An Analysis of Linear Models, Linear Value-Function Approximation, and
Feature Selection for Reinforcement Learning

Ronald Parr*

Lihong Li'

Gavin Taylor*

Christopher Painter-Wakefield*
Michael L. Littman’

PARR @ CS.DUKE.EDU
LIHONG @ CS.RUTGERS.EDU
GVTAYLOR @CS.DUKE.EDU
PAINTO07 @CS.DUKE.EDU
MLITTMAN @ CS.RUTGERS.EDU

*Department of Computer Science, Duke University, Durham, NC 27708 USA
TDepartment of Computer Science, Rutgers University, Piscataway, NJ 08854 USA

Abstract

We show that linear value-function approxima-
tion is equivalent to a form of linear model ap-
proximation. We then derive a relationship be-
tween the model-approximation error and the
Bellman error, and show how this relationship
can guide feature selection for model improve-
ment and/or value-function improvement. We
also show how these results give insight into the
behavior of existing feature-selection algorithms.

1. Introduction

Broadly speaking, there are two types of reinforcement-
learning (RL) algorithms: model-free and model-based al-
gorithms. Model-free approaches typically use samples to
learn a value function, from which a policy is implicitly de-
rived. In contrast, model-based approaches build a model
of system behavior from samples, and the model is used to
compute a value function or policy. Both approaches have
advantages and disadvantages, and function approximation
can be applied to either, to represent a value function or a
model. Examples of function approximators include deci-
sion trees, neural networks, and linear functions.

The first contribution of this paper shows that, when linear
value-function approximation is used for policy evaluation
as in nominally model-free approaches such as linear TD
learning (Sutton, 1988) or LSTD (Bradtke & Barto, 1996),
the value function is precisely the same as the value func-
tion that results from an exact solution to a corresponding
approximate, linear model, where the value function and
linear model are defined over the same set of features.

This insight results in a novel view of the Bellman error

Appearing in Proceedings of the 25" International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

and a deeper understanding of the problem of feature selec-
tion when linear function approximation is used. Specifi-
cally, we show that the Bellman error can be decomposed
into two types of errors in the learned linear model: the re-
ward error and the feature error. This decomposition gives
insight into the behavior of existing approximation tech-
niques, suggests new views of feature selection, and ex-
plains the behavior of existing feature-selection algorithms.

2. Formal Framework and Notation

We are interested in both controlled and uncontrolled
Markov processes with a set S of states s and, when ap-
plicable, a set A of actions a. Our main results and experi-
ments consider the uncontrolled or policy-evaluation case,
but many of the ideas can be applied to the controlled case,
as is discussed in more detail in Section 3.2.

We refer to the uncontrolled case as a Markov reward pro-
cess (MRP): M = (S, P, R,~), and the controlled case as
a Markov decision process (MDP): M = (S, A, P, R, 7).
Given a state s;, the probability of a transition to a state s;
given action a is given by P} and results in an expected
reward of R{. In the uncontrolled case, we use F;; and R;
to stand for the transitions and rewards.

We are concerned with finding value functions V' that map
each state s; to the expected total y-discounted reward for
the process. In particular, we would like to find the solution
to the Bellman equation

Visi] = max(Rf +73_ P5Vls;])

in the controlled case (the “max” and a’s are eliminated
from the equation in the uncontrolled case).

For any matrix, A, we use AT to indicate the transpose of
A and span(A) to indicate the column space of A.

An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning

2.1. Linear Value Functions

In cases where the value function cannot be represented ex-
actly, it is common to use some form of parametric value-
function approximation, such as a linear combination of
features or basis functions:

k
V = Z wi¢i7
=1

where ® = {¢1,..., ¢} is a set of linearly independent!
basis functions of the state, with ¢;(s) defined as the value
of feature i in state s. The vector w = {wy,...,wi} is a
set of scalar weights. We can think of ® as a design matrix
with ®[i, j] = ¢;(s;), that is, the basis functions span the
columns of ® and the states span the rows. Expressing the
weights w as a column vector, we have V = dw.

