CPS 140 - Mathematical Foundations of CS Dr. Susan Rodger Section: Context-Free Languages (handout)

Context-Free Languages (Read Ch. 3.1-3.2)

Regular languages:

- keywords in a programming language
- names of identifiers
- integers
- all misc symbols: ;

Not Regular languages:

- $\{a^n c b^n | n > 0\}$
- expressions ((a+b)-c)
- block structures $\{\}$ in C++

Definition: A grammar $G = (V, \Sigma, R, S)$ is context-free if all productions are of the form

 $\mathbf{A}\,\rightarrow\mathbf{x}$

Where $A \in V$ and $x \in (V \cup \Sigma)^*$.

Definition: L is a context-free language (CFL) iff ∃ context-free grammar (CFG) G s.t. L=L(G).
Example: G=({S},{a,b},R,S)

$$S \rightarrow aSb \mid ab$$

Derivation of aaabbb:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$

L(G) =

Example: $G = ({S}, {a,b}, R, S)$

 $S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$

Derivation of ababa:

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$

 $\Sigma = \{a, b\}, L(\mathbf{G}) =$

Example: $G = ({S,A,B},{a,b,c},S,P)$

 $\begin{array}{l} \mathbf{S} \rightarrow \mathbf{A}\mathbf{c}\mathbf{B} \\ \mathbf{A} \rightarrow \mathbf{a}\mathbf{A}\mathbf{a} \mid \boldsymbol{\epsilon} \\ \mathbf{B} \rightarrow \mathbf{B}\mathbf{b}\mathbf{b} \mid \boldsymbol{\epsilon} \end{array}$

L(G) =

Derivations of aacbb:

- 1. S $\Rightarrow \underline{A}cB \Rightarrow \underline{a}\underline{A}acB \Rightarrow \underline{aacB} \Rightarrow \underline{aacB}bb \Rightarrow \underline{aacbb}$
- 2. $S \Rightarrow Ac\underline{B} \Rightarrow Ac\underline{B}bb \Rightarrow \underline{A}cbb \Rightarrow a\underline{A}acbb \Rightarrow aacbb$ Note: Next variable to be replaced is underlined.

Definition: Leftmost derivation - in each step of a derivation, replace the leftmost variable.

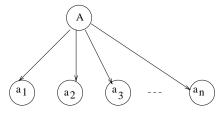
Definition: Rightmost derivation - in each step of a derivation, replace the rightmost variable.

Derivation Trees (also known as "parse trees")

A derivation tree represents a derivation but does not show the order productions were applied.

A derivation tree for $G = (V, \Sigma, R, S)$:

- root is labeled S
- leaves labeled x, where $x \in \Sigma \cup \{\epsilon\}$
- nonleaf vertices labeled A, $A \in V$
- For rule $A \rightarrow a_1 a_2 a_3 \dots a_n$, where $A \in V$, $a_i \in (\Sigma \cup V \cup \{\epsilon\})$,



Example: $G = ({S,A,B}, {a,b,c}, R,S)$

$$\begin{array}{l} \mathbf{S} \rightarrow \mathbf{A}\mathbf{c}\mathbf{B} \\ \mathbf{A} \rightarrow \mathbf{a}\mathbf{A}\mathbf{a} \mid \epsilon \\ \mathbf{B} \rightarrow \mathbf{B}\mathbf{b}\mathbf{b} \mid \epsilon \end{array}$$

Definitions Partial derivation tree - subtree of derivation tree. If partial derivation tree has root S then it represents a sentential form. Leaves from left to right in a derivation tree form the *yield* of the tree. Yield (w) of derivation tree is such that $w \in L(G)$. The yield for the example above is **Example of partial derivation tree that has root S:**

The yield of this example is ______ which is a sentential form.

Example of partial derivation tree that does not have root S:

Membership Given CFG G and string $w \in \Sigma^*$, is $w \in L(G)$?

If we can find a derivation of w, then we would know that w is in L(G).

Motivation

G is grammar for C++. w is C++ program. Is w syntactically correct?

Example

 $G\!=\!(\{S\},\,\{a,b\},\,R,\,S),\,R\!=$

 $\mathbf{S} \rightarrow \mathbf{S}\mathbf{S} \ | \ \mathbf{a}\mathbf{S}\mathbf{a} \ | \ \mathbf{b} \ | \ \epsilon$

 $L_1 = L(G) =$

Is abbab $\in L(G)$?

Exhaustive Search Algorithm

For all i=1,2,3,...

Examine all sentential forms yielded by i substitutions

Example: Is abbab $\in L(G)$?

 ${\bf Theorem}$ If CFG G does not contain rules of the form

$$\begin{array}{c} \mathbf{A} \rightarrow \epsilon \\ \mathbf{A} \rightarrow \mathbf{B} \end{array}$$

where $A, B \in V$, then we can determine if $w \in L(G)$ or if $w \notin L(G)$.

