
Security Games with Multiple Attacker Resources

Dmytro Korzhyk, Vincent Conitzer, Ronald Parr
Department of Computer Science, Duke University

Durham, NC 27708, USA
{dima, conitzer, parr}@cs.duke.edu

Abstract
Algorithms for finding game-theoretic solutions are
now used in several real-world security applica-
tions. This work has generally assumed a Stackel-
berg model where the defender commits to a mixed
strategy first. In general two-player normal-form
games, Stackelberg strategies are easier to compute
than Nash equilibria, though it has recently been
shown that in many security games, Stackelberg
strategies are also Nash strategies for the defender.
However, the work on security games so far as-
sumes that the attacker attacks only a single tar-
get. In this paper, we generalize to the case
where the attacker attacks multiple targets simul-
taneously. Here, Stackelberg and Nash strategies
for the defender can be truly different. We provide
a polynomial-time algorithm for finding a Nash
equilibrium. The algorithm gradually increases the
number of defender resources and maintains an
equilibrium throughout this process. Moreover, we
prove that Nash equilibria in security games with
multiple attackers satisfy the interchange property,
which resolves the problem of equilibrium selec-
tion in such games. On the other hand, we show
that Stackelberg strategies are actually NP-hard to
compute in this context. Finally, we provide exper-
imental results.

1 Introduction
Algorithms for computing game-theoretic solutions have re-
cently found several real-world applications to security, in-
cluding the randomized allocation of checkpoints and canine
units at Los Angeles International Airport [5; 6] and of fed-
eral air marshals to flights [7]. These security games are gen-
erally two-player games between a defender, who allocates
defensive resources to targets (or subsets of targets), and an
attacker, who chooses which target to attack. The attacked
target determines both players’ utilities; holding the attacked
target fixed, if the target is defended by one of the defender’s
resources, this increases the defender’s utility and decreases
the attacker’s utility. In spite of their apparently adversarial
nature, security games are generally not modeled as zero-sum
games.

This leads to a question of which game-theoretic solution
concept should be used. One possibility is to solve for a
Nash equilibrium of the game. Instead, however, most of
the work on these security games assumes that the defender
has a Stackelberg leader advantage, where she can commit
to a mixed strategy before the attacker moves. One can sup-
port the Stackelberg model by arguing that an attacker would
spend some time observing the defender’s day-to-day actions
and thereby learn the defender’s mixed strategy before en-
gaging in an attack. The validity of this argument can be
debated. Nevertheless, there are advantages to the Stackel-
berg model, including that being a Stackelberg leader cannot
hurt the defender [8], as well as that at least in some cases,
such as general two-player normal-form games, computing a
Nash equilibrium is PPAD-complete [1] whereas a Stackel-
berg strategy for the defender can be computed in polynomial
time [2].

Security games are a restricted class of games. This addi-
tional structure can remove the distinction between Stackel-
berg and Nash strategies to some extent: if we make certain
assumptions about the security game, it turns out that any
defender Stackelberg strategy is also a defender Nash strat-
egy [9], though this does not hold in the most general case.
The additional structure in security games can also allow for
more efficient algorithms. On the other hand, the size of the
normal-form representation of the game is generally expo-
nential in the natural parameters of the problem, so that it
becomes impractical to apply algorithms based on the normal
form.

Kiekintveld et al. [3] define a general class of security
games based on allocating defensive resources to targets or
subsets of targets. This model was further extended by Yin
et al. [9] to allow multiple attacker resources, that is, the at-
tacker can simultaneously attack up to na different targets.
This extension is motivated by the fact that terrorist attacks
are often performed at multiple locations simultaneously (for
example, the 9/11 attacks or the 2008 Mumbai attacks).

In the case of a single attacker resource, Kiekintveld et
al. give a simple algorithm called ORIGAMI for the sin-
gle attacker resource case. It computes a defender strat-
egy that is both a Stackelberg and a Nash strategy (the lat-
ter follows from the work of Yin et al. [9]). The main ob-
servation used in ORIGAMI is that any Stackelberg strat-
egy for the defender minimizes the attacker’s best-response

utility. Using this observation, ORIGAMI computes the de-
fender’s Nash/Stackelberg strategy by gradually decreasing
the attacker’s best-response utility, keeping track of the num-
ber of defender resources required to bring the attacker’s best-
response utility down to this level, until the number of re-
quired defender resources reaches the limit. However, in
games with multiple attacker resources, the defender’s min-
imax strategy is not necessarily a Nash or Stackelberg strat-
egy. Consider the following example (from an extended ver-
sion of Yin et al. [9]). Suppose there are two targets, and
the attacker has two resources, so that both targets will be at-
tacked no matter what strategy the defender chooses. If the
defender has only one resource, then the defender is better
off allocating that resource in such a way that the defender’s
utility increases the most. However, in the defender’s mini-
max strategy, the defender would allocate the resource so that
the attacker’s utility is reduced the most. Thus the defender’s
Nash and Stackelberg strategies can differ from the minimax
strategy in this example. In the appendix, we present an ex-
ample from the extended version of Yin et al. [9] in which the
defender’s Nash equilibrium strategy differs from the Stack-
elberg strategy.