Methods for finding a reasonable w given ® and a set of
samples include linear TD (Sutton, 1988), LSTD (Bradtke
& Barto, 1996) and LSPE (Yu & Bertsekas, 2006). If
the model can be expressed as a factored MDP, then the
weights can be found directly (Koller & Parr, 1999). We
refer to this family of methods as linear fixed-point meth-
ods because they all solve for the fixed point

V = dwg = I, (R +yPdwsy), (1)

where II, is an operator that is the o-weighted Lo pro-
jection into span(®), where o is a state weighting dis-
tribution, typically the stationary distribution of P. If
Y = diag(o), I, = ®(®TX®)"1dTY. In some cases,
an unweighted projection (uniform o) or some other o is
used. Most of our results do not depend upon the projec-
tion weights, so we shall assume uniform o unless other-
wise stated. Solving for wg yields:

(I —~@"®) "o Po) " (d"d) '®" R (2)
= ("0 —~y0"Pd) 'd"R. 3)

Wo

In this paper, we assume that P is known and that ¢ can
be constructed exactly, while in all but the factored model
case, these would be sampled. This assumption allows us
to characterize the representational power of the features as
a separate issue from the variance introduced by sampling.

2.2. Linear Models

As in the case of linear value functions, we assume
the existence of a set of linearly independent features

"Permitting linearly dependent basis functions would not
change our results, but would complicate exposition since the re-
sulting weight vectors would no longer be unique. In practice, one
may use SVD to enforce the selection of a unique solution when
features are linearly dependent.

@1 ...¢ for representing transition and reward models,
with ¢;(s) defined as the value of feature ¢ in state s.
While value-function approximation typically uses features
to predict values, we will consider the use of these fea-
tures to predict next features. For feature vector ®(s) =
[#1(5) ... or(s)]T, we define ®(s'|s) as the random vector
of next features:

(s'|s) "L

T
[¢1(S/)? teey ¢k(sl)] 5
our objective will be to produce a k£ x k matrix Py that
predicts expected next feature vectors,

Py ®(s) ~ Egp(s15{2(s']5)},

and minimizes the expected feature-prediction error:

Py = argming, » | P{®(s) — E{®(s'|s)}]3. &)

(For brevity, we shall henceforth leave s’ ~ P(s|s) im-
plicit). One way to solve the minimization problem in
Eq. (4) is to compute the expected next feature explicitly
as the n x k matrix P® and then find the least-squares so-
lution to the over-constrained system ® Py ~ P®, since
the i*" row of ® Py is Py’s prediction of the next feature
values for state 4 and the i*"" row of P® is the expected
value of these features. The least-squares solution is

Py = (070)" 10T PO, (5)

with approximate next feature values P = ® Pg. To pre-
dict the reward model using the same features, we could
perform a standard least-squares projection into span(®)
to compute an approximate reward predictor:

ro = (¢7®) '@TR, (6)

with corresponding approximate reward: R = ®rg. Asin
the value-function approximation case, it is possible to do
a weighted Lo projection, a straightforward generalization
that we omit for conciseness of presentation.

Classically, an advantage of learning a model and deriv-
ing values from the model (indirect learning) over using
samples to estimate the values (direct learning) is that such
a method can be very data efficient. On the other hand,
learning an accurate model can require a great deal of ex-
perience. Surprisingly, we find that the two approaches are
the same, at least in the linear approximation setting.

3. Linear Fixed-Point Solution =
Linear-Model Solution

The notion that linear fixed-point methods are implicitly
computing some sort of model has been recognized in vary-
ing degrees for several years. For example, Boyan (1999)

An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning

considered the intermediate calculations performed by
LSTD in some special cases, and interpreted parts of the
LSTD algorithm as computing a compressed model. In
this section, we show that the linear fixed-point solution
for features ® is exactly the solution to the linear model de-
scribed by Pg and rg. We first prove it for the uncontrolled
case, and then generalize our result to the controlled case.
Our results concern unweighted projections, but generalize
readily to weighted projections.

