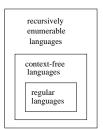
CPS 140 - Mathematical Foundations of CS Dr. S. Rodger Section: Recursively Enumerable Languages (handout)

Definition: A language L is *recursively enumerable* if there exists a TM M such that L=L(M).

if $w \in L$? if $w \notin L$?



Definition: A language L is *recursive* if there exists a TM M such that L=L(M) and M halts on every $w \in \Sigma^+$.

Enumeration procedure for recursive languages

To enumerate all we Σ^+ in a recursive language L:

- Let M be a TM that recognizes L, L = L(M).
- Construct 2-tape TM M'

Tape 1 will enumerate the strings in Σ^+

Tape 2 will enumerate the strings in L.

- On tape 1 generate the next string v in Σ^+
- simulate M on v
 - if M accepts v, then write v on tape 2.

Enumeration procedure for recursively enumerable languages

To enumerate all we Σ^+ in a recursively enumerable language L:

Repeat forever

- Generate next string (Suppose k strings have been generated: $w_1, w_2, ..., w_k$)
- Run M for one step on w_k Run M for two steps on w_{k-1}.
 ... Run M for k steps on w₁.
 If any of the strings are accepted then write them to tape 2.

Theorem For any nonempty Σ , there exist languages that are not recursively enumerable.

Proof:

 A language is a subset of Σ*. The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \overline{L} is not recursively enumerable. **Proof:**

 Let Σ = {a} Enumerate all TM's over Σ:

	а	aa	aaa	aaaa	aaaaa	
$L(M_1)$	0	1	1	0	1	
$L(M_2)$	1	0	1	0	1	
$L(M_3)$	0	0	1	1	0	
$L(M_4)$	1	1	0	1	1	
$L(M_5)$	0	0	0	1	0	

The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages L and \overline{L} are both RE, then L is recursive.

Proof:

There exists an M₁ such that M₁ can enumerate all elements in L. There exists an M₂ such that M₂ can enumerate all elements in L. To determine if a string w is in L or not in L perform the following algorithm:

Theorem: If L is recursive, then \overline{L} is recursive.

Proof:

• L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L, and outputs a 0 if a string w is not in L.

Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1, then M' erases the 1 and writes a 0. If TM M halts with a 0, then M' erases the 0 and writes a 1.

Hierarchy of Languages:

all languages
recursively enumerable languages
recursive languages
context-free languages
regular languages

Definition A grammar G = (V,T,R,S) is unrestricted if all productions are of the form

 $u \to v$

where $u \in (V \cup T)^+$ and $v \in (V \cup T)^*$

Example:

Let $G = ({S,A,X},{a,b},R,S), R =$

 $\begin{array}{l} \mathbf{S} \rightarrow \mathbf{b}\mathbf{A}\mathbf{a}\mathbf{a}\mathbf{X} \\ \mathbf{b}\mathbf{A}\mathbf{a} \rightarrow \mathbf{a}\mathbf{b}\mathbf{A} \\ \mathbf{A}\mathbf{X} \rightarrow \epsilon \end{array}$

Example Find an unrestricted grammar G s.t. $L(G) = \{a^n b^n c^n | n > 0\}$

G = (V, T, R, S)

 $V = \{S,A,B,D,E,X\}$

$$T = \{a, b, c\}$$

R=

7) Db \rightarrow bD
8) DX \rightarrow EXc
9) BX $\rightarrow \epsilon$
10) cE \rightarrow Ec
11) bE \rightarrow Eb
12) a E \rightarrow aB

There are some rules missing in the grammar.

To derive string aaabbbccc, use productions 1,2 and 3 to generate a string that has the correct number of a's b's and c's. The a's will all be together, but the b's and c's will be intertwined.

 $S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbcbcX \Rightarrow aaaBbcbcbcX$

Theorem If G is an unrestricted grammar, then L(G) is recursively enumerable.

Proof:

• List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that L=L(G). **Proof:**

L is recursively enumerable.
⇒ there exists a TM M such that L(M)=L.
M = (K, Σ, , , δ, q₀, B, F)
q₀ w ^{*} + x₁q_f x₂ for some q_f ∈ F, x₁, x₂ ∈ , *

Construct an unrestricted grammar G s.t. L(G)=L(M).

 $S \stackrel{*}{\Rightarrow} w$

Three steps

- 1. $S \stackrel{*}{\Rightarrow} B \dots B \# xq_f y B \dots B$ with x,y \in , * for every possible combination
- 2. $B \dots B \# xq_f yB \dots B \stackrel{*}{\Rightarrow} B \dots B \# q_0 wB \dots B$
- 3. $B \dots B \# q_0 w B \dots B \stackrel{*}{\Rightarrow} w$

Definition A grammar G is *context-sensitive* if all productions are of the form

 $x \to y$

where $x, y \in (V \cup T)^+$ and |x| < |y|

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that L=L(G) or $L=L(G) \cup \{\epsilon\}$.

Theorem For every CSL L not including ϵ , \exists an LBA M s.t. L=L(M).

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. L(M)=L(G).

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.