In this paper, we give a polynomial-time algorithm for find-
ing a Nash equilibrium in the case of multiple attacker re-
sources. This algorithm can be thought of as a generalization
of ORIGAMI in the sense that it also keeps track of the small-
est utility that the attacker is going to get from any of his
targets, and this utility gradually decreases over the course
of the algorithm. However, our algorithm is far more com-
plicated compared to ORIGAMI. Furthermore, we show that
Nash equilibria in security games with multiple attacker re-
sources possess the interchange property, which states that
as long as each player plays some equilibrium strategy, the
resulting strategy profile must be a Nash equilibrium, thus
resolving the problem of equilibrium selection for both play-
ers. On the other hand, we show that, with multiple attacker
resources, computing a defender Stackelberg strategy is actu-
ally NP-hard.

2 Security Games, Strategies, and Notation
In the security games that we study, there is a set of tar-
gets, T . The defender has nd resources and the attacker has
na resources. A pure strategy for the defender (attacker)
consists of a subset Sd ⊆ T with |Sd| = nd (Sa ⊆ T
with |Sa| = na), corresponding to the targets she defends
(he attacks). Targets that are not attacked do not affect ei-
ther player’s utility. Each player’s utility is additive over
attacked targets. For a target t, the defender receives util-
ity uud(t) if the target is attacked but not defended (uncov-
ered), and ucd(t) if the target is attacked and defended (cov-
ered). Similarly, the attacker’s utility for an attacked tar-
get t is uua(t) in the uncovered case and uca(t) in the cov-
ered case. (We require ∆ud(t) = ucd(t) − uud(t) > 0 and
∆ua(t) = uua(t) − uca(t) > 0.) Hence, the defender’s over-
all utility is

∑
t∈Sa∩Sd

ucd(t) +
∑

t∈Sa\Sd
uud(t), and the at-

tacker’s overall utility is
∑

t∈Sa∩Sd
uca(t)+

∑
t∈Sa\Sd

uua(t).
Because of the additive nature of the utility function, the

players’ expected utilities depend only on the marginal prob-

ability that each target is attacked/defended. Hence, a de-
fender mixed strategy can be represented as a vector d =
(d1, . . . , d|T |) with

∑
t∈T dt = nd, where dt ∈ [0, 1] is the

probability that target t obtains a defensive resource, and sim-
ilarly for the attacker a = (a1, . . . , a|T |) with

∑
t∈T at =

na, at ∈ [0, 1]. (Note that it does not help to have more than
one resource on one target. This assumption was introduced
in the security game model by Kiekintveld et al. [3].)

We will use the following shorthand: ua(t, dt) =
dtu

c
a(t) + (1 − dt)uua(t) is the attacker’s expected utility for

attacking target t, and υd(t, at) = at∆ud(t) is the marginal
expected utility that the defender gets from defending t.

3 Nash Equilibrium
We now consider how to compute a Nash equilibrium, that is,
a pair of mixed strategies, one for each player, such that each
is a best response to the other. Because of the additive na-
ture of the utility functions, best-responding simply means
defending (attacking) the nd (na) targets with the highest
utility for the defender (attacker). If there is a tie for the
ndth (nath) place, then it is possible to randomize over the
corresponding targets. Therefore, d is a best response to a
iff there exists some threshold marginal utility θd such that
υd(t, at) < θd ⇒ dt = 0 and υd(t, at) > θd ⇒ dt = 1.
Similarly, a is a best response to d iff there exists some
threshold utility θa such that ua(t, dt) < θa ⇒ at = 0 and
ua(t, dt) > θa ⇒ at = 1. Hence, we have a Nash equilib-
rium iff both these conditions are satisfied. Note that the de-
fender’s (and, similarly, the attacker’s) strategy can be mixed
(randomized), because any target t such that υd(t, at) = θd
can be defended with a fractional probability dt ∈ [0, 1]. Sim-
ilarly, the attacker’s strategy can also be mixed.

The high-level idea of our algorithm for computing a Nash
equilibrium is as follows. We start with a modified game
where the defender has no resources at all, for which it is
straightforward to compute an equilibrium, and then we grad-
ually increase the number of defender resources (not nec-
essarily to integral amounts), while maintaining an equilib-
rium of the game as it is changing—until we arrive at the ac-
tual number of defender resources. The algorithm transitions
among phases that correspond to phases of qualitatively dif-
ferent behavior in the process of increasing the number of de-
fender’s resources. The change resulting from a single phase
can be computed through a simple calculation.