3.1. The Uncontrolled Case

Recall that the approximate model transforms feature vec-
tors to feature vectors, so any k-vector is a state in the ap-
proximate model. If x is such a state, then, in the approxi-
mate model, 737 x is the reward for this state and P(pTX is
the next state vector. The Bellman equation for state x is:

o0
Vix] =re x +7V[Pp x| = Z YireT (Ps")Tx.
i=0
Expressed with respect to the original state space, the value
function becomes

V=2o i ’yiP<1>i7'q>,
=0

which is a linear combination of the columns of ®. Since
V = ®w for some w, the fixed-point equation becomes:

V = Rt+Pdw (7)
dw = Prg +7PPrw 3
w = (I —~Ps) 're. 9

We call the solution to the system above the linear model
solution. A solution will exist when Py has a spectral ra-
dius less than 1/+. This condition is not guaranteed be-
cause Py is not necessarily a stochastic matrix; it is simply
a matrix that predicts expected next feature values. The
cases where the spectral radius of Py exceeds 1/ corre-
spond to the cases where the value function defined by Py
and r assigns unbounded value to some states.

Theorem 3.1 For any MRP M and set of features ®, the
linear-model solution and the linear fixed-point solution
are identical.

Proof We begin with the expression for the linear-model
solution from Eq. (9) and then proceed by substituting the
definitions of Py and ¢ from Eq. (5) and Eq. (6), yielding:

W = (I—’qu>)7l’r’q>
= (I—~@"®) 'o"Po) '(d"d) '®"R
= Wo. I

This result demonstrates that for a given set of features &,
there is no difference between using the exact model to find
an approximate linear fixed-point value function in terms
of @ and first constructing an approximate linear model in
terms of ® and then solving for the exact value function of
the approximate model using Eq. (9). Although the model-
based view produces exactly the same value function as the
value-function-based view, the model-based view can give
a new perspective on error analysis and feature selection,
as shown in later sections.

3.2. The Controlled Case: LSPI

For the controlled case, we denote a policy as w : S +— A.
Since rewards and transitions are action dependent, the
value function is defined over state—action pairs and is
called a Q-function: For a fixed policy 7, @™ is the unique
fixed-point solution to the Bellman equation

Q" [si,a] = RY Jr’YZPZ'Qﬂ[SjJT(Sj)]-
J

As in Section 2.1, Q™ can be approximated by functions
in span(®): Q = Zle w;¢;, but now the basis functions
¢; are defined over state—action pairs rather than states.

In the controlled case, the policy 7 can be refined itera-
tively, as in the Least-Squares Policy Iteration (LSPI) al-
gorithm (Lagoudakis & Parr, 2003). Starting with an arbi-
trary policy 71, LSPI performs two steps iteratively until
certain termination conditions are satisfied. In iteration i, it
first computes an approximate linear value function QZ for
the current policy 7; (the policy-evaluation step), and then
computes a new policy 7,41 that is greedy with respect to
QZ- (the policy-improvement step).

In the policy-evaluation step, an algorithm LSTDQ, which
is the Q-version of the LSTD algorithm, is used to com-
pute Q;. Since a Markov decision process controlled by a
fixed policy is equivalent to an induced Markov reward pro-
cess whose state space is S x A, LSTDQ can be viewed as
LSTD running over this induced MRP. Due to Theorem 3.1,
LSTDQ effectively builds a least-squares linear model ap-
proximation and then finds the exact solution to this model.
Therefore, the intermediate value functions Ql found by
LSPI are the exact value functions of the respective approx-
imate linear models with the smallest (weighted) Lo error.

4. Analysis of Error: Uncontrolled Case

Value-function-based methods often analyze the error of a
value function V' in terms of the one-step lookahead error,
or Bellman error:

BE(V)=R+~PV —V.

An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning

In the context of linear value functions and linear models,
we shall define the Bellman error for a set ® of features as
the error in the linear fixed-point value function for ®:

BE(®) = BE(®PwWg) = R+ vPPwg — Pwg.

