
Rapid Experimentation for Testing and Tuning a
Production Database Deployment∗

Nedyalko Borisov
Duke University

nedyalko@cs.duke.edu

Shivnath Babu
Duke University

shivnath@cs.duke.edu

ABSTRACT
The need to perform testing and tuning of database instances with
production-like workloads (W), configurations (C), data (D), and
resources (R) arises routinely. The further W , C, D, and R used in
testing and tuning deviate from what is observed on the production
database instance, the lower is the trustworthiness of the testing
and tuning tasks done. For example, it is common to hear about
performance degradation observed after the production database is
upgraded from one software version to another. A typical cause
of this problem is that the W , C, D, or R used during upgrade
testing differed in some way from that on the production database.
Performing testing and tuning tasks in principled and automated
ways is very important, especially since—spurred by innovations in
cloud computing—the number of database instances that a database
administrator (DBA) has to manage is growing rapidly.

We present Flex, a platform for trustworthy testing and tuning of
production database instances. Flex gives DBAs a high-level lan-
guage, called Slang, to specify definitions and objectives regard-
ing running experiments for testing and tuning. Flex’s orchestra-
tor schedules and runs these experiments in an automated manner
that meets the DBA-specified objectives. Flex has been fully pro-
totyped. We present results from a comprehensive empirical eval-
uation that reveals the effectiveness of Flex on diverse problems
such as upgrade testing, near-real-time testing to detect corruption
of data, and server configuration tuning. We also report on our ex-
periences taking some of the testing and tuning software described
in the literature and porting them to run on the Flex platform.

1. INTRODUCTION
It is estimated that, over the next decade, the number of servers

(virtual and physical) in enterprise datacenters will grow by a factor
of 10, the amount of data managed by these datacenters will grow
by a factor of 50, and the number of files the datacenter has to
deal with will grow by a factor of 75 [16]. Meanwhile, skilled
information technology (IT) staff to manage the growing number
of servers and data will increase less than 1.5 times [16].

∗Supported by NSF grants 0917062 and 0964560

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

The implication of this trend is clear. The days where a database
administrator (DBA) is responsible for managing one or few pro-
duction database instances are numbered. In the near future, a DBA
will be responsible for the administration of tens to hundreds of
database instances. The DBA will need to ensure that the produc-
tion databases, each serving real applications and users, are avail-
able 24x7, and that the databases perform as per specified require-
ments. We are already starting to see very high database-to-DBA
ratios in pioneering companies like Salesforce.

High database-to-DBA ratios are only possible through exten-
sive automation of database administration. Automation of tasks
like database installation and monitoring has seen major advances.
Significant progress has also been made towards automating ad-
ministrative tasks like backups, failover, defragmentation, index re-
builds, and patch installation (e.g., [11, 20]). However, more chal-
lenging administrative tasks to meet database availability and per-
formance goals are harder to automate. We will first give examples
of problems that have often happened in practice, and will continue
to happen unless new solutions are developed.
Upgrade problems: Consider an upgrade of the database soft-
ware from one version to another. The database developers will
run standard test suites to test the new version. However, when a
customer upgrades her production database instance to the new ver-
sion, a performance degradation is experienced. Many instances of
this problem are documented for database systems such as MySQL
[19], Oracle [21], PostgreSQL [22], and others. Typically, some
unique characteristic of the production instance—e.g., the scale or
correlations in the production data, the properties of the produc-
tion server hardware or operating environment, or mix of queries in
the production workload—causes the problem to manifest during
production use but not during offline testing.
Tuning problems: A production database instance will need to be
tuned when it is not meeting specified performance requirements.
A DBA’s usual course of action is to try to replicate the production
environment in a test setting. The DBA would then run and mon-
itor parts of the workload on the test database instance to recre-
ate the problem, narrow down its possible causes, and identify a
fix for the problem. A highly nontrivial next step is to estimate
whether the fix will actually solve the performance problem on the
production database instance; multiple trial-and-error steps may be
needed. Well-meaning changes to production instances have led to
performance or availability problems in the past [7].
Data integrity problems: Corruption of data is a serious prob-
lem where bits of data stored in persistent storage differ from what
they are supposed to be [4]. Data corruption can lead to three un-
desirable outcomes: data loss, system unavailability, and incorrect
results. Such problems have been caused in production database
instances due to hardware problems such as errors in magnetic me-

Name Description of database administration task in English Task specification using w,c,r,d representation Things to note
A/B
testing

How would the current database workload have performed
if index I1 had (hypothetically) been part of the produc-
tion database’s configuration?

Run experiment e = 〈w=W (tcur),c,r=R(tcur),d=D(tcur)〉,
where c=C(tcur)∪{I1}, and compare the observed perfor-
mance with the production database’s performance on its
current workload W (tcur), configuration C(tcur), data
D(tcur), and resources R(tcur)

Tries a configu-
ration different
from the produc-
tion database’s
current one

Tuning
surface
creation
(Fig. 9)

How does the throughput obtained for my website’s OLTP
workload due to my MySQL database change as its
query_cache_size and key_buffer_size parameters are var-
ied in the ranges [0,10GB] and [0,8GB] respectively?

