> CPS 140 - Mathematical Foundations of CS
> Dr. Susan Rodger
> Section: Introduction (Ch. 1) (handout)

Power of Machines

automata	Can do?	Can't do?
FA	integers	arith expr
PDA	arith expr	compute expr
TM	compute expr	decide if halts

Applications

Compiler

- Question: C++ program - is it valid?
- Question: language L , program P - is P valid?

Stages of a Compiler

assembly language program

Set Theory - Read Chapter 1
A Set is a collection of elements.
$A=\{1,4,6,8\}, B=\{2,4,8\}, C=\{3,6,9,12, \ldots\}, D=\{4,8,12,16, \ldots\}$

- (union) $\mathrm{A} \cup \mathrm{B}=$
- (intersection) $\mathrm{A} \cap \mathrm{B}=$
- $\mathrm{C} \cap \mathrm{D}=$
- (member of) $42 \in \mathrm{C}$?
- (subset) $\mathrm{B} \subset \mathrm{C}$?
- $\mathrm{B} \cap \mathrm{A} \subseteq \mathrm{D}$?
- (product) $\mathrm{A} \times \mathrm{B}=$
- $|B|=$
- $\emptyset \in \mathrm{B} \cap \mathrm{C}$?
- (powerset) $2^{B}=$

Example

Prove: Set S has $2^{|S|}$ subsets.

$\|S\|$	number of subsets
0	

1. Basis: $P(1)$? Prove smallest instance is true.
2. Induction Hypothesis - I.H.

Assume $\mathrm{P}(\mathrm{n})$ is true for $1,2, \ldots, \mathrm{n}$
3. Induction Step - I.S.

Show $\mathrm{P}(\mathrm{n}+1)$ is true (using I.H.)

Proof of Example:

1. Basis:
2. I.H. Assume
3. I.S. Show

Definition: An infinite set is countable if its elements have 1-1 correspondence with the positive integers.

Examples:

- $\mathrm{S}=\{$ positive odd integers $\}$
- $S=\{$ real numbers $\}$
- $S=\{(i, j) \mid i, j>0$, are integers $\}$

Theorem Let S be an infinite countable set. Its powerset 2^{S} is not countable.

Proof - Diagonalization

- S is countable, so it's elements can be enumerated.
$\mathrm{S}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6} \ldots\right\}$
An element $\mathrm{t} \in 2^{S}$ can be represented by a sequence of 0 's and 1 's such that the i th position in t is 1 if s_{i} is in $t, 0$ if s_{i} is not in t .

Example, $\left\{s_{2}, s_{3}, s_{5}\right\}$ represented by
Example, set containing every other element from S , starting with s_{1} is $\left\{s_{1}, s_{3}, s_{5}, s_{7}, \ldots\right\}$ represented by
Suppose 2^{S} countable. Then we can emunerate all its elements: t_{1}, t_{2}, \ldots

	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	\ldots	
t_{1}	0	1	0	1	0	0	1		\cdots
t_{2}	1	1	0	0	1	1	0		\cdots
t_{3}	0	0	0	0	1	0	0		\cdots
t_{4}	1	0	1	0	1	1	0		\cdots
t_{5}	1	1	1	1	1	1	1	\cdots	
t_{6}	1	0	0	1	0	0	1	\cdots	
t_{7}	0	1	0	1	0	0	0	\cdots	
\cdots									

3 Major Concepts

- languages
- grammars
- automata

Languages

- Σ - set of symbols, alphabet
- string - finite sequence of symbols
- language - set of strings defined over Σ

Examples

- $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$
$\mathrm{L}=\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ldots\}$
- $\Sigma=\{a, b, c\}$
$\mathrm{L}=\{a b, a c, c a b b\}$
- $\Sigma=\{a, b\}$
$\mathrm{L}=\left\{a^{n} b^{n} \mid n>0\right\}$

Notation

- symbols in alphabet: a, b, c, d, ...
- string names: $\mathrm{u}, \mathrm{v}, \mathrm{w}, \ldots$

Definition of concatenation

Let $\mathrm{w}=a_{1} a_{2} \ldots a_{n}$ and $\mathrm{v}=b_{1} b_{2} \ldots b_{m}$
Then wov OR wv=
See book for formal definitions of other operations.