To understand the relationship between the error in the lin-
ear model and the Bellman error, we define two compo-
nents of the model error, the reward error:

Ar=R-R,
and the per-feature error:
Ay = PO — PO.

The per-feature error is the error in the prediction of the ex-
pected next feature values, so both terms can be thought of
as the residual error of the linear model. The next theorem
relates the Bellman error to these model errors.

Theorem 4.1 For any MRP M and features @,
BE(q)) = AR+ 7AeWop. (10)
Proof Using the definitions of BE(®), Ag, and Ag:
BE(®) = R+ yPOwqe — dwe
(AR —+ R) + ’Y(Aq) —+ F/;C\I))W@ — dwe
= (AR =+ ’yAq>W<1>) + R + (’YCDP<1> — @)qu
(AR + ’yAQWq)) + R — (ID(I — ’yP@)W@

(AR +vAsws) + R- Pre
= Agr-+ ’}/A@W@.

The final step follows from the definition of R, and the
penultimate step follows from Eq. (9) and Theorem 3.1. I

This decomposition of the Bellman error lets us think of the
Bellman error as composed of two separate sources of er-
ror: reward error, and per-feature error. In the next section,
we show that this view can give insight into the problem
of feature selection, but we also caution that there can be
interactions between Ar and Ag. For example, consider
the basis composed of the single basis function ®* = [V*].
Clearly, BE(®*) = 0, but for any non-trivial problem and
approximate model, Ag and Ag will be nonzero and will
cancel each other out in Eq. (10).

A similar result may be possible for the controlled case,
but there are some subtleties. For example, there is not a
clean notion of a fixed point for the outer loop of the LSPI
algorithm since the algorithm is not guaranteed to converge
to a single policy or w.

5. Feature Selection

We present several insights on the problem of feature se-
lection that follow from the results presented above.

5.1. General Observations about Ar and Ag

The condition Ag = Ag = 0 is sufficient (but not nec-
essary) to achieve zero Bellman error and a perfect value
function. Specifically, it requires that the features of the ap-
proximate model capture the structure of the reward func-
tion, and that the features of the approximate model are suf-
ficient to predict expected next features. In the case where
® is a set of indicator functions over disjoint partitions of
S, these conditions are similar to those specified for model
minimization (Dean & Givan, 1997) in MDPs.

Features that are insufficient to represent the immediate re-
ward are likely to be problematic since any error in the pre-
diction of the immediate reward based upon the features
(AR) can appear directly in the Bellman error through the
first summand of Eq. (10). This finding is consistent with
the observation of Petrik (2007) of the problems that arise
when the reward is orthogonal to the features.

For Ag = 0, the Bellman error is determined entirely by
AR, with no dependence on ~. This observation has some
interesting implications for feature selection and the anal-
ysis of the resulting approximate value function, topics we
address further in Section 5.3.

5.2. Incremental Feature Generation

This section presents two existing methods for incremen-
tally building a basis, the Krylov basis, and Bellman Error
Basis Functions (BEBFs). We also propose a new method
based upon the model error, Model Error Basis Functions
(MEBFs), then show that all three methods are equivalent
given the same initial conditions.

5.2.1. THE KRYLOV BASIS

The Krylov basis is defined in terms of powers of the tran-
sition matrix multiplied by R. We refer to the Krylov basis
with k basis functions, starting from X, as Krylov, (X),
with Krylov, (X) = {P*~!X : 1 <i < k}. For an MRP,
typically X = R. The Krylov basis, and Krylov methods
in general, are standard techniques for the iterative solu-
tion to systems of linear equations. Its relevance to feature
selection for RL was demonstrated by Petrik (2007).

5.2.2. BEBFs

Many researchers have proposed using features based upon
the residual error in the current feature set (Wu & Givan,
2004; Sanner & Boutilier, 2005; Keller et al., 2006). Parr
et al. (2007) describe this family of techniques as Bellman
Error Basis Functions (BEBFs), and analyze some of the
properties of this approach. More formally, if ®,wq, is
the current value function, BEBF adds ¢ 1 = BE(®y) as
the next basis function. We refer to the basis resulting from
k — 1 iterations of BEBF, starting from X, as BEBF';,(X).