For qi∈[0,10GB] & kj∈[0,8GB], run experiment eij =
〈w=W (tcur),cij ,r=R(tcur),d=D(tcur)〉, where cij is
C(tcur) with two changes: parameter query_cache_size is
set to qi and key_buffer_size is set to kj

Gives potential to
run multiple in-
dependent exper-
iments in parallel

Upgrade
planning

Suppose my production PostgreSQL database was run-
ning the newer version 9.0 instead of the current version
8.4. Would any performance regression have been ob-
served for the workload and data from 10.00 AM of each
day of last week as well as each day of the coming week?

For time t∈ 24 hour increments from [6/1/2012,10AM] to
[6/14/2012,10AM], run experiment ei = 〈w=W (t),c =
C(t),ri,d=D(t)〉, where ri has the same hardware charac-
teristics as R(t), but runs the newer database software 9.0
instead of 8.4 in order to find the performance difference

Tries a different
software image
on the production
database’s past
and future states

Data
integrity
testing

A security patch was applied to my production Oracle DB.
The patch could cause data corruption. Run Oracle’s DB-
verify corruption detection tool on the Lineitem and Order
tables once every hour. (Alert if corruption is detected)

For time t in 1 hour increments starting now, run experiment
e = 〈w,c=C(t),r=R(t),d=D(t)〉, where w is the DBverify
tool run on the Lineitem and Order tables

Runs a custom
workload on an
indefinite number
of future states

Stress
testing

If the workload on my production database goes up by 10x
in the coming holiday season, then how will it perform?

Run experiment e = 〈w,c=C(tcur),r=R(tcur),d=D(tcur)〉,
where w is W (tcur) scaled by a factor of 10

Uses a scaled ver-
sion of workload1

Table 1: Listing of some nontrivial uses enabled by the Flex platform. W (t), C(t), D(t), and R(t) respectively denote the respective
states of the workload, configuration, data, and resources for the production database instance at time t

dia (bit rot), bit flips in CPU or RAM due to alpha particles, bugs
in software or firmware, as well as mistakes by human administra-
tors [24]. It took only one unfortunate instance of data corruption
(which spread from the production instance to backups), and the
consequent loss of data stored by users, to put a popular social-
bookmarking site out of business [18].
The above problems indicate the need to test and tune the pro-
duction database instance in an efficient and timely fashion with
production-like workloads (W), configurations (C), data (D), and
hardware and software resources (R). The further W , C, D, and R
deviate from what is observed in the production instance, the lower
is the trustworthiness of the testing and tuning tasks done.

At the same time, the interactions of the testing and tuning tasks
with the production database instance have to be managed care-
fully. First, the performance overhead on the production instance
must be minimal. Thus, the resources used for testing and tuning
have to be well isolated from those used by the production database
instance to serve real applications and users. Second, the impact of
potential changes recommended for the production instance have to
be verified as thoroughly as possible before they are actually made.
These challenges are nontrivial partly because an automated solu-
tion is needed to handle the scale where a single DBA manages
hundreds of production database instances. The Flex platform is
designed to address these challenges.

1.1 Flex
The Flex platform enables efficient experimentation for trustwor-

thy testing and tuning of production database instances. Figure 1
gives a high-level illustration of the core concepts that Flex is based
on. These concepts will be defined precisely later in the paper.

Flex treats the production database instance as an entity that can
evolve over time. As illustrated in Figure 1, this entity is repre-
sented in terms of the workload W on the database, the config-
uration C (such as indexes and configuration parameters) of the
database, the data D in the database, and the resources R (such as
server hardware and software image) used by the database. Since
each of W , C, D, and R can change over time, we will use W (t),
C(t), D(t), and R(t) to denote their respective point-in-time states
at time t.

�����������	

����
����	
����

���������

������	 �� �������

����

���������������	

����	
����

���������

����
�

������	 �� �������

������������	

��������

���������
��������������������������	� ��������������

�����������	

���������������

������������	

�������	

������	

�������	

�������	�
��
�
� ������	��������������	

�����	 ������	

�
��
�

�

�����	

����	

�����	

�����	

�
�
�

�������

�������������

��������������

�������
����

�������

�������������

��������
�

��������������

�������

Figure 1: Overview of how Flex enables trustworthy experi-
mentation with state (workload, configuration, and data) de-
rived from the production database instance

For testing or tuning the production database instance, a DBA
can ask Flex to run one or more experiments. An experiment e =
〈w,c,r,d〉 starts a database instance on resources r with configura-
tion c and data d, and runs workload w. As illustrated in Figure 1,
Flex enables w, c, r, and d to be derived directly from the state
of the production database instance at a specific time in the past,
current, or future; or they can come from a custom specification.

Table 1 gives a number of nontrivial tasks that can be achieved by
the DBA through experiments using Flex. Flex will run each spec-
ified experiment automatically and efficiently. Flex ensures that
the resources r used in any experiment are well isolated from the
resources used by the production database instance. Multiple ex-
periments can be run in parallel subject to the DBA’s objectives re-
garding experiment completion times and number of usable hosts.