3.1 Detailed Example Run of the Algorithm
Before we present the algorithm for computing a Nash equi-
librium, we first give a detailed example of how it solves
a particular game. This example demonstrates the different
phases of the algorithm. During these phases, each target will
be considered to be in one of 6 possible states: Untouched
(U), Newly Attacked (NA), Pending (P), Active (A), De-
fender Saturated (DS), and Done (D). We will informally in-
troduce every state in this example (precise definitions can be
found in the algorithm in Figure 2). The target states depend
on the values of the thresholds θa, θd, which are computed at
the beginning and gradually decrease during the course of the
algorithm.

 t1 [P] t2[P] t3[NA] t4[U] t1[P] t2[A] t3[NA] t4[U] t1[P] t2[A] t3[A] t4[U] t1[P] t2[A] t3[A] t4[NA]

dti 0 0 0 0 0 1/3 0 0 0 1/3 0 0 0 2/3 1/3 0

ati 1 1 0 0 1 1 0 0 1 3/5 2/5 0 1 3/5 2/5 0

ua(ti,c) 5 4 3 2 5 3 3 2 5 3 3 2 5 2 2 2

υd(ti,a) 1 2 0 0 1 2 0 0 1 6/5 6/5 0 1 6/5 6/5 0

 (a) Initialize. θd=2, θa=3 (b) IMOP. θd=2, θa=3 (c) MMNA. θd=6/5, θa=3 (d) IMOA. θd=6/5, θa=2

 t1[P] t2[A] t3[A] t4[NA] t1[A] t2[A] t3[A] t4[NA] t1[A] t2[A] t3[A] t4[P] t1[A] t2[DS] t3[A] t4[P]

dti 0 2/3 1/3 0 3/5 2/3 1/3 0 3/5 2/3 1/3 0 4/5 1 2/3 0

ati 1 1/2 1/3 1/6 1 1/2 1/3 1/6 6/11 3/11 2/11 1 6/11 3/11 2/11 1

ua(ti,c) 5 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2

υd(ti,a) 1 1 1 1/12 1 1 1 1/12 6/11 6/11 6/11 1/2 6/11 6/11 6/11 1/2

 (e) MMNA. θd=1, θa=2 (f) IMOP. θd=1, θa=2 (g) MMNA. θd=6/11, θa=2 (h) IMOA. θd=6/11, θa=1

 t1[A] t2[DS] t3[A] t4[P] t1[A] t2[DS] t3[A] t4[A] t1[A] t2[D] t3[A] t4[A] t1 t2 t3 t4

dti 4/5 1 2/3 0 4/5 1 2/3 1/2 4/5 1 2/3 1/2 ≈.806 1 ≈.677 ≈.516

ati 1/2 1/3 1/6 1 1/2 1/3 1/6 1 3/10 1 1/10 3/5 3/10 1 1/10 3/5

ua(ti,c) 1 1 1 2 1 1 1 1 1 1 1 1 ≈.968 1 ≈.968 ≈.968

υd(ti,a) 1/2 2/3 1/2 1/2 1/2 2/3 1/2 1/2 3/10 2 3/10 3/10 3/10 2 3/10 3/10

 (i) MMDS. θd=1/2, θa=1 (j) IMOP. θd=1/2, θa=1 (k) MMDS. θd=3/10, θa=1 (l) IMOA. θd=3/10, θa≈.968

Figure 1: The example run of the algorithm. Each subfigure shows the current equilibrium, threshold values, and target states
at the end of the corresponding phase.

Example 1. Consider a game with |T | = 4 targets, nd =
3 defender resources, and na = 2 attacker resources. The
utilities are as follows:

t1 t2 t3 t4
uua 5 4 3 2
uca 0 1 0 0

∆ud 1 2 3 .5

Figure 1 shows the sequence of equilibria for different
amounts of defender resources computed by the algorithm.
We start with the equilibrium for 0 defender resources. The
attacker attacks the two targets that give him the highest util-
ity, namely, t1 and t2 (Fig. 1(a)). Since these two targets are
attacked with probability 1, they are likely to get defended
as the number of defender resources increases. Thus, these
targets are both in the Pending (P) state. Target t4 is in the
Untouched (U) state, because ua(t4) < θa, and thus it is nei-
ther attacked nor defended.

Increase Defender Mass on Pending (IMOP) phase: We in-
crease the number of defender resources and allocate them to
the Pending target t2, which is currently the most appealing
to the defender. We cannot put more than 1/3 defender prob-
ability on t2 without breaking the attacker’s equilibrium con-
dition, so the phase ends at that point. The new equilibrium
strategies and updated target states are shown in Figure 1(b).

Move Attacker Mass to Newly Attacked (MMNA) phase:
At the beginning of this phase, target t2 is in the Active (A)
state, because both players’ utilities for defending/attacking
this targets are at the corresponding threshold values. Target
t3 is in the Newly Attacked (NA) state, because it is currently
at the attacker threshold and would start to be attacked if the
defender put more probability on t2. In this phase, we move
2/5 of the attacker’s probability mass from t2 to t3. As a
result, both t2 and t3 now have the highest marginal defender
utility (Fig. 1(c)).

