CPS 140 - Mathematical Foundations of CS Dr. S. Rodger

Section: Pushdown Automata (Ch. 3.3-3.4) (handout)

Pushdown Automata

A DFA= (K,Σ,δ,q_0,F)

Modify DFA by adding a stack. New machine is called Pushdown Automata (PDA).

Definition: Nondeterministic PDA (NPDA) is defined by

$$M=(K,\Sigma, , , \Delta, q_0, z, F)$$

where

K is finite set of states

 Σ is tape (input) alphabet

 $, \ \ is \ stack \ alphabet$

 q_0 is initial state

z is start stack symbol (bottom of stack marker)

 $F \subseteq K$ is set of final states.

 Δ is a finite subset of $(\mathbf{K} \times (\Sigma \cup \{\epsilon\}) \times,\ ^*) \times\ (K \times,\ ^*)$

Example of transitions

$$\Delta(q_1, a, b) = \{(q_3, b), (q_4, ab), (q_6, \epsilon)\}$$

Meaning: If in state q_1 with "a" the current tape symbol and "b" the symbol on top of the stack, then pop "b", and either

```
move to q_3 and push "b" on stack move to q_4 and push "ab" on stack ("a" on top) move to q_6
```

Transitions can be represented using a transition diagram.

The diagram for the above transitions is:

Each arc is labeled by a triple: x,y;z where x is the current input symbol, y is the top of stack symbol which is popped from the stack, and z is a string that is pushed onto the stack.

Instantaneous Description (configuration):

(q, w, u)

Notation to describe the current state of the machine (q), unread portion of the input string (w), and the current contents of the stack (u).

Description of a Move:

$$(q_1, aw, bx) \vdash (q_2, w, yx)$$
iff

Definition Let $M=(K,\Sigma,, \Delta,q_0,z,F)$ be a NPDA. $L(M)=\{w\in\Sigma^*\mid (q_0,w,z)\overset{*}{\vdash}(p,\epsilon,u),\ p\in F,\ u\in, {}^*\}$. The NPDA accepts all strings that start in q_0 and end in a final state.

Example: L= $\{a^nb^n|n\geq 0\},\ \Sigma=\{a,b\},\ ,\ =\{z,a\}$

Another Definition for Language Acceptance

NPDA M accepts L(M) by empty stack:

$$L(M) = \{ w \in \Sigma^* | (q_0, w, z) \stackrel{*}{\vdash} (p, \epsilon, \epsilon) \}$$

Example: L={ $ww^R | w \in \Sigma^+$ }, $\Sigma = \{a,b\}$, , $= \{z,a,b\}$

Example: L= $\{ww|w\in\Sigma^*\},\ \Sigma=\{a,b\}$

Examples for you to try on your own: (solutions are at the end of the handout).

- L= $\{a^n b^m | m > n, m, n > 0\}, \Sigma = \{a, b\}, = \{z, a\}$
- L= $\{a^n b^{n+m} c^m | n, m > 0\}, \Sigma = \{a, b, c\},$
- L= $\{a^n b^{2n} | n > 0\}, \Sigma = \{a, b\}$

Theorem Given NPDA M that accepts by final state, \exists NPDA M' that accepts by empty stack s.t. L(M)=L(M').

• **Proof** (sketch)

$$\begin{split} \mathbf{M} &= (\mathbf{K}, \boldsymbol{\Sigma},, \; , \boldsymbol{\Delta}, q_0, \mathbf{z}, \mathbf{F}) \\ &\quad \mathbf{Construct} \;\; \mathbf{M'} &= (\mathbf{K'}, \boldsymbol{\Sigma},, \; ', \boldsymbol{\Delta'}, q_s, \mathbf{z'}, \mathbf{F'}) \end{split}$$

Theorem Given NPDA M that accepts by empty stack, ∃ NPDA M' that accepts by final state.

• **Proof:** (sketch)

$$\begin{split} \mathbf{M} &= (\mathbf{K}, \boldsymbol{\Sigma},, \; , \boldsymbol{\Delta}, q_0, \mathbf{z}, \mathbf{F}) \\ &\quad \mathbf{Construct} \;\; \mathbf{M'} &= (\mathbf{K'}, \boldsymbol{\Sigma},, \; ', \boldsymbol{\Delta'}, q_s, \mathbf{z'}, \mathbf{F'}) \end{split}$$

Theorem For any CFL L not containing ϵ , \exists an NPDA M s.t. L=L(M).

• Proof (sketch)

Given (ϵ -free) CFL L.