1.2 Contributions and Challenges
Slang language: The first challenge in Flex is to develop a lan-
guage in which DBAs or higher-level services can express a wide
spectrum of experiment-driven administrative tasks like those illus-

1Similar experiments can be done in Flex with scaled data sizes.

trated in Table 1. We have developed the Slang2 high-level lan-
guage that supports the key abstractions needed to specify such
tasks easily and intuitively. In addition, Slang enables users and
services to specify objectives on the number of hosts and comple-
tion times that Flex should meet while running the experiments.
Sections 2 and 4 describe Slang and its abstractions.
Orchestration of experiments: Given a Slang program, Flex auto-
mates the entire orchestration from planning and execution of the
program, to run-time monitoring and adaptation. The orchestra-
tion process has to address multiple challenges in order to run the
needed experiments while meeting the objectives specified:
• How much resources to allocate for running the experiments?
• In what order to schedule the experiments on these resources?
• How to efficiently load data needed for experiments from the

production database instance on to the allocated resources?
We have developed a novel technique for orchestration in Flex that
uses a mix of exploration (to learn models to predict experiment
running times) and exploitation (use of the learned models for plan-
ning) to meet the objectives in the Slang program. This technique is
both elastic (it can grow and shrink its resource usage) and adaptive
(it can react as unforeseen events such as failures arise or new in-
formation such as experiment running times is available). Flex also
supports a number of different techniques to transfer evolving data
from the production database instance to the resources allocated to
run experiments. The details of the orchestration techniques are
presented in Sections 5 and 6.
Prototype system: We have implemented the full set of language
and system features in a prototype of Flex where the production
database instance and experiments all run on a cloud platform such
as Amazon Web Services (AWS), Rackspace, or SQL Azure. Cloud
platforms are an excellent fit for Flex because these platforms are
leading the massive growth in the use of compute and storage re-
sources and the accompanying increase in database-to-DBA ratios.
Furthermore, Flex is designed to take advantage of the elastic and
pay-as-you-go nature of cloud platforms. The architecture and im-
plementation of Flex are presented in Section 7.
Evaluation: Section 8 presents results from a comprehensive em-
pirical evaluation of the Flex platform. We demonstrate how Flex
simplifies and improves the effectiveness of upgrade testing, pro-
duction database tuning, and data integrity testing. We have taken
a testing application from the literature and ported it to run on Flex
as a Flex Service. We dive into the details in order to demonstrate
the ease of developing higher-level testing and tuning applications
using Flex. We also give a comparison of this service when it runs
on Flex versus when it runs as written originally.

2. ABSTRACTION OF AN EXPERIMENT
Intuitively, a replica of the production database instance has to

be created in order to run an experiment. Three steps are involved
in order to run an experiment:
• Identifying—possibly also having to provision dynamically—a

host h that will provide the resources to run the experiment.3

• Loading a snapshot s of some specific state from the production
database instance on to the selected host h.
• Running an action a associated with the experiment on the

combination of the host h and snapshot s.
In this fashion, an experiment in Flex is represented as e = 〈a,s,h〉.
The rest of this section will elaborate on the three steps listed above,

2The name slang came from Fl{ex lang}uage.
3It is inadvisable to run experiments on the production database
instance since the experiments could cause unpredictable behavior.

and also clarify how the 〈a,s,h〉 representation subsumes the
〈w,c,d,r〉 representation from Section 1.

Host: In this paper, we consider database instances that run on
a single (possibly multicore) server. These instances are similar to
the main database server product sold by most commercial database
vendors as well as popular open-source databases like MySQL and
PostgreSQL. (Extending Flex to support parallel database instances
is an interesting avenue for future work which is discussed in Sec-
tion 10.) A host in Flex is a server that can run a database instance
as part of an experiment. Flex associates two types of information
with a host: the underlying server’s hardware characteristics as well
as the software image that runs on the server.

A host can be represented in a number of ways, and Flex can
adopt any one of these. We have chosen to use a simple methodol-
ogy that is motivated by how cloud providers represent hosts. The
host’s hardware resources are represented by a host type. As an
example, AWS’s Elastic Compute Cloud (EC2) supports seventeen
different host types currently [1]. Each host type maps to a spec-
ification of resources that will be contained in any host allocated
of that type. For example, AWS’s default m1.small type is a 32-bit
host with 1.7 GB memory, 1 EC2 Compute Unit, and 160 GB local
storage with moderate I/O performance.

The software that runs on a host is represented by an image. Each
software image has a unique identifier that represents the combina-
tion of software components in that image such as the OS, file-
system, and database management system. For example, an image
on AWS comes with pre-configured OS and application software
that is started when a host is allocated. Most database vendors pro-
vide images to run their database software on EC2 hosts.

Snapshot: A snapshot is a point-in-time representation of the en-
tire state of a database system. A snapshot collection process that
runs on the production database instance generates a snapshot when-
ever one is needed. This snapshot collection process—we provide
details in Section 6—may also ensure that the snapshots are made
persistent on a local or remote storage volume. Three types of state
are captured in a snapshot:
• The actual data (D) stored in the database.
• The database configuration (C) which includes information such

as indexes and materialized views, the database catalog, and
server configuration parameters such as buffer pool settings.
• The database workload (W) in the form of logs such as SQL

query logs and transaction logs.
Thus, a snapshot captures the data D, configuration C, and work-
load W in the production database instance at a point of time. The
snapshot needed by one or more experiments has to be transferred
to the host allocated to run these experiments. Flex manages this
transfer efficiently as we will describe in Section 6.

