Linear Feature Encoding for Reinforcement Learning Supplemental Materials

Zhao Song, Ronald Parr ${ }^{\dagger}$, Xuejun Liao, Lawrence Carin
Department of Electrical and Computer Engineering
${ }^{\dagger}$ Department of Computer Science
Duke University, Durham, NC 27708, USA

1 Proof of Lemma 2

Proof: We start from the linear model solution and proceed as follows:

$$
\begin{aligned}
\mathbf{w} & =\left(I-\gamma P_{\Phi}^{\pi}\right)^{-1} r_{\Phi} \\
& =\left(I-\gamma\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T} P^{\pi} \Phi\right)^{-1}\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T} R \\
& =\left(\Phi^{T} \Phi-\gamma \Phi^{T} P^{\pi} \Phi\right)^{-1} \Phi^{T} R=\mathbf{w}_{\Phi}^{\pi}
\end{aligned}
$$

where the penultimate substitutes the definition of r_{Φ} and P_{Φ}^{π} in (3a) and (3b) of the main text, respectively.

2 Proof of Theorem 3

Proof: The Bellman error in the context of linear value functions can be represented as

$$
\begin{equation*}
\mathrm{BE}\left(\widehat{Q}^{\pi}(s, a)\right)=R(s, a)+\left[\gamma \sum_{s^{\prime}, a^{\prime}} P^{\pi}\left(s^{\prime}, a^{\prime} \mid s, a\right) \Phi\left(s^{\prime}, a^{\prime}\right) \mathbf{w}_{\Phi}^{\pi}\right]-\Phi(s, a) \mathbf{w}_{\Phi}^{\pi} \tag{A1}
\end{equation*}
$$

We proceed to represent (A1) in its corresponding matrix form as

$$
\begin{equation*}
\mathrm{BE}\left(\widehat{Q}^{\pi}\right)=R+\gamma P^{\pi} \Phi \mathbf{w}_{\Phi}^{\pi}-\Phi \mathbf{w}_{\Phi}^{\pi} \tag{A2}
\end{equation*}
$$

Plugging (5) of the main text into (A2), we have

$$
\begin{aligned}
\operatorname{BE}\left(\widehat{Q}^{\pi}\right) & =R+\gamma P^{\pi} \Phi \mathbf{w}_{\Phi}^{\pi}-\Phi \mathbf{w}_{\Phi}^{\pi} \\
& =\left(\Delta_{R}+\Phi r_{\Phi}\right)+\gamma\left(\Delta_{\Phi}^{\pi}+\Phi P_{\Phi}^{\pi}\right) \mathbf{w}_{\Phi}^{\pi}-\Phi \mathbf{w}_{\Phi}^{\pi} \\
& =\Delta_{R}+\gamma \Delta_{\Phi}^{\pi} \mathbf{w}_{\Phi}^{\pi}+\Phi r_{\Phi}-\Phi\left(I-\gamma P_{\Phi}^{\pi}\right) \mathbf{w}_{\Phi}^{\pi} \\
& =\Delta_{R}+\gamma \Delta_{\Phi}^{\pi} \mathbf{w}_{\Phi}^{\pi}+\Phi r_{\Phi}-\Phi\left(I-\gamma P_{\Phi}^{\pi}\right) \mathbf{w} \\
& =\Delta_{R}+\gamma \Delta_{\Phi}^{\pi} \mathbf{w}_{\Phi}^{\pi} .
\end{aligned}
$$

The penultimate step follows from Lemma 2, and the last follows equation (4b) of the main text.

3 Proof of Theorem 7

Proof: Equation (6) of the main text implies that there exist perfect linear predictors of the reward and the expected next state, given $\Phi=A E_{\pi}$. Specifically, we pick $P_{\Phi}^{\pi}=D_{\pi}^{s} E_{\pi}$ and $r_{\Phi}=D_{\pi}^{r}$. Next, we have

$$
\begin{aligned}
\Delta_{\Phi}^{\pi} & =P^{\pi} \Phi-\Phi P_{\Phi}^{\pi}=P^{\pi} \Phi-A E_{\pi} D_{\pi}^{s} E_{\pi} \\
& =P^{\pi} \Phi-P^{\pi} A E_{\pi}=P^{\pi} \Phi-P^{\pi} \Phi=0
\end{aligned}
$$

and

$$
\Delta_{R}=R-\Phi r_{\Phi}=R-A E_{\pi} D_{\pi}^{r}=R-R=0
$$

From Theorem 3, this implies zero Bellman error.

4 Proof of Theorem 8

Proof: Consider an MDP for which the Q and P^{π} are not linear in A. This would be the typical case in which one would wish to use a neural network or other non-linear approximation method. P^{π} can be deterministic so that $P^{\pi} A$ is a matrix of raw encodings of actual states, not mixtures. Assume $k=l$ and pick $\mathcal{E}=P^{\pi}$, i.e., pick a vacuous encoder. (For this example we will ignore the reward because predicting the reward does not change anything.) This implies a vacuous decoder $D=I$. When combined, these predict $P^{\pi} A$. However, Q is not linear in A by assumption and therefore is not linear in $\Phi=\mathcal{E}(A)$ since elements of $\mathcal{E}(A)$ are also elements of A. Therefore, a linear value function using features $\mathcal{E}(A)$ may have nonzero Bellman error.

5 Additional Results

After learning a policy π, we can evaluate V_{π} exactly since there are just 203 states. Subsequently, we have

$$
\text { Actual return }=\sum_{s} V_{\pi}(s) b_{0}(s)
$$

where b_{0} corresponds to a uniform distribution. Figure A1 shows the actual returns for different algorithms, where the "optimal" curve is obtained by solving the MDP.

Figure A1: Actual return as a function of the number of training episodes, in the Blackjack problem.

