Point-Based Policy Iteration

Shihao Ji, Ronald Parrf, Hui Li, Xuejun Liao, and Lawrence Carin
Department of Electrical and Computer Engineering
fDepartment of Computer Science
Duke University
Durham, NC 27708-0291

Abstract

We describe a point-based policy iteration (PBPI) algo-
rithm for infinite-horizon POMDPs. PBPI replaces the
exact policy improvement step of Hansen's palicy iter-
ation with point-based value iteration (PBV1). Despite
being an approximate algorithm, PBPI is monotonic:
At each iteration before convergence, PBPI produces
a policy for which the values increase for at least one
of a finite set of initial belief states, and decrease for
none of these states. In contrast, PBVI cannot guaran-
tee monotonic improvement of the value function or the
policy. In practice PBPI generally needs alower density
of point coverage in the simplex and tends to produce
superior policies with less computation. Experiments
on several benchmark problems (up to 12,545 states)
demonstrate the scalability and robustness of the PBPI
algorithm.

Introduction

Point based algorithms, such as PBVI (Pineau, Gordon, &
Thrun 2003) and Perseus (Spaan & Vlassis 2005), have be-
come popular in recent years as methods for approximating
POMDP policies. Point based algorithms have the compu-
tational advantage of approximating the value function only
at a finite set of belief points. This permits much faster
updates of the value function compared to exact methods,
such as the witness algorithm (Kaglbling, Littman, & Cas-
sandra 1998), or incremental pruning (Cassandra, Littman,
& Zhang 1997), which consider the entire belief simplex.

While it is possible to establish error bounds for point
based agorithms based upon the density of point coverage
in the belief simplex, such results are typically too loose to
be of practical significance. For large state-space POMDP
problems, it is often infeasible to maintain a high density of
point coverage over the entire belief simplex. Thus, coarsely
sampled belief points in high-dimensional space can often
result in large approximation error relative to the true value
function.

In this paper we propose a point-based policy iteration
(PBPI) algorithm. By replacing the exact policy improve-
ment step of Hansen's policy iteration (Hansen 1998) with
PBVI (Pineau, Gordon, & Thrun 2003), PBPI integrates the

Copyright (©) 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fast convergence of policy iteration and the high efficiency
of PBVI for policy improvement. The resulting PBPI ago-
rithm typically requires fewer iterations (each iteration in-
cludes a policy evaluation step and a PBVI policy improve-
ment step) to achieve convergence vis-a-vis PBVI alone.
Moreover, PBPI is monotonic: At each iteration before con-
vergence, PBPI produces a policy for which the values in-
crease for at least one of afinite set of initial belief states,
and decrease for none of these states. In contrast, PBVI can-
not guarantee monotonic improvement of the value function
or the policy. In practice PBPI generally needs alower den-
sity of point coverage in the simplex and tends to produce
superior policieswith less computation. We al so discusstwo
variants of PBPI in which some of the properties of PBPI
are relaxed. This allows a further study of the impact of
monotonicity and policy evaluation on the performance of
POMDP agorithms.

POMDP Review

Partially observable Markov decision processes (POMDPs)
provide a rigorous mathematica model for planning un-
der uncertainty (Smallwood & Sondik 1973; Sondik 1978;
Kaelbling, Littman, & Cassandra 1998). A POMDP is de-
fined by a set of states S, a set of actions A, and a set of
observations Z. At each discrete time step, the environ-
ment is in some state s € S; an agent takes action a € A
from which it derives an expected reward R(s,a). As a
consequence, the environment transits to state s’ € .S with
probability p(s’|s,a), and the agent observes z € Z with
probability p(z|s’,a). The goa of POMDP planning is to
find a policy that, based upon the previous sequence of ac-
tions and observations, defines the optimal next action, with
the goal of maximizing the discounted reward over a spec-
ified horizon. In this paper we consider an infinite horizon
ooV R(se, ar), wherey €[0,1) isadiscount factor.
While the states cannot be observed directly, if the agent
has access to the (correct) underlying model, it can maintain
an internal belief state for optimal action selection. A belief
state, denoted b, is a probability distribution over the finite
set of states, .S, with b(s) representing the probability that
the environment is currently in state s and > ¢ b(s) = 1.
It is well known that the belief state is a sufficient statistic
for a given history of actions and observations (Smallwood
& Sondik 1973), and it is updated at each time step by in-

corporating the latest action and observation via Bayesrule:

(215", @) T e P15, a)D(5)
p(2lb. a) @

where b7 denotes the belief state updated from b by taking
action a and observing z.