An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning

Theorem 5.1 (Petrik?) For any k > 1,

span(Krylov,(R)) = span(BEBF(R)).

Proof The proof is by induction on k. For the basis:
Krylov,(R) = BEBF1(R) = R.

For the inductive step, we assume equality up to k, so for
both methods the value function can be expressed as:

k
Opwe, = Z wiPi_lR.
i=1
Now, observe that:

k k
BE(®y) = R++P()_w;P""'R) =) w;P"'R.
i=1 i=1

The only part of the above that is not already in the basis
is the contribution from P**1 R, which is precisely what is
added in Krylov, 1 (R). 1

5.2.3. MEBFs

A natural generalization of BEBFs to the model-based view
would be to add features that capture the residual error
in the model. Starting from @y, this technique (MEBF)
adds Ap and Ag (or the linearly independent components
thereof) to the basis at each iteration to create ®5;. In
contrast to BEBFs, this method can add a large number
of basis functions at each iteration since Ag has as many
columns as ®. One might imagine that this process could
result in an exponential growth in the number of basis func-
tions. In fact, however, the number of new basis functions
added at each iteration will not grow since each new set
of basis functions that is added will drive the error in the
previous basis functions to 0.

We refer to the basis resulting from k& — 1 iterations of
MEBEF, starting from X, as MEBF';,(X). For an initial ba-
sis of ®, the MEBF basis expansion is guaranteed to con-
tain the BEBF basis expansion.

Theorem 5.2 span(BEBF5(®)) C span(MEBF5(®)).
Proof Follows immediately from Eq. (10). 1
Theorem 5.3 Fork > 1:
span(Krylov,(R)) = span(MEBF(R)).
Proof The proof is by induction on k. For the basis:
Krylov,(R) = MEBF{(R) = R.

M. Petrik, personal communication, 2007.

For the inductive step, we assume equality up to k£ and con-
sider the behavior of MEBF. For & > 1, Ag = 0, since R
is the first basis function added. The basis @, is equivalent
to a collection of basis functions of the form ¢; = PR
for 1 < i < k. As aresult, Pg, is already in the basis for
all 1 < ¢ < k. Thus, the only nonzero column of Ag will
correspond to feature ¢y and will be P*R — Py PF1R.
Since Py P*~1 R is necessarily in span(®;), the only new
contribution to the basis made by MEBF will be from PkR,
which is precisely what is added by Krylov,,,(R). 1

These results show that, starting from R, all three methods
will produce the same basis. An advantage of BEBF is that
it will produce orthogonal basis vectors. An advantage of
MEBEF is that it can add multiple new basis vectors at each
iteration if it is initialized with a set of basis functions.

5.3. Invariant Subspaces of P

The form of the Bellman error in Eq. (10) suggests that
features for which Ag = 0 are particularly interesting. If a
dictionary of such features were readily available, then the
feature-selection problem would reduce to the problem of
predicting the immediate reward using this dictionary.

The condition Ag = 0 means that, collectively, the features
are a basis for a perfect linear predictor of their own next,
expected values. More formally, features ® are subspace
invariant with respect to P if P® is in span(®), which
means that there exists a A such that P® = ®A.

At first, it may seem like subspace invariance is an extraor-
dinary requirement that could hold only for a complete ba-
sis for P. It turns out, however, that there are many ways
to describe invariant subspaces of P. Any set of eigenvec-
tors of P forms an invariant subspace. For eigenvectors
X ... Xy with eigenvalues Aq ... A\, A = diag(A1 ... \g).
The set of generalized eigenvectors corresponding to a par-
ticular eigenvalue A of P is subspace invariant with re-
spect to P. For an eigenvalue A\ with multiplicity 7, there
will be ¢ generalized eigenvectors, &) ...AX; satisfying
(P—X)X; = Xj_yforl <j<iand (P—\)X; =0
for 0 < j < i. More generally, if ®* and ®? are subspace
invariant with respect to P, then so is their union. Finally,
the Schur decomposition of a matrix P provides a set of
nested invariant subspaces of P.

In fairness, we point out that these methods all require
knowledge of P and superlinear computation time in the
dimension of P. We defer discussion of the practicality of
implementing these methods to Section 6 and Section 7.

Theorem 5.4 For any MRP M and subspace invariant
feature set ®, Agp = 0.

Proof First, we observe that Py has a particularly simple

An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning

form as a consequence of subspace invariance:
Pp = (070)7 10T Pd = (07®)10TdA = A.
Substituting into the definition of Ag:

Ay = PO — PO = PO — ®Py — PA — DA =0. I

Subspace invariant features have additional intriguing
properties. The resulting value function always exists and
can be interpreted as the result of using the true transition
model with the approximate reward function R.

Theorem 5.5 For any MRP M and subspace invariant
feature set ®, wg always exists and

dwg = (I —yP)"'R.

Proof Starting with the form of wg from Eq. (7) and the
fact that Ag = 0:

dwe = R + 7]%Wq>
= R + vPdwas
dwe — yPOPwe = R
dwa (I —~vP)'R.

To confirm that such a wg actually exists, we note that Re
span(®) by construction, and that (I — vP)~! must exist
for the actual P and 0 < « < 1, allowing us to rewrite:

dwyp = i 7iPiR,

=0

which remains in span(®) because of ®’s subspace invari-
ance with respect to P. 1

Our analysis has some similarities with that of
Petrik (2007). Petrik considered the eigenvalue de-
composition of P as a basis and considered the error in the
projection of V* into this basis. Petrik also suggested the
use of the Jordan form, which would provide generalized
eigenvectors for matrices that are not diagonalizable. Our
analysis focuses on the Bellman error of the linear fixed-
point solution. Insights from the model-based view of
linear approximation architectures allow us to decompose
the error into distinct components corresponding to the
reward and transition models, making the role of invariant
subspaces particularly salient.

6. Experimental Results

We present policy-evaluation results on three different
problems. Our objective is to demonstrate how our theoret-
ical results can inform the feature-selection process and ex-
plain the behavior of known feature-selection algorithms.
We consider 4 algorithms:

PVF: This is the proto-value function (PVF) framework
described by Mahadevan and Maggioni (2007). PVFs use
eigenvalues of the Laplacian derived from an empirically
constructed adjacency matrix (from random walk trajecto-
ries), enumerated in increasing order of eigenvalue. We
reproduced their method as closely as possible, includ-
ing adding links to the adjacency matrix for all policies,
not just the policy under evaluation. Curiously, remov-
ing the off-policy links seemed to produce worse perfor-
mance. We avoided using samples to eliminate the con-
founding (for our purposes) issue of variance between ex-
periments. We used the combinatorial Laplacian for the
50-state and blackjack problems, but used the normalized
Laplacian in the two-room problem to match Mahadevan
and Maggioni (2007).

PVF-MP: This algorithm selects basis functions from the
set of PVFs, but selects them incrementally based upon the
Bellman error. Specifically, basis function k£ + 1 is the PVF
that has highest dot product with the Bellman error result-
ing from the previous k basis functions. It can be inter-
preted as a form of matching pursuits (Mallat & Zhang,
1993) on the Bellman error with a dictionary of PVFs.

Eig-MP: This algorithm is similar to PVF-MP, but selects
from a dictionary of the eigenvectors of P. Both Eig-MP
and PVF-MP are similar in spirit to Petrik’s WL algorithm.

BEBF: This is the BEBF algorithm starting with &y = R,
as described in Section 5.2.

Our experiments performed unweighted Lo projection and
report unweighted Ly norm error. We also considered L,
error and Lo projections weighted by stationary distribu-
tions, but the results were not qualitatively different. We
report the Bellman error, the reward error, and the feature
error, which is the contribution of the per-feature errors to
the Bellman error: vAgwg. These metrics are presented
as a function of the number of basis functions.

