CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger
Section: Modeling using L-Systems (handout)

L-system

L-systems are grammatical systems introduced by Lyndenmayer to describe biological developments such as the growth of plants and cellular organisms.

An L-system is composed of three parts (Σ, h, w)

Σ	finite alphabet	set of symbols
h	rewriting rules	each symbol is replaced by string of symbols
w	axiom	starting point

h is finite substitutions, $\mathrm{h}: \Sigma \rightarrow \Sigma^{*}$.
$h(w)$ is computed by replacing every symbol in w that has a rewrite rule by that rule.
A language L of an L-system is the word sequence generated by

- $h^{0}(w)=w$
- $h^{1}(w)=h(w)$
- $h^{2}(w)=h(h(w))$
- ...
$\mathrm{L}=\left\{h^{i}(w) \mid i \geq 0\right\}$
NOTE: If $h(a)=b b$ we will write this as a rule

$$
\mathrm{a}==>\mathrm{bb}
$$

meaning the symbol a can be replaced by the symbols bb.

Example:

```
\(\Sigma\) alphabet: \(\{a, b\}\)
h rules: \(\quad \mathrm{a}==>\mathrm{a}\)
    \(\mathrm{b}==>\mathrm{ab}\)
w axiom: \(a b\)
```

Notes:

- $==>$ means "is replaced by"
- left hand side of rule must be a single character
- there is at most one rule for each character

What is the language L of strings represented by this L-system? that is, starting with the axiom, what are all the strings that can be generated from the rules?
$\mathrm{L}=$

Example:

Σ alphabet: $\{a\}$
h rules: $\mathrm{a}==>$ aa
w axiom: a
$\mathrm{L}=$

Drawing a picture of an L-system

Defining an L-system: (3 parts in this order)

- Axiom definition: This must be the first line of the file
- Production rules: Defines the replacement rules.

There must be spaces between the symbols on the right hand side of rules.

- Geometric rules: Defines colors, widths, etc.

Symbols for drawing and moving:

- g: draw a line one step in the current direction
- f: move forward one step in the current direction

Example:

This example is in the file: samp1

SET axiom X
X ==> gfg

SET d 15
SET iniwidth 5
SET color black

Example:

This example is in the file: samp2

axiom definition
production rule
geometric rules
length of line drawn is 15 units
width of initial line is 5 units

SET axiom X
X ==> g f g X
SET d 15
SET iniwidth 5
SET color black
start symbol is X
only change from previous program, repetition
length of line
width of initial line
$\mathrm{L}=$

Symbols for changing direction

- + : change direction to the right in a determined angle
- -: change direction to the left in a determined angle
- \&: change direction pitch down in a determined angle
- \wedge : change direction pitch up in a determined angle
- *: change direction roll left in a determined angle
- /: change direction roll right in a determined angle
- \%: change direction 180 degrees

Example:

This example is in the file: samp3

SET axiom X

$$
X==>\operatorname{ggg} \mathrm{X}+\mathrm{Y}
$$

$Y==>g$
SET d 15
SET iniwidth 5
SET angle 15
SET color blue
start symbol is X
rule with 2 replacements
length of line
width of initial line
angle for change of direction initial color
$\mathrm{L}=$

Example:

We will make just a slight change in the L-system. This example is in the file: samp4

SET axiom X

$\mathrm{X}==>\mathrm{g}$ change blue g g change yellow +Y X
only difference with file samp3
$Y==>g$
SET d 15
SET iniwidth 5
length of line
SET angle 15
SET color black
width of initial line angle for change of direction initial color
$\mathrm{L}=$

Stacking operations

- [: save in stack status of turtle which is current direction position and width of line
-]: recover from stack status of turtle

To make a branch, the turtle must draw one part of the branch and then come back to the fork position and draw the other part of the branch. Part of a string can be saved for processing by putting it within brackets [].

Example, consider the rules

SET axiom X

$$
\begin{array}{ll}
\mathrm{X}==>\mathrm{g}[\sim+\mathrm{Yg}] \mathrm{g} & \begin{array}{l}
\text { within }[] \text { 's is a branch } \\
\text { the } \sim \text { means decrement the width of the line }
\end{array} \\
\mathrm{Y}==>+\mathrm{Y} & \\
\text { SET d } 18 & \\
\text { SET iniwidth } 4 & \text { increment for changing width of line } \\
\text { SET incwidth } 1 & \\
\text { SET angle } 30 & \\
\text { SET color black } &
\end{array}
$$

First string in L is $\mathrm{g}[\sim+\mathrm{Yg}] \mathrm{g}$. To draw this first draw the first line for the first g . At this point, save the $[\sim+\mathrm{Yg}]$ along with the current direction and the current width of the line. Continue drawing at the first symbol past the]. Draw a line. Now that the end of the string has been reached, come back to the point in the drawing where the branch occured and draw the string within the []'s.

What is L ? $\mathrm{L}=$

Suppose we change the X rule above by adding X onto the end:

$$
\mathrm{X}==>\mathrm{g}[\sim+\mathrm{Y} \mathrm{~g}] \mathrm{g} \mathrm{X}
$$

Now the L-system looks like:

Example of drawing plants via L-systems

Now we will examine some examples of growing plants.

Example:

This is in file: plant1

SET axiom X

$$
\begin{aligned}
& \mathrm{X}==>\mathrm{g}[\sim+\mathrm{g} \mathrm{Y}] \mathrm{g} \mathrm{X} \\
& \mathrm{Y}==>\mathrm{g} \mathrm{~g}[\sim+\mathrm{g} \text { leaf }] \\
& \text { leaf }==>[\text { color Green }\{+\mathrm{f}-\mathrm{ff}-\mathrm{f}+\%+\mathrm{f}-\mathrm{ff}-\mathrm{f}\}]
\end{aligned}
$$

SET d 18
SET iniwidth 4
SET incwidth 1
SET angle 18
SET color black

Differences from previous examples:

- The color field allows you to specify a color for part of the drawing.
- The parenthesis $\}$ are used to define a region that is to be filled in.

This is in file: plant2

SET axiom X
$\mathrm{X}==>\mathrm{g}[\sim+\mathrm{g} \mathrm{Y}][\sim--\mathrm{g} \mathrm{Y}] \mathrm{g} \mathrm{X}$
$\mathrm{Y}==>\mathrm{X} \mathrm{g} \mathrm{g}[\sim+\mathrm{g}$ leaf $]$
leaf $==>[$ color Green $\{+\mathrm{f}-\mathrm{ff}-\mathrm{f}+\%+\mathrm{f}-\mathrm{ff}-\mathrm{f}\}]$
SET d 18
SET iniwidth 4
SET incwidth 1
SET angle 18
SET color black

Fractals

References:

- The Algorithmic Beauty of Plants, by P. Prusinkiewicz and A. Lindenmayer
- Automata, Languages, Development, by A. Lindenmayer and G. Rozenberg