The dynamic behavior of the belief state is itself a
discrete-time continuous-state Markov process (Smallwood
& Sondik 1973), and a POMDP can be recast as a com-
pletely observable MDP with a (|.5| — 1)-dimensional con-
tinuous state space /\. Based on these facts, severa ex-
act algorithms (Kaelbling, Littman, & Cassandra 1998;
Cassandra, Littman, & Zhang 1997) have been developed.
However, because of exponential worst cast complexity,
these algorithms typically are limited to solving problems
with low tens of states. The poor scalability of exact al-
gorithms has led to the development of a wide variety of
approximate techniques (Pineau, Gordon, & Thrun 2003;
Poupart & Boutilier 2003; Smith & Simmons 2005; Spaan
& Vlassis 2005), of which PBVI (Pineau, Gordon, & Thrun
2003) proves to be a particularly ssimple and practical algo-
rithm.

bils) = -

Point-Based Value Iteration

Instead of planning on the entire belief simplex A, as exact
value iteration does, point-based algorithms (Pineau, Gor-
don, & Thrun 2003; Spaan & Vlassis 2005) aleviate the
computational load by planning only on afinite set of belief
points B. They utilize the fact that most practical POMDP
problems assume an initial belief by, and concentrate plan-
ning resources on regions of the simplex that are reachable
(in simulation) from by. Based on this idea, Pineau et al.
(2003) proposed a PBVI algorithm that first collects a finite
set of belief points B by forward simulating the POMDP
model and then maintains a single gradient («-vector, in
POMDP terminology) for each b € B. Thisis summarized
in Algorithm 1 (without the last two lines).

Algorithm 1. Point-based backup
function T" = backup(T', B)
%I isaset of a-vectors representing value function
I'=0
foreachbe B
af = argmax,er o - b2, foreveryac A, ze Z
0a(s) = R(s,0) +7 Y, o p(s']s, a)p(z]s’, a)az (),
o' =argmax(s,1,c, Qa - b
ifo/ ¢ IV, thenT” — I + &/, end
end
% Thefollowing two lines are added for modified backup
A=all a el that are dominant at least at one b,

I"'=T"+A

Hansen’s Policy Iteration

Policy iteration (Sondik 1978; Hansen 1998) iterates over
policies directly, in contrast to the indirect policy repre-
sentation of value iteration. It consists of two interacting

processes, one computing the value function of the current
policy (policy evaluation), and the other computing an im-
proved policy with respect to the current value function (pol-
icy improvement). These two processes alternate, until con-
vergence is achieved (close) to an optimal policy.

Policy Evaluation Hansen (1998) represents the policy
in the form of a finite-state controller (FSC), denoted by
T = (N,), where N/ denotes a finite set of nodes (or ma-
chine states) and £ denotes a finite set of edges. Each ma-
chine state n € V' is labeled by an action a € A, each edge
e € £ by an observation z € Z, and each machine state has
one outward edge per observation. Consequently, a policy
represented in this way can be executed by taking the action
associated with the “current machine state”, and changing
the current machine state by following the edge labeled by
the observation made.

As noted by Sondik (1978), the cross-product of the en-
vironment states S and machine states A/ constitutes afinite
Markov chain, and the value function of policy = (repre-
sented by a set of a-vectors, with one vector corresponding
to one machine state) can be calculated by solving the fol-
lowing system of linear equations:

an(s)=R(s,a(n)+7Y_p(s'ls, a(n))p(zls’, a(n))afin - (") ()

where n € A is the index of a machine state, a(n) is the
action associated with machine state n, and i(n, z) is the
index of its successor machine state if z is observed. Asa
result, the value function of 7 can be represented by a set of
\W|vectorsT'y = {af,af, -, afy,}, such that

V7™ (b) = maxger, - b

Policy Improvement The policy improvement step of
Hansen’s policy iteration involves dynamic programming to
transform the value function V™ represented by I',; into an
improved value function represented by another set of a-
vectors, I';-. As noted by Hansen (1998), each a-vector
in ' has a corresponding choice of action, and for each
possible observation choice of an a-vector in I'.. Thisin-
formation can be used to transform an old FSC 7 into an
improved FSC =’ by a simple comparison of I",; and T';/.
A detailed procedure for FSC transformation is presented in
Algorithm 2 when we introduce the PBPI algorithm, since
PBPI shares the structure of Hansen's algorithm and has the
same procedure for FSC transformation.

