1 + ε) factor more speed, we will have a feasible schedule while processing each job’s rate. Considering
any fixed d∗, we have,

∑
j

(xjd∗ − x′jd∗) ≤
∑
d′∈[D]

∑
j∈Jd′ :D/ε≤cjd∗<∞

(xjd∗ − x′jd∗) [xjd∗ − x′jd∗ > 0 only if D/ε ≤ cjd∗ <∞]

=
∑
d′∈[D]

∑
j∈Jd′ :D/ε≤cjd∗<∞

xjd∗ [x′jd∗ = 0 if D/ε ≤ cjd∗ ]

=
∑
d′∈[D]

∑
j∈Jd′ :D/ε≤cjd∗<∞

(1/cjd∗)xjd′ [cjd∗xjd∗ = cjd′xjd′ = xjd′ ]

≤
∑
d′∈[D]

∑
j∈Jd′

(ε/D)xjd′ ≤ (ε/D)
∑
d′∈[D]

1 ≤ ε

We are now ready to describe the reduction. Assume that the given resource vectors satisfy the properties stated
in the above lemma. We discretize each job’s resource vectors as follows. For each d ∈ [D], if cjd <∞, then round
up cjd to the closest power of (1 + ε). We know that xjd can have at most dlog(1+ε)(D/ε)e+ 2) ≤ O((1/ε) logD)

different values. Hence there are at most (O(1/ε) logD)D distinct resource vectors. Jobs of the same resource
vector are placed into the same queue. It is easy to see using another (1 + ε) factor more speed takes care of the
rate loss due to the discretization. Hence we have shown a reduction of arbitrary RA-C instances with D dimensions
to PSP-Q with K = O((1/ε) logD)D queues by using (1 + ε) factor more speed.

IV. CONCLUSIONS

We conclude with some open questions. An immediate open question is to extend Theorem I.2 so that the speed
is 1+ ε for any ε > 0. Though this can be done in the single-machine setting [18], that analysis crucially required a
closed form for the allocations and rates. Our analysis is based on optimality conditions, and extending it seems to
encounter fundamental roadblocks. The next open question is to design an algorithm for RA-C whose competitive
ratio is poly(D), where D is the number of dimensions. Note that in full generality, the number of queues K can
be exponential in D. Reducing this dependence will require fundamentally new ideas. A related question is to show
tight lower bounds for PSP-Q even with clairvoyance – the current lower bound [24] that is polynomial in K
holds only for non-clairvoyant algorithms.

A more open-ended question is to characterize the class MONOTONE PSP and study its precise connection to
market clearing, extending the work of [28]. As we emphasized, we crucially require the optimality condition of PF.
In most cases, even if a market clearing solution exists, the PF algorithm will not find this solution, and therefore
we cannot use monotonicity characterizations from market clearing literature. A related question will be to study
other algorithms whose optimality conditions have simple characterizations.
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