Action: To run an experiment e = 〈a,s,h〉, Flex will load the snap-
shot s on to the host h, and then run the action a. The action a can
be specified as a new user-defined executable or from a library of
commonly-used actions. As illustrated in Table 1, the following are
some commonly-used actions in experiments that Flex runs:
• Replay the workload as captured in the snapshot s [13].
• Update the existing configuration by building a new index or

changing one or more server configuration parameters, and then
replay the SQL query workload.
• Run a custom workload such as a corruption detection tool or a

scaled version of the workload logged in the snapshot s.

3. WALK-THROUGH OF FLEX USAGE
We will begin with a walk-through of how Flex is used for a

specific task by a human user such as a DBA or a database devel-

Action A1 {
 execute: scripts/myisamchk1.sh
 datum: /volume/lineitem.MYI
 readOnly: true
 reboot: false
 before: tests/scripts/before_myisam.sh
 after: tests/scripts/after_myisam.sh
}

Action A2 {
 execute: tests/scripts/myisamchk2.sh
 datum: /volume/order.MYI
 readonly:true
 reboot:false
 before: tests/scripts/before_myisam.sh
 after: tests/scripts/after_myisam.sh
}

Action A3 {
 execute: tests/scripts/fsckchk.sh
 datum: /device
 readonly:true
 reboot:false
}

Credentials loginDetails {
 loginKey: ec2_key
 accessKey: dev_team
 secretKey: dev_pass
 securityGroups: ssh
}

Host testHost {
 image: ami-48aa4921
 type: m1.small
 user: root
 setup: scripts/host_setup.sh
}

Plan P {
 mapping: ([A1,snap-1] [A2,snap-1] [A3,snap-1]
[A1,snap-2] [A2,snap-2] [A3,snap-2] [A1,snap-3]
[A2,snap-3] [A3,snap-3])
 deadline: 90
 budget: 3
 releaseHosts: true
 reuseHosts: false
}

Figure 2: Example Slang Program #1 that references past snap-
shots (the full syntax of Slang is given in the technical report
[3])

P����������	

����

�������������� ����������

����

�� ��������

P����������	�

����

P����������	

P����������	

�����

����

�����

����
����

P����������	�
�����

P����������	

����� P���������	�
�����P����������	�
�����

��� �� � �� �� �� �� �� ��� �!��

�����

"!��#

����
�����

Figure 3: Execution of Example Slang Program #1 from Fig-
ure 2 (Section 8.2 gives a detailed description)

oper. (The “user” here can also be a Flex Service for automated
testing or tuning.) The task is expressed in English as: Verify the
data integrity of the three collected snapshots—snap-1, snap-2, and
snap-3—by running the myisamchk tool on the Lineitem and Order
tables as well as the fsck tool on the file-system. Complete this task
within 90 minutes. Use m1.small hosts on Amazon Web Services
and do not use more than 3 hosts concurrently.

Example Slang program #1 in Figure 2 shows how the user will
express this task in the Slang language. Broadly speaking, Slang
provides support for: (i) definitions of actions, snapshots, and hosts;
(ii) mappings that stitch the definitions together into each one of the
experiments that needs to be run; (iii) and the objectives that should
be met while running the experiments.

Flex will parse the input Slang program and do some seman-
tic checks. The extracted definitions, mappings, and objectives are
given to Flex’s Orchestrator which coordinates the scheduling, ex-
ecution, and monitoring of experiments. Figure 3 shows the com-
plete execution timeline of the example Slang program #1 from
Figure 2. Notice from Figure 3 that the Orchestrator has to make
choices regarding when to allocate and release hosts, which exper-
iments to schedule on which hosts and when (which, in turn, de-
termines which snapshots are loaded on which hosts), and how to
deal with unpredictable events that can arise during the execution.

Three hosts—Host1, Host2, and Host3—were allocated in Fig-
ure 3. The figure shows the beginning and end times of each ex-
periment on the respective host where the experiment was sched-
uled. In this schedule, snapshots snap-1 and snap-2 are loaded on
all hosts, while snapshot snap-3 is loaded only on Host1. Note that,
in order to minimize concurrent resource usage, while meeting the
deadline, Flex released two hosts midway through the execution.

All the snapshots needed in our example task came from past
states of the production database instance. Recall from Table 1 that
Slang programs may also need to refer to future snapshots. These
snapshots will be processed by Flex when they arrive. In this case,
the orchestration behaves like the execution of continuous queries
over streams of data, as we will illustrate later in the paper.