Point-Based Policy Iteration
Our point-based policy iteration (PBPI) algorithm aims to
combine some of the most desirable properties of Hansen's
policy iteration with point-based value iteration. Specifi-
caly, PBPI replaces the exact policy improvement step of
Hansen's algorithm with PBVI (Pineau, Gordon, & Thrun
2003), such that policy improvement is concentrates on a
finite sample beliefs B. This algorithm is summarized be-
low in Algorithm 2, with the principal structure shared with
Hansen's algorithm. There are two important differences
between PBPI and Hansen's agorithm: (1) In PBPI, the
backup operation only applies to the points in B, not the

entire ssimplex, which means that (2) the final pruning step
can remove machine states that are unreachable for starting
belief statesnot in B.

Algorithm 2. Point-based policy iteration
function 7 = PBPI (g, B)
% 7o isaninitia finite-state controller
' =71 =mp;
do forever
% Policy Evaluation
Compute 'z = {af, a3, ,af |} that represents
the value function of 7 by (2);
% Policy Improvement
I = backup(I's, B);
% FSC Transformation: m — 7’
for each o/ €T,

i. If the action and successor links associated with
o' are the same as those of a machine state al-
ready in 7, then keep that machine state un-
changed in 7’;

ii. Elseif the vector o/ pointwise dominates an «
associated with amachine state of 7, changethe
action and successor links of that machine state
to those that correspond to o’ (If o’ pointwise
dominates the «-vectors of more than one ma-
chine state, they can be combined into a single
machine state.);

iii. Elseadd amachinestateto 7’ that hasthe action
and successor links associated with o/;

end

Prune any machine state for which there is no corre-

sponding vector in IV, aslong asit is not reachable

from a machine state to which an a-vector in I does

correspond;

T =7

if |T£\ > e V7 (b) converges, then return 7, end
end

Selection of Belief Set B The selection of a finite set of
belief points B is crucia to the solution quality of PBVI
and PBPI. Both agorithms generate the sample belief set
by forward simulating the POMDP model. Let By = {bo}
be the set of initial belief points at time ¢t = 0. For time
t=1,2,---, let B, bethe set of all possible bZ produced by
(),vbe B4,V aeA VY ze Z, such that p(z]b,a) > 0.
Then Ug2B;, denoted A, is the set of belief points reach-
able by the POMDRP . It is therefore sufficient to plan only
on these reachable beliefs in order to find an optimal policy
customized for the agent that startsfromany be A, since A
constitutes a closed inter-transitioning belief set.

The reachable belief set A may still be infinitely large.
We thus obtain a manageable belief set by sampling A with
a heuristic technique that encourages sample spacing. We
recursively expand the belief set B viathe following proce-
dure, starting with the initial belief set B = {by}. For every
b€ B, we draw a sample z according to p(z|b, a) for every
a € A. We thus obtain | A| new belief points b,,, each gener-

ated by adifferent a. We select asingle belief b} from these
new beliefs that has the maximum I, distance to the current
B and add itinto B only if its I, distance is beyond a given
threshold e.

The above procedure is similar to the one introduced by
Pineau et al. (2003) when ¢ = 0. When ¢ = 0 the sample
belief set B can grow so quickly that it often collects mostly
belief points that are only afew simulation steps awvay from
bo. A larger value of e tends to collect belief points that
are further away from by and yields a more uniform point
coverage over the reachable belief set A.

Convergence and Error Bounds The proposed PBPI al-
gorithm, despite being an approximate method, inherits
many desirable properties of Hansen’s policy iteration and
point-based value iteration. For example, each iteration of
PBPI adds at most |B| new machine states to an FSC, as
compared to | A||N|I#! that could be produced by Hansen's
algorithm. In addition, we provide the following set of the-
orems to address PBPI’s other properties.

Theorem 1. At each iteration before convergence, PBPI
produces a policy for which the values increase for at least
one b € B and decreases for no b € B, while this is not
guaranteed for PBVI.