6.1. 50-state Chain

We applied all 4 algorithms to the 50-state chain problem
from Lagoudakis and Parr (2003), with the results shown in
Figure 1(a—c). As demanded by theory, Eig-MP has 0 fea-
ture error, which means that the entirety of the Bellman er-
ror is expressed in A . BEBFs represent the other extreme
since Ar = 0 after the first basis function is added and the
entirety of the Bellman error is expressed through Ag. For
this problem, PVFs appear to be approximately subspace
invariant, resulting in low Ag. However, both Eig-MP and
the PVF methods do poorly because the reward is not eas-
ily expressed as linear combination of a small number of
PVFs. PVE-MP does better than plain PVFs because it is
actively trying to reduce the error, while plain PVFs choose
basis functions in an order that ignores the reward.

An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning

6.2. Two-room Problem

We tried all four algorithms on an optimal policy for the
two-room navigation problem from Mahadevan and Mag-
gioni (2007). The transition matrix for this problem is not
diagonalizable and typical methods for extracting gener-
alized eigenvectors proved unreliable, so we do not show
results for the Eig-MP method. Figure 1(d—f) shows the
breakdown of error for the remaining algorithms. In this
case, the Laplacian approach produces features that behave
less like an invariant subspace, resulting in high Ar and
Ag. However, there is some cancellation between them.

6.3. Blackjack

We tested a version of the bottomless-deck blackjack prob-
lem from Sutton and Barto (1998), evaluating the policy
they propose. For the model described in the book, all
methods except BEBF performed extremely poorly. To
make the problem more amenable to eigenvector-based
methods, we implemented an ergodic version that resets
to an initial distribution over hands with a value of 12 or
larger and used a discount of 0.999. The breakdown of
error for the different algorithms is shown in Figure 1(g—
i), where we again omit Eig-MP. As expected, BEBFs ex-
hibit Ap = 0, and drive the Bellman error down fairly
rapidly. PVFs exhibit some interesting behaviors: When
the PVFs are enumerated in order of increasing eigenvalue,
they form an invariant subspace. As a result, the feature
error for PVFs hugs the abscissa in Figure 1(i). However,
this ordering completely fails to match R until the very last
eigenvectors are added, resulting in very poor performance
overall. In contrast, PVF-MP adds basis eigenvectors in an
order that does not result in subspace invariant features sets,
but that does match R earlier, resulting in a more consistent
reduction of error.

7. Discussion and Future Work

A significant finding in our work is the close relationship
between value-function approximation and model-based
learning. Our experimental results illustrate the relation-
ship between the power of the features to represent an ap-
proximate model and the Bellman error.

While features that represent feature transitions accurately
have highly desirable properties, both components of the
model, the reward function and the transition function,
should be respected by the features. Both a strength
and weakness of the BEBF/MEBF/Krylov methods is
their connection to specific policies and reward structures.
Our results are consonant with those of Petrik (2007),
which showed good performance for the Krylov basis and
some surprisingly weak performance for eigenvector-based
methods despite their appealing properties.

To focus on the expressive power of the features, our re-
sults in this paper do not directly consider sampled data, the
regime in which linear fixed-point methods are most often
employed. Some initial results on the effects of noise in
feature generation for BEBF/MEBF/Krylov methods can
be found in Parr et al. (2007), however further analysis
would still be helpful. For eigenvector-based methods,
there are some questions about the cost of estimating eigen-
vectors of P, or an approximation to P via the Laplacian.
Computing eigenvectors can be computationally intensive
and, for general P, prone to numerical instabilities.

An important direction for future work is seeking a deeper
understanding of the interaction between feature-selection
and policy-improvement algorithms such as LSPI.