Increase Defender Mass on Active (IMOA) phase: We in-
crease the defender probability on Active targets t2 and t3.
Since ∆ua(t2) = ∆ua(t3), we have to add the same amount
of probability to each of these targets; otherwise, the at-
tacker’s best-response condition would be broken. We can
add up to 1/3 defender probability to these targets, until the
attacker’s utility for attacking t4 becomes equal to the utility
for attacking t2 and t3 (Fig. 1(d)).

MMNA phase: We now move attacker mass from Active
targets t2 and t3 to the Newly Attacked t4. To maintain the de-
fender’s best-response condition, we need to take mass from
t2 and t3 proportionally to 1/∆ud(t). We stop when the de-
fender becomes indifferent between t2, t3, and the Pending
target t1 (Fig. 1(e)).

IMOP phase: We add 3/5 defender mass to t1, after
which the attacker becomes indifferent between all targets
(Fig. 1(f)).

MMNA phase: The defender cannot add any mass to her
optimal targets t1, t2, and t3, because that would make t4
strictly preferred for the attacker, and the attacker’s best-
response condition would be broken. Therefore, we move at-
tacker mass from t1, t2, t3 to t4 in the right proportions, until
the probability on t4 reaches 1 (Fig. 1(g)).

IMOA phase: We can now add defender mass to t1, t2, t3.
That will make t4 strictly preferred for the attacker. How-
ever, as long as we add mass in the right proportions, the
attacker will still be best-responding, because t4 is attacked
with probability 1. We stop when the defender probability on
t2 becomes 1 and target t2 transitions to the Defender Satu-
rated (DS) phase (Fig. 1(h)).

Move Attacker Mass to Defender Saturated (MMDS)
phase: We move attacker mass from t1 and t3 to t2. This does
not violate the defender’s best-response condition because t2
is already fully defended. We stop when the defender becomes

indifferent between t1, t3, and t4 (Fig. 1(i)).
IMOP phase: We increase the defender mass on t4,

until the attacker becomes indifferent between all targets
(Fig. 1(j)).

MMDS phase: We move attacker mass from Active targets
t1, t3, t4 to DS target t2 in the proportions that keep the de-
fender indifferent between the three Active targets, until t2
becomes attacked with probability 1 (Fig. 1(k)).

IMOA phase: We add defender mass to t1, t3, t4, until all
defender mass is allocated. After the end of this phase, the
algorithm terminates, and the resulting equilibrium profile is
an equilibrium of the game with 3 defender resources and 2
attacker resources (Fig. 1(l)).

3.2 Algorithm, Correctness, Runtime
We present the pseudocode for the algorithm in Figure 2. The
pseudocode contains the exact definitions of the target states.
For proof convenience, we will split the Pending target state
into two states: P1 = {t ∈ P : υd(t, at) < θd}, P2 = {t ∈
P : υd(t, at) = θd}.
Theorem 1. Throughout the algorithm, the following holds.

• UpdateTargetStates always assigns each target to ex-
actly one of the states U,A, P1, P2, NA,DS,D.

• At the end of each phase, if the algorithm does not ter-
minate, then at least one target changes its state.

• Each phase terminates.

Proof sketch. It follows from the state definitions that no tar-
get can be in two states at the same time. To prove the the-
orem, we will first show that each target is assigned a state
after the initialization phase, and then we will show which
targets change states at the end of each phase.

At the beginning of the algorithm, each target is assigned
to exactly one state. The na targets for which at = 1 are as-
signed to the P state, except that targets with at = 1, uua(t) =
θa, if any, are assigned to the A state. The other |T | − na
targets are assigned to the U state, except that targets with
at = 0, uua(t) = θa, if any, are assigned to the NA state.

Next, we specify all target state changes for each phase and
for each termination criterion within each phase.

Next, for each phase, we list, for every termination cri-
terion of that phase, which targets change states (always a
nonempty set, unless the algorithm terminates). It is straight-
forward to check that one of these criteria will always apply.

IMOP phase: (1) t∗ becomes A. (2) t∗ becomes D. (3) The
algorithm terminates.

IMOA: (1) Every t ∈ U s.t. uua(t) = θa becomes A. (2)
Every t ∈ A s.t. dt = 1 becomes either DS (if at < 1) or D
(if at = 1). (3) The algorithm terminates.

MMNA: (1) Every t ∈ P s.t. υd(t, at) = θd transitions
from P1 to P2. (2) Every t ∈ NA s.t. υd(t, at) = θd becomes
A. (3) t∗ transitions from NA to P1.

MMDS: (1) Every t ∈ P s.t. υd(t, at) = θd transitions
from P1 to P2. (2) If this condition happens, then θd = 0,
thus at = 0 for all t ∈ P . Also, at = 0 for all t ∈ A, and
NA is empty. The algorithm will terminate after this phase
because at > 0 implies dt = 1. (3) t∗ transitions to D.