Proof. We consider Algorithm 2 in four steps: (1) policy
evaluation, (2) backup, (3) policy improvement, and (4)
pruning. In step (1) policy evaluation computes the exact
value of the policy . The backup step (2) can be viewed
asintroducing a new set of machine states with correspond-
ing a-vectors stored in I, By construction, each new state
and corresponding a-vector represent an action choice fol-
lowed by an observation-conditiona transition to machine
states in w. Moreover, each a € T", is the optimal such
choice for some b € B, given 7. The policy improvement
step (3) transforms states from 7 to «’ by replacing states
in 7 that are strictly dominated by the new states generated
by the backup. Finally, the pruning in step (4) eliminates
states which are not reachable from some b € B and, there-
fore, cannot cause areduction inthevalue of startinginthese
states.

PBVI maintainsonly asingle a-vector for each b€ B, and
the value function of PBVI may decrease at some belief re-
gion after each point-based backup (see Fig. 1(b)). Further,
because of the non-uniform improvement of the value func-
tion, PBVI may actually have reduced values at some b € B.
This arises when b transits to a b7 that happens to be in the
belief region that has the reduced value (see Fig. 1(b)). This
is likely to happen in practice, especially when the sample
belief set isvery sparse in the belief simplex. O

Theoriginal PBVI paper (Pineau, Gordon, & Thrun 2003)
introduced the notion of a pruning error as a way of an-
alyzing the error introduced by PBVI's failure to generate
a full set of a-vectors. (Vectors not generated are implic-
itly pruned.) The pruning error measures the suboptimal-
ity of PBVI in comparison to a complete POMDP value
iteration step. To understand the difference between the
implicit pruning steps done by these algorithms, we ig-
nore the policy evaluation step of PBPI, and focus on the

belief region that
has reduced value

) 3 3

3

Figure 1: Example value functions of PBVI and PBPI. (a) point-based backup, where the solid lines represent the original
a-vectors, and the dash lines represent the backed-up «-vectors; (b) the PBVI backed-up value function (solid thick lines); (c)

the PBPI backed-up value function (solid thick lines).

backup and policy improvement steps, assuming that both
algorithms start with the same I" as input. PBVI computes
I'PBVI — packup(T', B) and discards I', while PBPI uses
rPBPL — pPBVI T inits policy improvement step. Thus
PBPI, can be viewed as drawing upon a larger set of a-
vectors, and having lessimplicit pruning. Thisanalysisonly
shows that PBPI does less implicit pruning than PBVI; it
does not quantify the effects of the policy evaluation step.
Note that the pruning implicit in the failure to do a compl ete
value iteration step is different from the pruning of inferior
or unreachable FSC statesin Algorithm 2.

Theorem 2. The pruning error introduced in PBPI is
no larger smaller than that of PBVI and is bounded by:

PBPI PBVI Rz —Rmin i i-
Nprune < Mprane < —245—=cp, Where ez is the maxi

mum distance fromany b€ A to B.

Proof. Let & € A be the point where PBVI makes its
worst pruning error, and o’ (generated by full value iter-
ation) be the vector that is maximal at . Let 7BV
and TPBPI pe the set of a-vectors whose upper surfaces
form the PBVI and PBPI value functions, respectively. By
erroneously pruning o/, PBVI makes an error of at most

nﬁﬁxg = o - b — max,crrevr o - b and PBPl makes

an error of at most n 501 = of - b — max,erpsrra- V.
&)1

PBPI 1 41 ,
Nprune = & * b — max,crpPBPI &+ b

ro PBVI — PBPI
< d b —maxgerpvia-l, r cr

_ PBVI _ Riae — Rimnin
Mprune = 1_ ~

Thelast inequality is from Pineau et al. (2003). O

€B

Algorithm Complexity It is known that PBVI has atime
complexity of O(|B||S||A||Z||T|) for the ¢-th iteration
(Pineau, Gordon, & Thrun 2003). In the case of the PBV1 al-
gorithm, the size of I";,_; isbounded by | B|. Thus, PBVI has
aconstant time complexity of O(| B|?|S||A||Z|) at eachiter-
ation. But for PBPI each iteration could add at most | B| new
machine states to an FSC, and the size of I";_; could be up
to (t—1)|B|. Thus, the policy improvement step of PBPI has
aworst-case time complexity of O(¢|B|?|S]||A||Z[), which
is linear with respect to the number of iterations. In addi-
tion, PBPI has the policy evaluation step and the FSC trans-
formation step that costs extra time over PBVI. The policy
evaluation step could potentially be quite expensive, asit re-
quires solving a large system of linear equations. We take
advantage of two facts about the system solved by PBPI to

