
CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger

Section: The Structure of a Compiler

1.1 What is a Compiler?

I. Translator

De�nition:

program in translator program in
language �! for �! language

X X Y

Examples:

Source Object
Language Language Name Example

High Level High Level preprocessor ratfor ! f77

Assembly Machine assembler as

High Level Machine compiler f77, cc, pc

Any executes interpretor BASIC (often)
immediately c shell

apl, lisp

� Preprocessor

For i=1 to n do
(stmts)

end for

#

i = 1
While (i<=n) do

(stmts)
i = i + 1

end while

1

II. Language Processing System

skeletal source program

#

preprocessor

#

source program

#

compiler

#

target (object) assembly program

#

assembler

#

relocatable machine code

#

loader/link-editor

#

absolute machine code

III. Compiler

program in program in
high level �! compiler �! machine
language X for X language Y

2

1.2 STRUCTURE OF A COMPILER

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

#
#
#
#
#
#
#
##

l
l
l
l
l
l
l
l

@
@
@
@
@
@
@
@
@
@
@
@
@@

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

l
l
l
l
l
l
ll

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

?

?

?

?

?

?

code
intermediate

code
intermediate

parse trees

tokens

General Overview

Handling

Error

Management

Symbol Table

Object Program

Generation
Code

Optimization
Code

Code Generation

Intermediate

Syntax Analysis

Lexical Analysis

Source Code

Figure 1:

3

1.3 PHASES OF COMPILATION

1.3.1 Lexical Analysis (Scanner)

a. Purpose: Read the same program character by character grouping them into atomic units called
\tokens."

b. Tokens:

� depend on language and compiler writer

� Examples:

reserved words if, for
operators +;�; <;=
constants 0, 4.89
punctuation (, g, [
identi�ers sb, ch

� treated as a pair: token.type and token.value

{ token type is a (mnemonic) integer

{ some tokens have no value

c. Example

if (x <= 0) x = y + z

when put through lexical analyzer produces:

token type value
if 25
(28
id 23 \x"
<= 27

int constant 22 0
) 38
id 23 \x"

= assgnment 4
id 23 \y"
+ 34
id 23 \z"

4

d. How does one build a lexical analyzer?

� from scratch

� lex

e. Preview of Lex

� idea: tokens described by regular expressions

� basic syntax:
regular expression, action

� basic semantics:
if match regular expression, then do action.

� Example:

%%
\if" return(25);
\(\ return(28);
[0-9]+ return(22);

f. Remarks

Besides returning token types and values, the lexical analyzer might

a) print error messages

b) insert identi�ers in the symbol table

1.3.2 Syntax Analysis (Parsing)

a. Purpose: Accepts the sequence of tokens generated by the lexical analyzer, checks whether the program
is syntactically correct, and generates a parse tree.

b. Syntax: formally described by a context free grammar.

5

c. Parse Tree

if (x<=0) x = y + z

C
C

HHHH
D
DD

�
��

Z
Z��

�����

L
LL

PPPPPP
C
C

!!!!!

hhhhhhhhhhhhhhhhh

PPPPPA
A

�
�
�����

<=

idid

expr+expr

exprid

rhs=lhs

assg. stmt

constantid

expressionrelopexpression

relation

statement)condition(if

if-statement

statement

Figure 2: Parse tree

Figure 2 is the parse tree for this statement.

d. How does one build a parser?

� from scratch

� using a parser generator such as yacc

1.3.3 Intermediate Code Generator

a. Purpose: Traverse the parse tree, producing simple intermediate code.

b. Three-Address Code:

Instructions:

1. id := id op id
2. goto label
3. if condition goto label

6

Example:

if (x<=0) x = x + z

#

if (x<=0) goto L1
goto L2

L1: x := y + z
L2:

1.3.4 Intermediate Code Generation

a. Purpose: Transform the intermediate code into \better" code.

b. Examples

1) Rearrangement of Code

if (x<=0) goto L1 if (x>0 goto L2
goto L2 ! x = y + z

L1: x = y + z L2:
L2:

2) Redundancy Elimination

a = w + x + y T1 = x + y
! a = w + T1

b = x + y + z b = T1 + z

3) Strength Reduction

x2 ! x � x

expensive! cheap
operator operator

4) Frequency Reduction

for (i=1; i<n; i=i+1) f T1 = sqrt(26)
x = sqrt(26) ! for (i=1; i<n; i=i+1) f
g x = T1

g

7

c. Remarks:

1) Main criteria for optimization is speed.

1.3.5 Code Generation

a. Purpose: Transform intermediate code to machine code (assembler)

b. Example: a = b + c

mov b, R1
add c, R1
mov R1, a

c. Remarks

1) completely machine dependent whereas other phases are not

2) \register allocation" is the most di�cult task

� idea - use registers (fast access) to avoid memory use (slow access)

� problem - only a �nite number of registers (during intermediate code phase, one assumes an in�nite
number)

1.4 Symbol Table

a. Purpose: record information about various objects in the source program

b. Examples

� procedure - no. and type of arguments

� simple variable - type

� array - type, size

c. Use - information is required during

� parsing

� code generation

8

1.5 Error Handler

a. Errors - all errors should be

� detected

� detected correctly

� detected as soon as possible

� reported at the appropriate place and in a helpful manner

b. Purpose

� report errors

� \error recovery" - proceed with processing

c. Note: Errors can occur in each phase

� misspelled token

� wrong syntax

� improper procedure call

� statements that cannot be reached

9