 $\Rightarrow \exists CFG G \text{ such that } L=L(G).$

 $\Rightarrow \exists G' \text{ in GNF, s.t. } L(G)=L(G').$

G'=(V,T,R,S). All productions in R are of the form:

Example: Let G'=(V,T,R,S), R=

$$\begin{array}{l} S \, \rightarrow \, aSA \, \mid \, aAA \, \mid \, b \\ A \, \rightarrow \, bBBB \\ B \, \rightarrow \, b \end{array}$$

Theorem Given a NPDA M, \exists a NPDA M' s.t. all transitions have the form $\Delta(q_i, \mathbf{a}, \mathbf{A}) = \{c_1, c_2, \dots c_n\}$ where

$$c_i = (q_j, \epsilon)$$

or $c_i = (q_j, BC)$

Each move either increases or decreases stack contents by a single symbol.

• Proof (sketch)

Theorem If L=L(M) for some NPDA M, then L is a CFL.

• **Proof:** Given NPDA M.

First, construct an equivalent NPDA M that will be easier to work with. Construct M' such that

- 1. accepts if stack is empty
- 2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)

$$M'=(K,\Sigma, ,\Delta,q_0,z,F)$$

Construct $G=(V,\Sigma,R,S)$ where

$$V = \{(q_i c q_j) | q_i, q_j \in K, c \in , \}$$

 $(q_i c q_j)$ represents "starting at state q_i the stack contents are cw, $w \in$, *, some path is followed to state q_i and the contents of the stack are now w".

Goal: (q_0zq_f) which will be the start symbol in the grammar.

Meaning: We start in state q_0 with z on the stack and process the input tape. Eventually we will reach the final state q_f and the stack will be empty. (Along the way we may push symbols on the stack, but these symbols will be popped from the stack).

.

Example:

 $L(M) = \{aa^*b\}, \ M = (K, \Sigma, , \ , \Delta, q_0, z, F), \ K = \{q_0, q_1, q_2, q_3\}, \ \Sigma = \{a, b\},, \ = \{A, z\}, F = \{\}. \ M \ \text{accepts by empty stack}.$

Construct the grammar G=(V,T,R,S),

$$V = \{(q_0Aq_0), (q_0zq_0), (q_0Aq_1), (q_0zq_1), \ldots\}$$

$$T{=}\Sigma$$

$$S = (q_0 z q_2)$$

R =

```
From transition 1
                           (q_0Aq_1) \rightarrow b
                            (q_1zq_2) \rightarrow
From transition 2
                                                                       From transition 5
                                                                                                  (q_3zq_0) \rightarrow
                                                                                                                   (q_0Aq_0)(q_0zq_0)
                           (q_0Aq_3) \rightarrow
From transition 3
                                                                                                                    (q_0Aq_1)(q_1zq_0)
                                                                                                                    (q_0Aq_2)(q_2zq_0)|
From transition 4
                            (q_0zq_0) \rightarrow
                                            a(q_0Aq_0)(q_0zq_0)
                                                                                                                    (q_0Aq_3)(q_3zq_0)
                                            a(q_0Aq_1)(q_1zq_0)|
                                                                                                  (q_3zq_1) \rightarrow
                                                                                                                   (q_0Aq_0)(q_0zq_1)
                                                                                                                   (q_0Aq_1)(q_1zq_1)|
                                            a(q_0Aq_2)(q_2zq_0)
                                            a(q_0Aq_3)(q_3zq_0)
                                                                                                                    (q_0Aq_2)(q_2zq_1)
                            (q_0zq_1) \rightarrow
                                            a(q_0Aq_0)(q_0zq_1)
                                                                                                                    (q_0Aq_3)(q_3zq_1)
                                            a(q_0Aq_1)(q_1zq_1)
                                                                                                  (q_3zq_2) \rightarrow
                                                                                                                   (q_0Aq_0)(q_0zq_2)
                                            a(q_0Aq_2)(q_2zq_1)|
                                                                                                                    (q_0Aq_1)(q_1zq_2)
                                                                                                                    (q_0 A q_2)(q_2 z q_2)
                                            a(q_0Aq_3)(q_3zq_1)
                            (q_0zq_2) \rightarrow
                                            a(q_0Aq_0)(q_0zq_2)
                                                                                                                    (q_0Aq_3)(q_3zq_2)
                                                                                                  (q_3zq_3) \rightarrow
                                            a(q_0Aq_1)(q_1zq_2)
                                                                                                                   (q_0 A q_0)(q_0 z q_3)
                                            a(q_0Aq_2)(q_2zq_2)|
                                                                                                                    (q_0Aq_1)(q_1zq_3)
                                            a(q_0Aq_3)(q_3zq_2)
                                                                                                                    (q_0 A q_2)(q_2 z q_3)
                            (q_0zq_3) \rightarrow
                                            a(q_0Aq_0)(q_0zq_3)
                                                                                                                    (q_0Aq_3)(q_3zq_3)
                                            a(q_0Aq_1)(q_1zq_3)|
                                            a(q_0Aq_2)(q_2zq_3)
                                            a(q_0Aq_3)(q_3zq_3)
```