avoid thisexpense: (1) The systemissparse and (2) Theval-
ues of many FSC states are often close to their values at the
previous iteration of policy iteration. In such cases, it can
be advantageous to solve the system indirectly via iterative
updates. If the maximum out degree of the FSC statesis S,
and the number of iterations to achieve acceptable precision
is bounded by &, then the computational complexity for the
indirect policy evaluation step is O(kt| B||S|S,|Z]), where
So|Z| is the maximum number of non-zero coefficients for
any variable in the linear system. Policy iteration with an
indirect evaluation step is often termed modified policy iter-
ation (Puterman & Shin 1978).

As demonstrated in the experiments that follow, PBPI’s
extracost per iteration is compensated for intwo ways. First,
PBPI typically requires a much smaller B to achieve good
performance than does PBVI. Second, PBPI can require
fewer iterations to achieve convergence relative to PBVI.
Thus, when initialized with a smaller belief set than PBVI,
PBPI typically has a favorable performance profile, achiev-
ing higher quality policies with less computation.

Algorithm Variants

To further study of the impact of monotonicity and policy
evaluation on the performance of POMDP agorithms, we
relax some of the properties of PBPI in this section, and in-
troduce two wesker variants.

PBVI2 Intuitively, the monotonicity of PBPI would seem
to play an important role in its experimental performance,
since it guarantees a steadily improving policy values on
b € B. Itisnatura to ask if aless complicated modification
to PBVI would suffice. To study this, we modified PBVI to
enforce monotonicity of the value function over the sample
belief set B. Following the examplein Fig. 1(b), it is appar-
ent that the value of some b € B could decrease if a belief
state reachable from b is in the region of reduced value. To
guarantee monotonicity, the a-vectors from the previous it-
eration are preserved if they are dominant for at least at one
b),V bEB,V z€ Z. In effect, this creates a sliding win-
dow of «-vectors that covers two iterations of PBVI. This
change, summarized in the last two lines of Algorithm 1,
is sufficient to ensure monotonicity over the sample belief
set B at a computational cost of no more than twice that of
original the PBVI. We call this change PBV12. This change
does not guarantee monotonically improving policy values,
since the value function produced is not necessarily the exact
value of any particular policy.

Table 1: Properties of PBPI and its variants.

Method | Policy Evaluation | Policy Improvement Monatonicity Policy Size

PBPI overb e A overbe B V7™ (b) forb € B | increased by | B| (worst case)
PBPI2 overbe B overbe B V(b) forbe B | aamost |B||A]|Z

PBVI2 N/A overbe B V(b)forb e B | atmost |B||A]|Z

PBVI N/A overbe B no guarantee at most | B

PBPI2 Another natural question to ask is whether thereis
some way to implement a monotonic form of policy iter-
ation without the increase in the policy representation size
incurred by PBPI. Toward this end, we introduce PBPI2,
which uses PBVI2 for its policy improvement step, and a
modified version of PBVI2 for a monotonic, point-based,
policy evaluation step. PBPI2 represents the policy explic-
itly as w(b) = a,V b € B, where B is afinite set of sample
beliefs. In the policy evaluation step, the value function of 7
is estimated by:

VT ()= R(s, m(b)b(s)+7)_p(z|b, w(b)) V7 (b),

seS z€Z
V b€ B, which can be solved iteratively in a similar way to
PBV 2 without the max operation, producing | B| «-vectors.
Thepolicy evaluation step for PBPI2, called point based pol-
icy evaluation is summarized in Algorithm 3. For policy im-
provement, PBPI2 performsasingleiteration of PBVI2, and
stores the action choices from this iteration in anew 7. As
with PBVI12, PBPI2 cannot guarantee monotonicity in the
actual policy values since the policy evaluation step is not
exact.