DDT: Every t ∈ NA s.t. υd(t, at) = θd transitions to A.
Every t ∈ P s.t. υd(t, at) = θd transitions from P1 to P2.

To complete the proof, we also need to show that no tar-
get can change state before the phase is over. This can be
done in a straightforward way by carefully checking all state
definitions.

Theorem 2. Throughout the algorithm, the current strategies
〈d,a〉 constitute a Nash equilibrium for the current number
of defender resources.

Proof. This follows immediately from the following facts:
(1) each target is always in one of the states (Theorem 1),
and (2) each state definition implies that the equilibrium con-
dition with respect to the thresholds (beginning of Section 3)
is satisfied for such a state.

Theorem 3. The algorithm terminates after at most 6|T |
phases, and each phase requires O(|T |) time.

Proof. We can order the 7 possible states as follows: U <
NA < P1 < P2 < A < DS < D. As we can see from the
proof of Theorem 1, after each phase (except the last one),
some target changes its state to a later state. Thus the algo-
rithm terminates after at most 6|T | phases. In each phase, we
can calculate directly at what point the phase will terminate,
though this in general requires examining all |T | targets.

3.3 Interchangeability
While we have shown how to compute a Nash equilibrium ef-
ficiently, a defender may still be unconvinced about whether
she actually wants to play her corresponding strategy. For ex-
ample, if she has a commitment advantage where the attacker
observes her distribution before acting, she would prefer to
play a Stackelberg strategy; we will return to this in Section 4.
However, even if the attacker cannot observe her distribu-
tion, she may worry that she is playing her strategy from the
“wrong” equilibrium: in general games, if one player plays
according to one equilibrium and the other according to an-
other, the result may be disastrous for both (see the game of
chicken). In this section, we alleviate this latter concern, by
showing that the security games in this paper satisfy the inter-
change property: any combination of equilibrium strategies
is, in fact, itself an equilibrium. (This was previously shown
for a large class of security games with a single attacker re-
source [9].)

Suppose σ = 〈d,a〉 and σ′ = 〈d′,a′〉 are two NE profiles
in a security game with multiple attacker resources. We need
to show that 〈d′,a〉 and 〈d,a′〉 are also NE profiles of the
same game. We first prove that for any target, either the de-
fender probability on that target is the same in all equilibrium
profiles, or the attacker probability is the same in all equilib-
rium profiles, or both.

Lemma 4. If σ = 〈d,a〉 and σ′ = 〈d′,a′〉 are two NE pro-
files, then there is no target t for which both (1) the defender
probabilities are different in the two profiles and (2) the at-
tacker probabilities are different in the two profiles. In other
words, for any target t, at least one of equalities dt = d′t,
at = a′t must hold.

MainRoutine

Initialize

Repeat:

 If (no defender mass is left), return

 UpdateTargetStates

If (for all t, at > 0 implies dt = 1),

 distribute the remaining defender

 resources arbitrarily and return

Else if (exists t in P s.t. υd(t, at) = θd), IMOP

Else if (), IMOA

Else if (), MMNA

Else if (), MMDS

Else DDT

Initialize

Order the targets by decreasing
 ,

 breaking ties arbitrarily

 for the first na targets; for the rest

UpdateTargetStates

IMOP (Increase Defender Mass on Pending)

Choose s.t.

Increase dt* until one of the following:

 (1) ua(t*, dt*) = θa

 (2) dt* = 1
 (3) No defender mass is left

IMOA (Increase Defender Mass on Active)

Simultaneously for all , increase dt, and decrease
θa, at relative rates that maintain

ua(t, dt) = θa for all t in A, until one of the following:

 (1) For some ,

 (2) For some ,
 (3) No defender mass is left

MMNA (Move Attacker Mass to NA)

Choose

Simultaneously move attacker mass from

all to t*, and decrease θd, at relative

rates that maintain υd(t, at) = θd for all ,
until one of the following:

 (1) For some , υd(t, at) = θd
 (2) υd(t*, at*) = θd

 (3) at* = 1

MMDS (Move Attacker Mass to DS)

Choose
Simultaneously move attacker mass from

all to t*, and decrease θd, at relative

rates that maintain υd(t, at) = θd for all ,

until one of the following:

 (1) For some , υd(t, at) = θd

 (2) For some (in fact, all) , at = 0
 (3) at* = 1

DDT (Decrease the Defender’s Threshold)

Decrease θd until

Figure 2: The algorithm for computing a Nash equilibrium.

Proof. The proof is by contradiction. Suppose that there is
a target t for which dt 6= d′t and at 6= a′t. We show that
the following four cases must all hold even though two are
contradictory.

Case “−−”: There exists a target t1 such that d′t1 < dt1
and a′t1 < at1 . In profile σ, the attacker’s utility ua(t1, dt1)
must be greater than or equal to the threshold value θa, be-
cause at1 > 0. Similarly, in profile σ′, the attacker’s utility
ua(t1, d

′
t1) must be less than or equal to the threshold θ′a, be-

cause a′t1 < 1. At the same time, the attacker’s utility for
attacking t1 is higher in profile σ′ than in profile σ, because
d′t1 < dt1 . Thus, the following three inequalities must hold.