Statement Description
Action Definition of an action a, namely, the executable for a, the

data a operates on, and (possibly) setup/cleanup scripts
Host Host definition used to specify the resources to request and

access from the resource provider
Credentials Access definitions for Flex to use and request resources

from the resource provider
Plan Provides mapping between actions and snapshots (spec-

ifying the complete action-snapshot-resource mapping is
an optional feature aimed at expert users)

Snapshot Snapshot specification along with incoming arrival rates

Table 2: Summary of statements in the Slang language

4. SLANG LANGUAGE
All inputs to Flex are specified in Slang. It is natural to ask

why a new language had to be developed for Flex. For example,
couldn’t Flex use an existing workflow definition language (e.g.,
BPEL [5])? To the best of our knowledge, no existing language
achieves a good balance between: (i) being powerful enough to
express a wide variety of experimentation needs such as the use
cases in Table 1, and (ii) being simple enough for humans to use
and for extracting information needed for automatic optimization.
Our approach to achieve this balance was to come up with the right
abstractions in Slang. These abstractions are represented by the five
statements summarized in Table 2 and described next.
Action: Each unique type of action a involved in an experiment e
= 〈a,s,h〉 is defined by an Action statement. The execute and
datum clauses in the statement specify respectively the executable
that needs to be run for a and the data on which a operates. The
Action statement enables additional requirements and properties
to be specified for a such as: (i) the host h needs to be restarted
before a is executed; (ii) a modifies the data that it operates on;
(iii) a model to estimate the expected execution time of a; and (iv)
a specific host type that a should be executed on.

For example, in Figure 2, action A1 specifies the use of the
myisamchk1.sh executable (which invokes MySQL’s myisamchk
corruption detection tool) operating on the Lineitem table. The
statement specifies that A1 does not modify the data and that the
host need not be rebooted before A1 is invoked. The statement
also specifies two executables that are respectively invoked before
(e.g., for starting custom monitoring tools) and after (e.g., for some
cleanup) the action’s execution.
Host: Each unique type of host involved in an experiment e =
〈a,s,h〉 is defined by a Host statement. As discussed in Section 2,
the Host statement specifies two identifiers: one for the host type
and the other for the software image that should be started on these
hosts. The identifiers in our example Slang program #1 shown in
Figure 2 define a host of type m1.small on Amazon Web Services
as well as a software image that contains the Linux Fedora 8 OS
with the MySQL 5.2 DBMS. The Host statement also supports
the specification of an executable to be run on host allocation (e.g.,
for setting up the operating environment).
Snapshot: Snapshot is an optional statement. Most Slang pro-
grams, including the one in Figure 2, refer to snapshots that have
already been collected. An index entry appears in Flex’s History
catalog for all past snapshots. (The History Catalog is covered in
Section 7.) The key for this index entry has the form snap-id where
id is a positive integer identifier given by the History catalog. Slang
programs refer to past snapshots using their keys. For example, see
the mapping clause of the Plan statement in Figure 2.

The Snapshot statement is needed in a Slang program when
the program has to run experiments on future snapshots, i.e., snap-
shots that will be collected in the future. (The Upgrade planning
and Data integrity testing tasks in Table 1 have this property.) In

�����

¬�����������������	��
��

��������		
��

¬����������������

�������������� �����

��	�����

���������

��������������

��	�����

��
����	�
���������

��������������
��	����

������
	�

���������
�

	�������

�����
�������
	� �����
�

�����������

Figure 4: Steps in Flex’s orchestration of experiments

this scenario, the Snapshot statement is provided to specify the
arrival frequency and type of future snapshots. Section 6 will give
more details of how snapshots are collected and the types of snap-
shots that Flex supports. Future snapshots are referred to in a Slang
program in the form exp-id where id is a positive integer corre-
sponding to the number of the snapshot received after the program
is submitted.
Credentials: Flex enables a wide variety of users—e.g., DBAs,
database and application developers, and automated services—to
run experiments on demand for trustworthy testing and tuning of
database instances. An experiment needs to allocate hosts from a
resource provider as well as access specific data. Therefore, ac-
cess control is a necessary feature in Flex so that users and appli-
cations cannot allocate resources or access data that their role does
not permit. A user or application submitting a Slang program has
to include a Credentials statement as shown in Figure 2 and
Table 2. These credentials are used during orchestration to authen-
ticate Flex to the resource provider and database instances so that
the appropriate access controls can be enforced.
Plan: The Action, Host, Snapshot, and Credentials state-
ments provide the definitions in a Slang program. The Plan state-
ment is the crucial glue that combines the definitions together with
the mappings and objectives. The mapping clause of the Plan
statement takes one of two forms.
Mapping: The first and more common form of mapping is a set of
pairs where each pair has the form 〈ai,sj〉 specifying that action
ai should be run on snapshot sj . The choice of how to schedule
the execution of this mapping is left to Flex. The second form of
mapping is a set of triples where each triple has the form 〈ai,sj ,hk〉
specifying that action ai should be run on snapshot sj and sched-
uled on host hk. The second form of mapping is provided for the
benefit of higher-level applications and expert users who want fine
control over the scheduling of experiments.
Objectives: The Plan statement contains multiple clauses for users
and services to specify their objectives. The two main types are:
• Deadline: A soft deadline by which Flex must complete all the

experiments specified in the plan.
• Budget: The maximum number of hosts that Flex can allo-

cate concurrently in order to run the experiments. Recall from
Sections 1 and 2 that cloud platforms are the typical resource
providers for Flex.

In our example program in Figure 2, all three actions A1, A2 and
A3 are mapped to all three snapshots snap-1, snap-2 and snap-3.
The deadline is 90 minutes and the budget is 3 hosts.