8. Conclusion

This paper demonstrated a fundamental equivalence be-
tween linear value-function approximation and linear
model approximation for RL. This equivalence led to a
novel view of the Bellman error, which then gave insight
into the problem of feature selection. These insights were
used to explain the behavior of existing feature-selection
algorithms on some sample problems. While this research
has not, yet, led to a novel algorithmic approach, we believe
that it helps address fundamental questions of representa-
tion and feature selection encountered by anyone wishing
to solve real RL problems.

Acknowledgment

We thank Carlo Tomasi and Xiaobai Sun for helpful discussions,
Sridhar Mahadevan and Jeff Johns for pointing out some discrep-
ancies between our interpretation of the two-room problem in an
earlier version of this paper and the version in Mahadevan and
Maggioni (2007), and Marek Petrik for Theorem 5.1. This work
was supported in part by DARPA CSSG HR0011-06-1-0027, and
by NSF 1IS-0713435. Any opinions, findings, conclusions or rec-
ommendations expressed in this paper are those of the authors and
do not necessarily reflect the views of the sponsors.

References
Boyan, J. A. (1999). Least-squares temporal difference learning. JCML-99.

Bradtke, S., & Barto, A. (1996). Linear least-squares algorithms for temporal differ-
ence learning. Machine Learning, 2.

Dean, T., & Givan, R. (1997). Model minimization in Markov decision processes.
AAAL-97.

Keller, P., Mannor, S., & Precup, D. (2006). Automatic basis function construction
for approximate dynamic programming and reinforcement learning. ICML 2006.

Koller, D., & Parr, R. (1999). Computing factored value functions for policies in
structured MDPs. IJCAI-99.

Lagoudakis, M., & Parr, R. (2003). Least squares policy iteration. JMLR, 4.

Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A Laplacian
framework for learning representation and control in Markov decision processes.
JMLR, 8.

Mallat, S. G., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionar-
ies. IEEE Trans. on Signal Processing, 41.

An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning

——PVF-MP__—*—Eig-MP__——BEBF]

[=—PVF

12 12

1 1

508 508
) 5
c el
s S

gos 506
o (7}

D 0.4 % 0.4

0.2 0.2

0 0

Feature error

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Number of basis functions Number of basis functions Number of basis functions
(a) Chain Bellman Error (b) Chain Reward Error (c) Chain Feature Error
—-PVF —e—PVF-MP ——BEBF
100 100 100
80 80 80
S 60 & 60 8 60
o 5} [
=4 (]
£ g g
< 40 £ 40 g 40
) 4 i
20 20 20
0 ¢ 0 & 0 <
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Number of basis functions Number of basis functions Number of basis functions
(d) Two-room Bellman Error (e) Two-room Reward Error (f) Two-room Feature Error
——PVF —©—PVF-MP ——BEBF
15 N 15 15
.1 _1 1
e e 2
© 5 ®
c - o
<] <] g
m 0.5 ¥ 05 05
4
0 0 0
50 100 150 200 50 100 150 200 50 100 150 200

Number of basis functions

(g) Ergodic Blackjack Bellman Error

Number of basis functions

(h) Ergodic Blackjack Reward Error

Number of basis functions

(1) Ergodic Blackjack Feature Error

Figure 1. Decomposition of the Bellman error for three different problems. First row: 50-state chain; Second row: Two-room problem;
Third row: Ergodic Blackjack. First column: Bellman error; Second Column: reward error; Third Column: feature error

Parr, R., Painter-Wakefield, C., Li, L., & Littman, M. (2007). Analyzing feature
generation for value-function approximation. /CML-07.

Petrik, M. (2007). An analysis of Laplacian methods for value function approxima-
tion in MDPs. IJCAI-07.

Sanner, S., & Boutilier, C. (2005). Approximate linear programming for first-order
MDPs. UAI-05.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. The
MIT Press.

Wu, J.-H., & Givan, R. (2004). Feature-discovering approximate value iteration
methods (Technical Report TR-ECE-04-06). Purdue University.

Yu, H., & Bertsekas, D. (2006). Convergence results for some temporal difference
methods based on least squares (Technical Report LIDS-2697). MIT.