String Operations

strings: $w=a b b c, ~ v=a b, u=c$

- size of string

$$
|\mathrm{w}|+|\mathrm{v}|=
$$

- concatenation
$\mathrm{v}^{3}=\mathrm{vvv}=\mathrm{vovov}=$
- $\mathrm{v}^{0}=$
- $\mathrm{w}^{R}=$
- $\left|\mathrm{vv}^{R}{ }_{\mathrm{w}}\right|=$
- ab $\circ \epsilon=$

Definition

$\Sigma^{*}=$ set of strings obtained by concatenating 0 or more symbols from Σ

Example

$\Sigma=\{a, b\}$
$\Sigma^{*}=$
$\Sigma^{+}=$

Examples

$\Sigma=\{a, b, c\}, L_{1}=\{a b, b c, a b a\}, L_{2}=\{c, b c, b c c\}$

- $L_{1} \cup L_{2}=$
- $L_{1} \cap L_{2}=$
- $\overline{L_{1}}=$
- $\overline{L_{1} \cap L_{2}}=$
- $L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}=$

Definition

$$
\begin{aligned}
L^{0} & =\{\epsilon\} \\
L^{2} & =L \circ L
\end{aligned}
$$

$L^{3}=L \circ L \circ L$
$L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup L^{3} \ldots$
$L^{+}=L^{1} \cup L^{2} \cup L^{3} \ldots$
Example Is L a countable set?
$\mathrm{S}=\left\{w \in \Sigma^{+}\right\}, \Sigma=\{a, b\}$

Regular Expressions

Method to represent strings in a language

$$
\begin{array}{ll}
+ & \text { union (or) } \\
\circ & \text { concatenation (AND) (can omit) } \\
* & \text { star-closure (repeat } 0 \text { or more times) }
\end{array}
$$

Example:

$(a+b)^{*} \circ a \circ(a+b)^{*}$

Example:

(aa)*

Definition Given Σ,

1. $\emptyset \epsilon, a \in \Sigma$ are R.E.
2. If r and s are R.E. then

- $\mathrm{r}+\mathrm{s}$ is R.E.
- rs is R.E.
- r^{*} is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: $\mathrm{L}(\mathrm{r})=$ language denoted by R.E. r .

1. $\emptyset,\{\epsilon\},\{a\}$ are L denoted by a R.E.
2. if r and s are R.E. then
(a) $\mathrm{L}(\mathrm{r}+\mathrm{s})=\mathrm{L}(\mathrm{r}) \cup \mathrm{L}(\mathrm{s})$
(b) $\mathrm{L}(\mathrm{rs})=\mathrm{L}(\mathrm{r}) \circ \mathrm{L}(\mathrm{s})$
(c) $\mathrm{L}\left((\mathrm{r})^{*}\right)=\left(\mathrm{L}(\mathrm{r})^{*}\right)$

Precedence Rules

[^0]
Example:

$a b^{*}+c=$

Examples:

1. $\Sigma=\{a, b\},\left\{w \in \Sigma^{*} \mid w\right.$ has an odd number of a 's followed by an even number of b 's $\}$.
2. $\Sigma=\{a, b\},\left\{w \in \Sigma^{*} \mid w\right.$ has no more than $3 a$'s and must end in $\left.a b\right\}$.
3. Regular expression for positive and negative integers

Grammars

grammar for english

```
<sentence> -> <subject><verb><d.o.>
<subject> }->\mathrm{ <noun> | <article><noun>
<verb> }->\mathrm{ hit | ran | ate
<d.o.> }->\mathrm{ <article><noun>
<noun> }->\mathrm{ Fritz | ball
<article> }->\mathrm{ the | an | a
```


Examples

Fritz hit the ball.

```
<sentence> -> <subject><verb><d.o>
    -> <noun><verb><d.o>
    -> Fritz <verb><d.o.>
    -> Fritz hit <d.o.>
    -> Fritz hit <article><noun>
    -> Fritz hit the <noun>
    -> Fritz hit the ball
```

The ball hit Fritz.
The ball ate the ball
Syntactically correct?
Semantically correct?

Grammar

$\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ where

- V - variables (or nonterminals)
- T - terminals
- S - start variable $(\mathrm{S} \in \mathrm{V})$
- P - productions (rules)
$\mathrm{x} \rightarrow \mathrm{y}$ "means" replace x by y $\mathrm{x} \in(\mathrm{V} \cup \mathrm{T})^{+}, \mathrm{y} \in(\mathrm{V} \cup \mathrm{T})^{*}$
where V, T, and P are finite sets.

Definition

$\mathrm{w} \Rightarrow \mathrm{z} \quad \mathrm{w}$ derives z
$\mathrm{w} \stackrel{*}{\Rightarrow} \mathrm{z} \quad$ derives in 0 or more steps
$\mathrm{w} \stackrel{+}{\Rightarrow} \mathrm{z} \quad$ derives in 1 or more steps

Definition

$\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
$\mathrm{L}(\mathrm{G})=\left\{\mathrm{w} \in \mathrm{T}^{*} \mid \mathrm{S} \xlongequal{*} \mathrm{w}\right\}$

Example

$\mathrm{G}=(\{\mathrm{S}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P})$
$\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{aaS}, \mathrm{S} \rightarrow \mathrm{b}\}$
$\mathrm{L}(\mathrm{G})=$

Example

$\mathrm{L}(\mathrm{G})=\left\{a^{n} c c b^{n} \mid n>0\right\}$
$\mathrm{G}=$

Automata

Abstract model of a digital computer

[^0]: * highest
 -

 $+$