We expect the typical workload of Flex to be bursty. For ex-
ample, a DBA or testing service may submit many fairly similar
Slang programs in a short period of time when a system upgrade is
imminent. The releaseHosts and reuseHosts clauses of the Plan
statement enable Flex to reuse hosts across multiple plans in order
to minimize the resource allocation and initialization overhead. For
example, allocation of a new host from AWS usually takes a few

Name Description
AS_Mapping Current set of 〈ai,sj〉 pairs for which the snapshot sj is

available (future snapshots will not be included), but the
experiment for 〈ai,sj〉 is not yet complete

status(〈ai,
sj〉)

One of “WAITING” or “RUNNING on host hk” based on
current scheduling status of 〈ai,sj〉 ∈ AS_Mapping

h1, . . ., hn Ordered list of currently-allocated hosts (initially empty)
end(hk) The later of current time (NOW) and the time when host

hk will finish its last scheduled action
Act_Time(a,
parameters)

Model to estimate running time of action a. The default
is the constant function returning∞ when unknown

Deadline Soft deadline to complete current experiment schedule
Budget Maximum number of concurrent hosts to run experiments

Table 3: INPUT: Inputs to the orchestration process

minutes, and possibly higher under load. If the repeat clause of the
Plan statement is set to true, then Flex will repeatedly restart the
program execution after each deadline. This feature is used mainly
when the program refers to future snapshots. Flex will reset the
snapshot counter so that the first snapshot after the restart is exp-1,
the next is exp-2, and so on. (Example Slang program #2 with this
nature is given in the technical report [3] due to space constraints.)

A Slang program should contain at least one Plan statement. A
useful feature provided by Flex for the convenience of users and
services is the ability to specify multiple Plan statements in a
Slang program.

5. ORCHESTRATION OF EXPERIMENTS
Figure 4 gives an overview of the orchestration of a Slang pro-

gram. There are three phases which are all running concurrently:
1. Keeping track of the inputs to the orchestration process (de-

noted INPUT). Changes to the INPUT will trigger a rerun of
the scheduling algorithm.

2. Running the scheduling algorithm based on the most recent IN-
PUT in order to generate a Planned_Schedule.

3. Based on the Planned_Schedule, scheduling and running exper-
iments on hosts as well as monitoring this execution in order to
make any updates that are needed to the INPUT.

Despite a large number of seemingly related scheduling algorithms
proposed in the literature, we had to design a new scheduling algo-
rithm in Flex for the following reasons:
• Unlike many scheduling algorithms, Flex cannot assume that

the running times of experiments are known beforehand, or
that predetermined performance models are available to predict
these running times. Flex uses a careful mix of exploration and
exploitation to both learn and use such models adaptively.
• Flex cannot preempt running experiments to adapt the schedule

as new information becomes available. Preemption can give
incorrect results for testing and tuning.
• Unlike many algorithms from real-time scheduling, Flex cannot

assume that every experiment comes with a deadline. Deadlines
are optional in Flex for usability reasons.

Next, we describe the INPUT and Flex’s scheduling algorithm. De-
tails of run-time execution and monitoring are given in Section 7.

5.1 Inputs for Orchestration (INPUT)
Table 3 shows the inputs needed for orchestration, which we will

denote as INPUT. The initial version of INPUT comes from the
parsing of the input Slang program. Note from Table 3 that INPUT
only includes the 〈ai,sj〉 pairs form of the Plan statement’s map-
ping clause. If a program gives the alternate form of 〈ai,sj ,hk〉
triples, then the program is directly giving the Planned_Schedule
which Flex simply has to run. INPUT can change in one of three

Scheduling Algo (Input=INPUT (Table 3), Output=Planned_Schedule)

1. /* Total Ordering step: prioritizes earlier snapshots & longer run times */
2. Order 〈ai,sj〉 entries in AS_Mapping so that 〈a,s〉 precedes 〈a′,s′〉 if:

(a) s is an earlier snapshot than s′, OR
(b) s=s′ AND Act_Time(a, {s}) ≥ Act_Time(a′, {s′})

3. /* No Preemption step: running actions are never preempted */
4. For each 〈ai,sj〉 ∈ AS_Mapping from first to last {
5. if (status(〈ai,sj〉) = “RUNNING on host hk”) {
6. Add_To_Planned_Schedule(ai, sj , hk); }}

7. /* Exploration step: collects info on actions with unknown run times */
8. For each 〈ai,sj〉 ∈ AS_Mapping from first to last {
9. if (status(〈ai,sj〉) = “WAITING” AND Act_Time(ai, {sj}) =∞ AND
10. 6 ∃s: 〈ai,s〉∈AS_Mapping with status(〈ai,s〉) = “RUNNING on host h”) {
11. Let hk be the first free host in h1. . .hn or a newly allocated host

with the given Budget. Add_To_Planned_Schedule(ai, sj , hk); }}

12. /* Greedy Packing step: in-order bin-packing of experiments to hosts */
13. For each 〈ai,sj〉 ∈ AS_Mapping in the order from first to last with

status(〈ai,sj〉) = “WAITING” {
14. For host hk in order from the list of hosts h1 to hn {
15. if (hk is a free host) {
16. Add_To_Planned_Schedule(ai, sj , hk); CONTINUE Line 13; }
17. if (Deadline has not already passed) {
18. if (a) or (b) hold, then Add_To_Planned_Schedule(ai, sj , hk):