Algorithm 3. Point-based policy evaluation
function I'" = pbpe(r, T, B)
% 7 is apoint-based policy
do forever
I'=90
foreachbe B
a = m(b)
af = argmaXaer o - b2, forevery z€ 7
o/ (s)=R(s,a) +73, o p(s']s,a)p(z]s', a)ag(s)
ifo/ ¢ T/, thenT” — I" + &/, end
end
A =dl aeT that are dominant at least at one bfr(b)
I'=T'+A
if ﬁ > e V' (b) converges, then return IV, end
r=r’
end

We summarize the properties of PBPI and its variantsin
Table 1.

Experimental Results

Scalability of PBPI To illustrate the scalability and the
solution quality of PBPI, we test PBPI on four benchmark
problems: Tiger-grid, Hallway2, Tag-avoid and the Rock-
Sample problems. Thefirst three are among the most widely

used benchmarks, and thelast oneisrelatively new andisin-
troduced by Smith & Simmons (2004). This problem can be
scaled to an arbitrary size. We test PBPI on domains up to
12,545 states, a limit imposed by available memory in our
current Matlab installation.

PBPI is compared to four other state-of-the-art POMDP
algorithms: PBVI (Pineau, Gordon, & Thrun 2003), Perseus
(Spaan & Vlassis 2005), HSVI (Smith & Simmons 2004;
2005) and BPI (Poupart & Boutilier 2003). In the ex-
periments, the belief set B used in PBPI was generated
by setting e = 0.6 and expanding B until it reached the
specified size. We terminate PBPI when the change in
> e V(0)/|B| between two consecutive iterations is be-
low 1% of the change between theinitial and the current iter-
ation. Because of the randomness of PBPI (i.e., the selection
of belief points for B), we execute PBPI 10 times for each
problem using different random seeds, and produce average
performance. To test the quality of the learned PBPI policy,
we measure the expected reward by the sum of discounted
rewards averaged on multiple runs, with the parameter-
setting consistent with those used in previous work.

The experimental results are summarized in Table 2. For
the four benchmark problems considered, PBPI achieves ex-
pected reward competitive with (or higher than) the other al-
gorithms while using a significantly smaller | B| and much
less computation time in all cases except some HSVI2 in-
stances. The improvements manifested by PBPI are most
marked on large domains, such as Tag-avoid and RockSam-
ple. We acknowledge that several aspects of this comparison
are unfair in various ways. Our code was implemented in
Matlab and run on a new computer, while the results from
earlier papers are from older computers running (to the best
of our knowledge) C implementations. HSVI2 is known
to be a highly optimized C program, while PBPI is imple-
mented fairly straightforward Matlab.

For a fairer comparison, we aso implemented the PBVI
algorithm ourselves, using the same code used in the pol-
icy improvement step of PBPI, and tested on the same belief
set and the same convergence criterion used by PBPI. The
corresponding solution quality has different levels of degra-
dation compared to that of PBPI. An intuitive explanation
of the weaker performance of PBVI is that when planning
only on a small belief set B, the size of the PBVI policy is
bounded by |B|, which may not be enough to express the
solution complexity required, while PBPI can add new ma-
chine states (equivalently, «-vectors) as needed. In other
words, PBVI must rely upon the set of beliefsto encode his-
tory information, while PBPI can encode history informa-
tion in the automaton that it produces.

For PBPI, we include runs with two different size sets of
initial belief points, as shown in the rightmost column. The
reason for this is to show that PBPI can outperform essen-
tially al competitorsin both time and solution quality when
using a small initial belief set. When using a larger initia
belief set, PBPI takes more time, but produces even better
policies.

Table 2. Results on benchmark problems. Results marked ()
were computed by us using Matlab (without C subroutines) run on
a 3.4GHz Pentium 4 machine.

Method Reward Time (s) T |B|
Tiger-grid |S| = 36, |A| =5, |Z| = 17

PBVI (Pineau et al. 2003) 225 3448 nv. 470
Perseus (Spaan & Vlassis 2005) 234 104 134 1000
HSVI1 (Smith & Simmons 2004) 2.35 10341 4860 nv.
HSVI12 (Smith & Simmons 2005) 2.30 52 1003 n.v.
BPI (Poupart 2005) 2.22 1000 120 na
PBVI (x) 2.05 7 130 135
PBPI () 2.08 14 1739 90
PBPI (x) 224 51 3101 135
Hallway2 | S| = 92, |A| =5, |Z| = 17