θa ≤ ua(t1, dt1)

ua(t1, dt1) < ua(t1, d
′
t1)

ua(t1, d
′
t1) ≤ θ′a

It follows from these three inequalities that θ′a > θa. Because∑
t at =

∑
t a
′
t and a′t1 < at1 , there must exist a target t2

such that a′t2 > at2 . Since a′t2 > 0, it must be the case that
ua(t2, d

′
t2) ≥ θ′a. Similarly, because at2 < 1, it must be the

case that ua(t2, dt2) ≤ θa. Using the last two inequalities and
the fact that θ′a > θa, it follows that ua(t2, dt2) < ua(t2, d

′
t2),

which implies d′t2 < dt2 . By considering the target t2, it
follows that the case “−+” must also hold.

Case “−+”: There is a target t1 such that d′t1 < dt1 and
a′t1 > at1 . The defender’s marginal utility for defending
target t1 must be at or above the threshold θd in profile σ
(because dt1 > 0) and at or below the threshold θ′d in pro-
file σ′ (because d′t1 < 1). At the same time, since t1 is at-
tacked with a higher probability in σ′ than in σ, it must be that
υd(t1, a

′
t1) > υd(t1, at1). Thus we have θ′d ≥ υd(t1, a

′
t1) >

υd(t1, at1) ≥ θd. Because
∑

t dt =
∑

t d
′
t = nd and d′t1 <

dt1 , there must be a target t2 such that d′t2 > dt2 . The de-
fender’s marginal utility for defending t2 must be at or above
the threshold θ′d in profile σ′ (because d′t2 > 0) and at or be-
low the threshold θd in profile σ (because dt2 < 1). Since

θ′d > θd, it follows that υ(t2, a
′
t2) ≥ θ′d > θd ≥ υ(t2, at2),

which implies a′t2 > at2 . By considering the target t2, it
follows that the case “++” must also hold.

We can also prove the following two implications similarly
to the two cases described above, by reversing the roles of
equilibria σ and σ′:

Case “++”: There is a target t1 such that d′t1 > dt1 and
a′t1 > at1 . If this case holds, then the case “+−” must also
hold. This can be proven similarly to the implication “−−”
⇒ “−+”, by reversing the roles of equilibria σ and σ′.

Case “+−”: There is a target t1 such that d′t1 > dt1 and
a′t1 < at1 . If this case holds, then the case “−−” must also
hold. This can be proven similarly to the implication “−+”
⇒ “++”, by reversing the roles of equilibria σ and σ′.

It follows that if at least one of the cases “−−”, “−+”,
“++”, “+−” holds, then all of them must hold. But if both
“−−” and “++” hold, then both inequalities θ′a > θa and
θa > θ′a must hold, which is impossible. Hence, none of the
four cases can hold.

We now show that in an equilibrium the defender obtains
the same marginal utility from all targets that have different
defender probabilities in a different equilibrium.

Lemma 5. Suppose that σ and σ′ are two NE profiles, and
t1, t2 are two targets such that dt1 6= d′t1 and dt2 6= d′t2 . Then
υd(t1, at1) = υd(t2, at2) = υd(t1, a

′
t1) = υd(t2, a

′
t2).

Proof. Because
∑

t dt =
∑

t d
′
t = nd, it is enough to show

that υd(t1, at1) = υd(t2, at2) holds for any pair of targets
t1, t2 such that dt1 < d′t1 and dt2 > d′t2 . (This is because if
(say) dt1 < d′t1 and dt2 < d′t2 , there must exist a third target
t3 with dt3 > d′t3 , so that we can then conclude υd(t1, at1) =
υd(t3, at3) = υd(t2, at2).)

In profile σ, the defender can shift her probability from t2
to t1, because dt2 > 0 and dt1 < 1. Since σ is an equilib-
rium profile, the defender must not benefit from such a shift

of probability. Thus υd(t1, at1) ≤ υd(t2, at2). Using a simi-
lar argument for profile σ′, we get υd(t1, a

′
t1) ≥ υd(t2, a

′
t2).

It also follows from Lemma 4 that at1 = a′t1 and at2 = a′t2 .
Hence, we have υd(t1, at1) ≤ υd(t2, at2) = υd(t2, a

′
t2) ≤

υd(t1, a
′
t1) = υd(t1, at1), so it follows that these four quanti-

ties are all the same.

In the following lemma, we show that any defender’s NE
strategy is a best-response to any attacker’s NE strategy.

Lemma 6. If σ = 〈d,a〉 and σ′ = 〈d′,a′〉 are two NE pro-
files, then d′ is a best-response to a.