/* when there is an estimate of ai’s running time */
(a) end(hk) + Act_Time(ai, {sj , hk}) ≤ Deadline;

/* when there is no estimate yet of ai’s running time */
(b) Act_Time(ai, {sj , hk}) =∞ AND end(hk) < Deadline;

}} /* end of loop for host hk */
19. if 〈ai,sj〉 is not yet scheduled, then: if Budget allows, allocate a

new host hnew and Add_To_Planned_Schedule(ai, sj , hnew);
20. }

21. /* Deallocation step: mark unused hosts for release. Marked hosts are
released subject to the releaseHosts clause in the Plan statement */

22. For host hk in hosts h1 to hn, mark hk for release if it is free;

Function Add_To_Planned_Schedule (action a, snapshot s, host h) {
23. if (status(〈a,s〉) = “RUNNING on host h”) {
24. Add 〈a,s〉 as the head of h’s list in Planned_Schedule; }

/* status(〈a,s〉) is currently “WAITING” */
25. else if (host h is currently free) {
26. Add 〈a,s〉 as the head of h’s list in Planned_Schedule;
27. Set status(〈a,s〉) to “RUNNING on host h”;
28. end(h) = NOW + Act_Time(a, {s, h}); }
29. else {
30. Add 〈a,s〉 to the end of h’s list in Planned_Schedule;
31. end(h) = end(h) + Act_Time(a, {s, h}); }
}

Figure 5: Flex’s scheduling algorithm

ways during orchestration, each of which will trigger a rerun of the
scheduling algorithm from Section 5.2:
1. If the Plan statement’s mapping specifies one or more 〈ai,sj〉

pairs for a future snapshot sj , then these pairs will be added to
AS_Mapping when, and only when, sj becomes available.

2. If action ai’s estimated execution time in the initial INPUT is∞
(i.e., it is unknown), then Flex will dynamically learn a model
to better estimate ai’s execution time. Any changes to the esti-
mated time will trigger a rerun of the scheduling algorithm.

3. An allocated host that was running experiments becomes free
after finishing the experiments scheduled on it.

5.2 Scheduling Algorithm
Given the current INPUT, the scheduling algorithm generates the

current Planned_Schedule (recall Figure 4). Flex will rerun the
scheduling algorithm to generate a (possibly) new Planned_Schedule
whenever the INPUT changes. The Planned_Schedule consists of

an ordered list of currently-allocated hosts h1, . . ., hn, with each
host hk having an ordered list of 〈ai,sj〉 pairs that are scheduled to
run on hk.

Figure 5 shows the overall scheduling algorithm. The goal of
the algorithm is to minimize the total cost of running all the ex-
periments while trying to ensure that all the experiments complete
by the specified deadline.4 The algorithm processes the INPUT
using a sequence of five steps that will eventually generate the
Planned_Schedule.
Total Ordering Step: This step, presented in Lines 1-2 in Figure 5,
rearranges the 〈ai,sj〉 pairs in AS_Mapping in order to create a to-
tally ordered list. Actions on earlier snapshots are placed before ac-
tions on later snapshots. For actions on the same snapshot, actions
with longer (possibly incorrect) estimated running times are placed
first. Since the 〈ai,sj〉 pairs in AS_Mapping are scheduled starting
from the beginning of the ordered list, placing the longer actions
first tends to increase the chances of meeting the given deadline.
No-Preemption Step: This step is presented in Lines 3-6 in Figure
5. Once an action starts running on a host, Flex will never pre-
empt the action because preemption can interfere with the testing
or tuning activities being performed.
Exploration Step: This step is presented in Lines 7-11 in Figure
5. In order to generate good schedules, Flex needs good models to
estimate the running times of actions. The rationale behind the Ex-
ploration step is that, if the scheduling algorithm is invoked without
being given a model for action ai, then scheduling an instance of
ai upfront (in conjunction with the run-time monitoring that Flex
does) can collect valuable information about ai quickly; and lead to
the generation of an efficient schedule overall. Caution is applied to
only schedule actions that have unknown times and a similar action
is not running already.
Greedy Packing Step: This step uses the current estimates of the
execution time of actions in order to do a bin packing of the 〈ai,sj〉
pairs (experiments) on to as few hosts as possible—to minimize
the number of hosts used—while ensuring that all experiments will
complete within the deadline. Lines 12-20 in Figure 5 describe
the greedy technique used for bin packing. The two scenarios—
when the deadline has passed, and when it has not—are handled
differently.

If the deadline has already passed, then the algorithm tries ag-
gressively to complete the remaining experiments as fast as possi-
ble: (i) preferably, by running them on a free host if one is available,
or (ii) by allocating a new host if the Budget is not violated. If there
is still time to the deadline (the typical case), then the algorithm is
more conservative. An experiment is scheduled on host hk if hk

can run this experiment within the deadline in addition to all other
experiments already scheduled on hk. If no such host can be found,
then a new host will be added subject to the Budget. Actions with
unknown (∞) running times have to be considered during packing
as well. Since such action types are given priority in the Explo-
ration step, they are treated more conservatively during packing.