PBVI (Pineau et al. 2003) 034 360 n.v. 95
Perseus (Spaan & Vlassis 2005) 0.35 10 56 1000
HSVI1 (Smith & Simmons 2004) 0.35 10010 1571 nwv.
HSVI12 (Smith & Simmons 2005) 0.35 15 114 n.v.
BPI (Poupart 2005) 0.32 790 60 n.a
PBVI (%) 0.33 1.9 20 20
PBPI () 0.34 18 171 10
PBPI (x) 0.35 31 320 20
Tag-avoid |S| = 870, |[A| =5, |Z] = 30

PBVI (Pineau et al. 2003) -9.18 180880 nv. 1334
Perseus (Spaan & Vlassis 2005) -6.17 1670 280 10000
HSVI1 (Smith & Simmons 2004) -6.37 10113 1657 n.v.
HSVI12 (Smith & Simmons 2005) -6.36 24 415 n.v.
BPI (Poupart 2005) -6.65 250 17 na
PBVI (%) -1259 724 198 300
PBPI (x) -6.54 365 485 100
PBPI (%) -5.87 1133 818 300
RockSample[5,7] | S| = 3201, |[A| = 12,|Z| =2

HSVI1 (Smith & Simmons 2004) 231 10263 287 n.v.
PBVI (*) 181 8494 539 800
PBPI (x) 241 2835 1045 400
PBPI (x) 245 8743 1858 800

RockSample[7,8] | S| = 12545, |A| = 13, |Z| =2
HSVI1 (Smith & Simmons 2004) 15.1 10266 94 nv.

HSVI2 (Smith & Simmons 2005) 20.6 1003 2491 nw.
PBVI (%) 12.9 43706 351 500
PBPI (x) 208 11233 585 200
PBPI () 21.2 29448 1257 500

n.a. = not applicable n.v. = not available

Robustness and Performance Profiles of PBPI To ex-
amine the robustness and scaling of the PBPI algorithm,
we compare the performance of PBPI against PBVI with
increasing |B|. Again, the belief set B was generated by
setting e = 0.6 and expanding B until it reached the spec-
ified size. We execute the PBPI agorithm 10 times, and
produce average performance. The experimental results on
RockSample[7,8] are provided in Fig. 2. Figure 2(a) shows
the mean and the range of the expected rewards over 10 ran-
dom runs. PBPI typically requires much fewer belief points
than PBV1 for comparable solution quality, and the solution

of PBPI is more robust, as the variances on the PBPI re-
sults are significantly smaller than that of PBVI. Although
each iteration of PBPI is more expensive than that of PBVI,
PBPI typicaly requires much fewer iterations to converge.
Thus, the final computation time for PBPI and PBVI are
comparable on a given belief set. Considering PBPI needs
much fewer belief pointsthan PBV I for comparable solution
quality, PBPI is more efficient than PBVI per unit time, as
demonstrated in Fig. 2(b). Space does not permit reporting
this performance profile for each of the benchmark prob-
lems, but the results reported in this section are representa-
tive. The two PBPI entriesin Table 2 are intended to repre-
sent two points on the performance profile for PBPI for each
of the sample problems.

Variants of PBPI Inthelast experiment, we compared the
performance of PBPI, PBPI2 and PBV12 with an increasing
number of belief points | B| on the Tag-avoid problem, with
the results shown in Fig. 3 averaged on 10 random redliza-
tions. This experiment is designed to study the impact of
monotonicity and policy evaluation on the performance of
POMDP algorithms. Figure 3(a) demonstrates the superior
solution qualities of PBPI and its variants over that of PBVI.
This may be explained by the monotonicity of different al-
gorithms. PBPI guarantees improved policies, while PBPI2
and PBV12 ensure only monotonic approximate value func-
tions, and there is no guarantee at al for PBVI. Figure 3(b)
shows the computation time of the different algorithms with
increasing | B|. In this case, PBPI2 has the smallest compu-
tation time. This is consistent with the conventional obser-
vation that policy iteration converges faster than value itera-
tion. Further, because PBPI2 uses a less expensive, approx-
imate policy evaluation step and a smaller policy represen-
tation, PBPI2 is faster than PBPI for a given |B|. A more
fair comparison is given in Fig. 3(c), in which the solution
quality iscompared along with increasing computation time.
Inthis case, PBPI isthe most efficient algorithm considered,
per unit time. Theseresultsare typical of results on the other
benchmark problems.