Recognizing aaab in M:

$$\begin{array}{cccc} (q_{0}, aaab, z) & \vdash (q_{0}, aab, Az) \\ & \vdash (q_{3}, ab, z) \\ & \vdash (q_{0}, ab, Az) \\ & \vdash (q_{3}, b, z) \\ & \vdash (q_{0}, b, Az) \\ & \vdash (q_{1}, \epsilon, z) \\ & \vdash (q_{2}, \epsilon, \epsilon) \end{array}$$

Derivation of string aaab in G:

$$(q_0zq_2) \Rightarrow a(q_0Aq_3)(q_3zq_2)$$

$$\Rightarrow aa(q_3zq_2)$$

$$\Rightarrow aa(q_0Aq_3)(q_3zq_2)$$

$$\Rightarrow aaa(q_3zq_2)$$

$$\Rightarrow aaa(q_0Aq_1)(q_1zq_2)$$

$$\Rightarrow aaab$$

$$\Rightarrow aaab$$

Definition: A PDA M=(K, Σ , , δ , q_0 ,z,F) is deterministic if for every $q \in K$, $a \in \Sigma \cup \{\epsilon\}$, $b \in A$

- 1. $\delta(q, a, b)$ contains at most 1 element
- 2. if $\delta(q, \epsilon, b) \neq \emptyset$ then $\delta(q, c, b) = \emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. L=L(M).

Examples:

- 1. Previous pda for $\{a^nb^n|n\geq 0\}$ is deterministic.
- 2. Previous pda for $\{a^nb^mc^{n+m}|n,m>0\}$ is deterministic.
- 3. Previous pda for $\{ww^R | w \in \Sigma^+\}, \Sigma = \{a, b\}$ is nondeterministic.

Note: There are CFL's that are not deterministic.

L= $\{a^nb^n|n \ge 1\} \cup \{a^nb^{2n}|n \ge 1\}$ is a CFL and not a DCFL.

• **Proof:** $L = \{a^n b^n : n \ge 1\} \cup \{a^n b^{2n} : n \ge 1\}$

It is easy to construct a NPDA for $\{a^nb^n : n \ge 1\}$ and a NPDA for $\{a^nb^{2n} : n \ge 1\}$. These two can be joined together by a new start state and ϵ -transitions to create a NPDA for L. Thus, L is CFL.

Now show L is not a DCFL. Assume that there is a deterministic PDA M such that L = L(M). We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.

Construct a PDA M' as follows:

- 1. Create two copies of M: M_1 and M_2 . The same state in M_1 and M_2 are called cousins.
- 2. Remove accept status from accept states in M_1 , remove initial status from initial state in M_2 . In our new PDA, we will start in M_1 and accept in M_2 .
- 3. Outgoing arcs from old accept states in M_1 , change to end up in the cousin of its destination in M_2 . This joins M_1 and M_2 into one PDA. There must be an outgoing arc since you must recognize both a^nb^n and a^nb^{2n} . After reading n b's, must accept if no more b's and continue if there are more b's.
- 4. Modify all transitions that read a b and have their destinations in M_2 to read a c.

This is the construction of our new PDA.

When we read a^nb^n and end up in an old accept state in M_1 , then we will transfer to M_2 and read the rest of a^nb^{2n} . Only the b's in M_2 have been replaced by c's, so the new machine accepts $a^nb^nc^n$.

The language accepted by our new PDA is $a^n b^n c^n$. But this is not a CFL. Contradiction! Thus there is no deterministic PDA M such that L(M) = L. Q.E.D.

Example: L={ $a^nb^m|m>n, m, n>0$ }, $\Sigma=\{a,b\}$, , = {z,a}

Example: L= $\{a^nb^{n+m}c^m|n,m>0\},\ \Sigma=\{a,b,c\},$

Example: L= $\{a^nb^{2n}|n>0\}, \Sigma=\{a,b\}$