• **Proof:** Consider

- 1. length of sentential forms
- 2. number of terminal symbols in a sentential form

Example: Let $L_2 = L_1 - {\epsilon}$. $L_2 = L(G)$ where G is:

 $S \rightarrow SS ~|~ aa ~|~ aSa ~|~ b$

Show baaba $\notin L(G)$.

 $i=1 \\ 1. S \Rightarrow SS \\ 2. S \Rightarrow aSa \\ 3. S \Rightarrow aa \\ 4. S \Rightarrow b \\ i=2 \\ 1. S \Rightarrow SS \Rightarrow SSS \\ 2. S \Rightarrow SS \Rightarrow aSaS \\ 3. S \Rightarrow SS \Rightarrow aSaS \\ 4. S \Rightarrow SS \Rightarrow bS \\ 5. S \Rightarrow aSa \Rightarrow aSSa \\ 6. S \Rightarrow aSa \Rightarrow aaSaa \\ 7. S \Rightarrow aSa \Rightarrow aaaa \\ 8. S \Rightarrow aSa \Rightarrow aba \\$

Definition Simple grammar (or s-grammar) has all productions of the form:

 $\mathbf{A} \to \mathbf{a} \mathbf{x}$

where $A \in V$, $a \in \Sigma$, and $x \in V^*$ AND any pair (A,a) can occur in at most one rule.

Ambiguity

Definition: A CFG G is ambiguous if \exists some $w \in L(G)$ which has two distinct derivation trees.

Example Expression grammar

 $G = ({E,I}, {a,b,+,*,(,)}, R, E), R =$

$$E \rightarrow E + E \mid E * E \mid (E) \mid I$$
$$I \rightarrow a \mid b$$

Derivation of a+b*a is:

 $\mathbf{E} \Rightarrow \underline{\mathbf{E}} + \mathbf{E} \Rightarrow \underline{\mathbf{I}} + \mathbf{E} \Rightarrow \mathbf{a} + \underline{\mathbf{E}} \Rightarrow \mathbf{a} + \underline{\mathbf{E}} * \mathbf{E} \Rightarrow \mathbf{a} + \underline{\mathbf{I}} * \mathbf{E} \Rightarrow \mathbf{a} + \mathbf{b} * \underline{\mathbf{E}} \Rightarrow \mathbf{a} + \mathbf{b} * \underline{\mathbf{I}} \Rightarrow \mathbf{a} + \mathbf{b} * \mathbf{a}$

Corresponding derivation tree is:

Another derivation of a+b*a is:

$$\mathbf{E} \Rightarrow \underline{\mathbf{E}} \ast \mathbf{E} \Rightarrow \underline{\mathbf{E}} + \mathbf{E} \ast \mathbf{E} \Rightarrow \underline{\mathbf{I}} + \mathbf{E} \ast \mathbf{E} \Rightarrow \mathbf{a} + \underline{\mathbf{E}} \ast \mathbf{E} \Rightarrow \mathbf{a} + \underline{\mathbf{I}} \ast \mathbf{E} \Rightarrow \mathbf{a} + \mathbf{b} \ast \underline{\mathbf{E}} \Rightarrow \mathbf{a} + \mathbf{b} \ast \underline{\mathbf{I}} \Rightarrow \mathbf{a} + \mathbf{b} \ast \mathbf{a}$$

Corresponding derivation tree is:

Rewrite the grammar as an unambiguous grammar. (with meaning that multiplication has higher precedence than addition)

$$\begin{split} \mathbf{E} &\rightarrow \mathbf{E} + \mathbf{T} \mid \mathbf{T} \\ \mathbf{T} &\rightarrow \mathbf{T} * \mathbf{F} \mid \mathbf{F} \\ \mathbf{F} &\rightarrow \mathbf{I} \mid (\mathbf{E}) \\ \mathbf{I} &\rightarrow \mathbf{a} \mid \mathbf{b} \end{split}$$

There is only one derivation tree for a+b*c:

Definition If L is CFL and G is an unambiguous CFG s.t. L=L(G), then L is unambiguous.

Backus-Naur Form of a grammar:

- Nonterminals are enclosed in brackets <>
- For " \rightarrow " use instead "::="

Sample C++ Program:

```
int main ()
{
    int a; int b; int sum;
    a = 40; b = 6; sum = a + b;
    cout << "sum is "<< sum << endl;
    return 0;
}</pre>
```

"Attempt" to write a CFG for C++ in BNF (Note: <program> is start symbol of grammar.)

etc., Must expand all nonterminals!

So a derivation of the program test would look like:

```
< program > \Rightarrow int main () < block> \\ \Rightarrow int main () \{ < stmt-list> \} \\ \Rightarrow int main () \{ < decl> < stmt-list> \} \\ \Rightarrow int main () \{ int < id>; < stmt-list> \} \\ \Rightarrow int main () \{ int a; < stmt-list> \} \\ \Rightarrow complete C++ program
```

More on CFG for C++

We can write a CFG G s.t. $L(G) = \{$ syntactically correct C++ programs $\}$.

But note that {semantically correct C++ programs} $\subset L(G)$.

Can't recognize redeclared variables:

Can't recognize if formal parameters match actual parameters in number and types: