CPS 140 - Mathematical Foundations of CS Dr. S. Rodger Section: Parsing (handout)

Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in L(G) for some CFG G.

Review

Consider the CFG G:

$$\begin{split} \mathbf{S} &\to \mathbf{A}\mathbf{a} \\ \mathbf{A} &\to \mathbf{A}\mathbf{A} \mid \mathbf{A}\mathbf{B}\mathbf{a} \mid \epsilon \\ \mathbf{B} &\to \mathbf{B}\mathbf{B}\mathbf{a} \mid \mathbf{b} \mid \epsilon \end{split}$$

Is ba in L(G)? Running time?

Remove ϵ -rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

$$\begin{array}{l} S \rightarrow Aa \mid a \\ A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\ B \rightarrow BBa \mid Ba \mid a \mid b \end{array}$$

Is ba in L(G)? Running time?

Top-down Parser:

• Start with S and try to derive the string.

 $S \to aS \mid b$

• Examples: LL Parser, Recursive Descent

Bottom-up Parser:

• Start with string, work backwards, and try to derive S.

• Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

$$G = (V,T,R,S)$$

$$w,v \in (V \cup T)^*$$

$$a \in T$$

$$X,A,B \in V$$

$$X_I \in (V \cup T)^+$$

Definition: FIRST(w) = the set of terminals that begin strings derived from w.

If
$$w \stackrel{*}{\Rightarrow} av$$
 then
 a is in FIRST(w)
If $w \stackrel{*}{\Rightarrow} \epsilon$ then
 ϵ is in FIRST(w)

To compute FIRST:

- 1. $FIRST(a) = \{a\}$
- 2. FIRST(X)
 - (a) If $X \to aw$ then a is in FIRST(X)
 - (b) IF $X \to \epsilon$ then ϵ is in FIRST(X)
 - (c) If $X \to Aw$ and $\epsilon \in FIRST(A)$ then Everything in FIRST(w) is in FIRST(X)
- 3. In general, $FIRST(X_1X_2X_3...X_K) =$
 - $FIRST(X_1)$
 - \cup FIRST(X₂) if ϵ is in FIRST(X₁)
 - \cup FIRST(X₃) if ϵ is in FIRST(X₁) and ϵ is in FIRST(X₂)

...

- \cup FIRST(X_K) if ϵ is in FIRST(X₁) and ϵ is in FIRST(X₂)
 - ... and ϵ is in FIRST(X_{K-1})
- $-\{\epsilon\}$ if $\epsilon \notin FIRST(X_J)$ for all J

Example: $L = \{a^n b^m c^n : n \ge 0, 0 \le m \le 1\}$

$$S \to aSc \mid B$$
$$B \to b \mid \epsilon$$

$$FIRST(B) =$$

$$FIRST(S) =$$

$$FIRST(Sc) =$$

Example

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{BCD} \mid \mathbf{aD} \\ \mathbf{A} &\rightarrow \mathbf{CEB} \mid \mathbf{aA} \\ \mathbf{B} &\rightarrow \mathbf{b} \mid \epsilon \\ \mathbf{C} &\rightarrow \mathbf{dB} \mid \epsilon \\ \mathbf{D} &\rightarrow \mathbf{cA} \mid \epsilon \\ \mathbf{E} &\rightarrow \mathbf{e} \mid \mathbf{fE} \end{split}$$

$$FIRST(S) =$$

$$FIRST(A) =$$

$$FIRST(B) =$$

$$FIRST(C) =$$

$$FIRST(D) =$$

$$FIRST(E) =$$

Definition: FOLLOW(X) = set of terminals that can appear to the right of X in some derivation.

If
$$S \stackrel{*}{\Rightarrow} wAav$$
 then a is in FOLLOW(A)

(where w and v are strings of terminals and variables, a is a terminal, and A is a variable)

To compute FOLLOW:

- 1. \$ is in FOLLOW(S)
- 2. If A \rightarrow wBv and v \neq ϵ then FIRST(v) $\{\epsilon\}$ is in FOLLOW(B)
- 3. IF A \to wB OR A \to wBv and ϵ is in FIRST(v) then FOLLOW(A) is in FOLLOW(B)
- 4. ϵ is never in FOLLOW

Example:

$$S \to aSc \mid B$$
$$B \to b \mid \epsilon$$

$$FOLLOW(S) =$$

$$FOLLOW(B) =$$

Example:

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{BCD} \mid \mathbf{aD} \\ \mathbf{A} &\rightarrow \mathbf{CEB} \mid \mathbf{aA} \\ \mathbf{B} &\rightarrow \mathbf{b} \mid \epsilon \\ \mathbf{C} &\rightarrow \mathbf{dB} \mid \epsilon \\ \mathbf{D} &\rightarrow \mathbf{cA} \mid \epsilon \\ \mathbf{E} &\rightarrow \mathbf{e} \mid \mathbf{fE} \end{split}$$

FOLLOW(S) =

FOLLOW(A) =

FOLLOW(B) =

FOLLOW(C) =

FOLLOW(D) =

FOLLOW(E) =