Proof. We will show that the defender’s utility for playing
strategy d′ against a is the same as the defender’s utility for
playing d against a. First, note that ud(d′,a) − ud(d,a) =∑

t:d′t 6=dt
[d′t − dt] υd(t, at). Consider any target t∗ such that

dt∗ 6= d′t∗ . Using Lemma 5, we can rewrite the differ-
ence in the utilities as follows: ud(d′,a) − ud(d,a) =
υd(t1, at1)

∑
t:d′t 6=dt

[d′t − dt] = 0. The last summation is
equal to zero because

∑
t dt =

∑
t d
′
t.

The following lemma can be proven similarly to Lemma 6,
by switching from the defender’s to the attacker’s perspective.

Lemma 7. If σ = 〈d,a〉 and σ′ = 〈d′,a′〉 are two NE pro-
files, then a′ is a best-response to d.

The interchange property follows from Lemmas 6 and 7.

Theorem 8. If σ = 〈d,a〉 and σ′ = 〈d′,a′〉 are two NE
profiles in a security game with multiple attacker resources,
then 〈d′,a〉 and 〈d,a′〉 are also NE profiles in that game.

3.4 Experimental Results
We now show experimental results for our implementation of
the algorithm (Figure 3). For given |T |, nd, na, we randomly
draw uua and ucd from {1, . . . , 100}, and then we randomly
draw uca from {0, . . . , uua − 1} and uud from {0, . . . , ucd − 1}.
Each data point averages over 20 games. As a sanity check,
our implementation verified that the strategies computed for
each game did constitute a Nash equilibrium. The quadratic
runtime of the algorithm is reflected in the experimental re-
sults. We note that the numbers of pure strategies for the
players are

(|T |
nd

)
and

(|T |
na

)
, so any alternative algorithm that

is based on writing out the normal form is doomed to expo-
nential space (and hence, time) requirements. The time to
compute the

(|T |
nd

)
×
(|T |
na

)
utility matrix of the normal-form

game for nd = na = 10 is shown in Figure 3 with a dashed
line. We can see that our algorithm scales well in the number
of targets and attacker resources.

4 NP-Hardness of Computing Stackelberg
Strategies

We now turn to the problem of computing a defender Stack-
elberg strategy. d is an optimal mixed strategy to commit to
or Stackelberg strategy for the defender if there exists some
a that is a best response to d such that for any alternative
strategies 〈d′,a′〉, where a′ is a best response to d′, we have
ud(d,a) ≥ ud(d′,a′).

0

0.2

0.4

0.6

0.8

0 100 200 300

ti
m

e
(s

)

|T|

Figure 3: Solid lines: time to compute NE as a function of
|T |, for na = nd = 10, . . . , 70. Dashed line: time to compute
the normal-form of the game with na = nd = 10.

Theorem 9. In security games with multiple attacker re-
sources, finding an optimal defender Stackelberg strategy is
weakly NP-hard. This holds even when the defender has
only one resource, and the defender’s utility for a target does
not depend on whether she has a resource there (that is,
ucd(t) = uud(t) for all t).12

Proof sketch. We reduce an arbitrary knapsack problem
instance—given by k items, where each item j is defined by
a pair (wj , vj), and we are asked if there is a subset S of the
items with

∑
j∈S wj ≤ 1 and

∑
j∈S vj ≥ V—to the follow-

ing game. We construct a game with 2k targets, in which the
defender has one resource and the attacker has k resources.
Targets t1, . . . , tk correspond to the items in the knapsack,
and the utilities are set up as follows for 1 ≤ i ≤ k.

uua(ti) = wi

uca(ti) = wi − 1

ucd(ti) = uud(ti) = −vi
Targets tk+1, . . . , t2k are “dummy” targets, so that for k+1 ≤
i ≤ 2k: uua(ti) = uca(ti) = ucd(ti) = uud(ti) = 0.

Let the vector d represent the defender’s strategy, so that
di is the probability of target ti being covered. If dti ≥ wi

for 1 ≤ i ≤ k, the attacker attacks a dummy target instead of
ti, thus increasing the defender’s utility by vi.

There exists attacker’s pure-strategy best-response to the
defender’s Stackelberg strategy (with ties broken in the de-
fender’s favor) such that the optimal subset S of the items in
the knapsack corresponds to the targets ti with 1 ≤ i ≤ k and
ati = 0. It can be shown that the defender can get a utility of
at least V −

∑k
i=1 vi if and only if the knapsack instance has

a solution (with value at least V).

5 Future Research
Future research can take a number of directions. Can the
algorithm that we presented in this paper be generalized to
richer settings? For example, is it possible to compute Nash

1We have also found a pseudopolynomial-time algorithm (not
presented here) for the special case where uc

d(t) = uu
d(t) for all t.

2Note that this violates the assumption that uc
d(t) > uu

d(t). It is
easy to modify the utilities by ε so that this property holds again and
the reduction still works.

equilibria efficiently in cases where either defender resources
or attacker resources (or both) are heterogeneous? (With het-
erogeneous resources, not every resource can defend/attack
every target. Our work in this paper assumes homogeneous
resources.) Can we efficiently compute them in (restricted)
settings with schedules? (A schedule is a subset of targets
that can be simultaneously defended/attacked by a single re-
source.)

In the extended version of the paper by Yin et al. [9], a
model with uncertainty about whether the attacker can ob-
serve the defender’s commitment has been proposed; setting
this probability of observability to 0 corresponds to the Nash
case, whereas setting it to 1 corresponds to the Stackelberg
case. In follow-up work [4], we have designed an algorithm
that computes a solution for this richer game model, using
Nash and Stackelberg solvers as subroutines. For the case
of multiple attacker resources, the algorithm for computing a
Nash equilibrium that we have given in this paper can be used
as the Nash subroutine; in future research, perhaps an algo-
rithm to compute a Stackelberg strategy can be given that, in
spite of the NP-hardness of the problem proven here, never-
theless runs fast in practice.

Beyond security games, it is interesting to investigate fur-
ther the relationship between Stackelberg strategies and Nash
equilibrium strategies, especially regarding whether they can
be efficiently computed. We now know of settings where
Stackelberg strategies are easier to compute (general two-
player normal-form games) as well as settings where Nash
equilibria are easier to compute (this paper). Is there a general
principle that informs us when each one is easy to compute?

6 Acknowledgements
We would like to acknowledge NSF IIS-0812113, CAREER-
0953756, ARO 56698-CI, and an Alfred P. Sloan Research
Fellowship for support. Any opinions, findings, and conclu-
sions or recommendations in this document are those of the
authors and do not necessarily reflect views of the funding
agencies. We also thank the anonymous reviewers for valu-
able suggestions.

A An Example in Which the Defender’s Nash
Equilibrium Strategy is Different from the
Stackelberg Strategy

Consider the following example game (from the extended
version of Yin et al. [9]) in which the defender’s Nash equi-
librium strategy is different from the defender’s Stackelberg
(SSE) strategy. In this example, the defender has one re-
source, the attacker has two resources, and the utilities are
set up as shown in the following table.

t1 t2 t3
Cov. Uncov. Cov. Uncov. Cov. Uncov.

Def 0 −2 −9 −10 0 −1
Att 5 6 2 4 1 3

In this game, the defender has a unique Nash equilib-
rium strategy and a unique Stackelberg strategy, which can

be computed as follows (quoting the extended version of Yin
et al. [9]):

t1 must be attacked with probability 1. Because
∆ud(t1) = 2 > 1 = ∆ud(t2) = ∆ud(t3), in
NE, this implies that the defender must put her full
probability 1 on t1. Hence, the attacker will attack
t2 with his other resource. So, the unique NE pro-
file is 〈(1, 0, 0), (1, 1, 0)〉.

In contrast, in SSE, the defender’s primary goal
is to avoid an attack on t2, which requires putting
probability at least .5 on t2 (so that the attacker
prefers t3 over t2). This will result in t1 and t3
being attacked; the defender prefers to defend t1
with her remaining probability because ∆ud(t1) =
2 > 1 = ∆ud(t3). Hence, the unique SSE profile
is 〈(.5, .5, 0), (1, 0, 1)〉.

References
[1] X. Chen and X. Deng. Settling the complexity of two-

player Nash equilibrium. In Proceedings of the An-
nual Symposium on Foundations of Computer Science
(FOCS), pages 261–272, 2006.

[2] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In Proceedings of the ACM Con-
ference on Electronic Commerce (EC), pages 82–90, Ann
Arbor, MI, USA, 2006.

[3] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez,
and M. Tambe. Computing optimal randomized re-
source allocations for massive security games. In Pro-
ceedings of the Eighth International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 689–696, Budapest, Hungary, 2009.

[4] D. Korzhyk, V. Conitzer, and R. Parr. Solving Stack-
elberg games with uncertain observability. In AAMAS,
Taipei, Taiwan, 2011.

[5] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe,
F. Ordóñez, and S. Kraus. Playing games for security:
An efficient exact algorithm for solving Bayesian Stack-
elberg games. In AAMAS, pages 895–902, Estoril, Portu-
gal, 2008.

[6] J. Pita, M. Jain, F. Ordóñez, C. Portway, M. Tambe, and
C. Western. Using game theory for Los Angeles airport
security. AI Magazine, 30(1):43–57, 2009.

[7] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordonez, and
M. Tambe. IRIS - a tool for strategic security allocation
in transportation networks. In AAMAS - Industry Track,
pages 37–44, 2009.

[8] B. von Stengel and S. Zamir. Leadership games with
convex strategy sets. Games and Economic Behavior,
69:446–457, 2010.

[9] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and
M. Tambe. Stackelberg vs. Nash in security games: Inter-
changeability, equivalence, and uniqueness. In AAMAS,
pages 1139–1146, Toronto, Canada, 2010.