Related Work

Since the appearance of Hansen's policy iteration, several
algorithms have been proposed along the line of policy iter-
ation for searching in the policy space represented by finite-
state controllers. All the algorithms are approximate policy
iteration in order to alleviate the computation load of the ex-
act policy iteration. In particular, Hansen's heuristic search
policy iteration (Hansen 1998) replaces the exact policy im-
provement with a heuristic search algorithm and updates the
FSC asthe exact policy iteration does, Meuleau et al. (1999)
use gradient ascent (GA) to directly search for a stochastic
policy represented by an FSC of bounded size, even though
this approach is prone to be trapped in local optima; more
recently, Poupart et al. (2003) proposed a bounded policy it-
eration (BPI) algorithm, which finds a stochastic policy rep-
resented by an FSC of bounded size (via linear program-
ming) and avoids obvious local optima by adding one ma-
chine state at each iteration. Our PBPI algorithm is more
related to Hansen's heuristic search policy iteration in the

Figure 2: Performances of PBPI and PBV1 on RockSample[7,8] along with (a) an increasing | B|, and (b) computation time.

4000
3500
3000

Z 2500

g
= 2000

Reward

1500

1000

500

Reward

14 —e—PBPI
—e—PBPI2
15 PBVI2
—>—PBVI

1B

100 200 300 400 500 600 700 800 900 1000 0 500 1000 1500 2000 2500 3000 3500 4000 4500
B|

Time (s)

Figure 3: Performances of PBPI and its variants on Tag-avoid, with the comparison made in terms of (&) solution quality, (b)

computation time, and (c) solution quality in a given time.

sense that both methods focus on deterministic FSCs and
replace the expensive exact policy improvement step with
approximate algorithms.

Conclusions

We have proposed a point-based policy iteration (PBPI) a-
gorithm for infinite-horizon POMDPs. PBPI integrates the
fast convergence of policy iteration and the high efficiency
of PBVI for policy improvement, guaranteeing improved
policies a each iteration. Experiments on severa bench-
mark problems demonstrate the scalability and robustness of
the proposed PBPI agorithm. One possible area for future
work would be to use the HSVI (Smith & Simmons 2005)
heuristic to choose belief points for PBPI.

Acknowledgments

The authors wish to thank the anonymous reviewersfor their
constructive suggestions, and M. Spaan and N. Vlassis for
sharing their Matlab POMDP file parser online. This work
was supported in part by the Sloan foundation, and by NSF
I1S award 0209088. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

References
Cassandra, A. R.; Littman, M.; and Zhang, N. 1997. Incremental
pruning: A simple, fast, exact method for partialy observable
Markov decision processes. In UAI 13, 54-61.
Hansen, E. A. 1998. Solving POMDPs by searching in policy
space. In UAI 14, 211-219.

Kaelbling, L. P; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic domains.
Artificial Intelligence 101:99-134.

Meuleau, N.; Kim, K. E.; Kaelbling, L. P; and Cassandra, A. R.
1999. Solving POMDPs by searching the space of finite policies.
In UAI 15, 417-426.

Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. In I1JCAI, 1025—
1032.

Poupart, P, and Boutilier, C. 2003. Bounded finite state con-
trollers. In NIPS 16.

Poupart, P. 2005. Exploiting structure to efficiently solve large
scale partially observable Markov decision processes. Ph.D. Dis-
sertation, University of Toronto, Toronto.

Puterman, M. L., and Shin, M. C. 1978. Modified policy iteration
algorithms for discounted Markov decision problems. Manage-
ment Science 24(11).

Smallwood, R. D., and Sondik, E. J. 1973. The optimal control
of partially observable Markov processes over a finite horizon.
Operations Research 21(5):1071-1088.

Smith, T., and Simmons, R. 2004. Heuristic search valueiteration
for POMDPs. In UAI 20.

Smith, T., and Simmons, R. 2005. Point-based POMDP algo-
rithms: Improved analysis and implementation. In UAI 21.

Sondik, E. J. 1978. The optimal control of partially observable
Markov processes over the infinite horizon: Discounted costs.
Operations Research 26(2):282-304.

Spaan, M., and Vlassis, N. 2005. Perseus. Randomized point-
based value iteration for POMDPs. Journal of Artificial Intelli-
gence Research 24:195-220.