Recall the Total Ordering step that groups 〈ai,sj〉 pairs based on
the snapshot. The Greedy Packing step considers the 〈ai,sj〉 pairs
in this order for packing on to the hosts which are also considered
in a specific order. The combination of the two ordered traversals
gives a desired effect: the actions on the same snapshot have a good
chance of being assigned to the same host (subject to the Deadline
and Budget goals). If multiple actions on a snapshot sj are assigned
to host hk, then hk can share the overhead of snapshot loading

4Cloud providers like Amazon Web Services charge a per-hour cost
for each host used during that hour.

����������	
����	�����	�����	���	����

�	�	��	�	�

�� �� �� ��

���

�������

��������

�� �� �� ��

��	
�
��	
�
��	
�
��	
�

�������

���

�	�	�
�������

���

�	�	�

���	

����� �	�	�����	
� ����	
�
����	
�

�
�
�
�

���	

����� �	�	�����	
� ����	
�
����	
�

�����������	�
�����������������	�
�����������������	�
�����������������	�
������

Figure 6: Snapshot management and Flex loading

across these actions; which can reduce experiment running times
significantly as we will see in Section 8.
Deallocation Step: The final step of the algorithm (Lines 21-22)
marks any unused hosts for release. These hosts can be released
subject to the releaseHosts clause in the Plan statement.

6. SNAPSHOT MANAGEMENT
Recall that a snapshot is a point-in-time state of the production

database instance. This section discusses how snapshots are col-
lected on the production database instance and then loaded on to
hosts for running experiments. An overview of the process is given
in Figure 6.

6.1 Snapshot Collection on the Production DB
A snapshot is collected as follows [10]:

1. Take a global read lock on the database, and flush the database-
level dirty data to disk. For MySQL, e.g., this step performs
“FLUSH TABLES WITH READ LOCK” with a preliminary
flush done to reduce locking time.

2. Lock the file-system to prevent accesses, and flush its dirty data
to disk. For example, for the XFS file system, this step runs the
xfs_freeze command with a preliminary sync done to reduce
locking time.

3. Run the storage volume’s snapshot command to create a snap-
shot, and release the locks on the file-system and the database.
For example, this step runs the ec2-create-snapshot command
for Elastic Block Store (EBS) volumes on AWS.

The snapshot collection process typically causes less than a sec-
ond of delay on the production database. A copy-on-write (COW)
approach is used to further reduce overheads when multiple snap-
shots are collected over time. With COW, multiple copies need
not be created for blocks that are unchanged across snapshots. The
snapshot is then reported to the History catalog.

6.2 Loading a Snapshot for an Experiment
Before running an experiment 〈ai,sj ,hk〉, the snapshot sj will be

loaded on host hk. The action ai is started only after Flex certifies
that sj has been loaded. We categorize the loading process along
two dimensions: type and mechanism.
Load Type specifies what part of the snapshot is copied to the host
from where the snapshot is stored (e.g., on the production database
or the S3 store on AWS). There are two load types:
• Full: Here, the full data in the snapshot is copied to the host

(similar to a full backup).
• Incremental: This type works only when an unmodified

copy of an earlier snapshot of the same storage volume is present
on the host. Here, only the differences between the earlier and
later snapshots are copied to the host (like incremental backup).

P������������	

Þ�����������	
�����	
������� ���������
��	�	
�������

�������

P������������	

��	��

����

�������������

�

�

��	��

P���	����������

����

P��������

�

�

����

P��������
�
�
�

P���	����������

P���	���

��������

P���	���

��������
�

������� ������� ������� �������

�������� ��������

P���	����P��� ��	�������������

��	������
���

��	
��	��	

��	

��	������
���

Figure 7: Architecture of the overall Flex platform

Load Mechanism specifies how much of the snapshot sj has to be
copied to the host before Flex certifies that sj has been loaded and
the action ai can be started. There are two load mechanisms:
• Eager: Here, all the data needed for the snapshot has to be

copied before the snapshot is certified as loaded.
• Lazy: Here, the snapshot is certified as loaded before all the

data needed for the snapshot has been copied; and the action is
started. Data copying proceeds in the background during which
data blocks that are accessed on behalf of the running action
will be prioritized.

Two systems utilities—namely, Linux’s Logical Volume Manager
(LVM) and Amazon’s EBS—were used in careful combinations to
implement the four possible snapshot loading techniques in Flex.
Both utilities are already available to the public. In our implementa-
tion, we created a layer that leverages their functionality to achieve
the four possible snapshot combinations. Snapshots of LVM vol-
umes provide the implementation of generating increments (changed
blocks since the previous snapshot) based on COW as well as meta-
data to identify which blocks have been changed.

EBS provides the implementation of Lazy that we use in Flex.
Lazy combines: (i) regular push-based movement of the snapshot
to the host, with (ii) pull-based (prioritized) movement of snapshot
data accessed by an experiment on the host. Thus, Lazy needs an
interposition layer that can schedule the data movement based on
data access patterns. Incremental+Lazy achieves the follow-
ing: suppose the source machine has snapshot s, its newer version
s′, and the increments ∆ for s′ with respect to s. A host, where
an experiment has to run on snapshot s′, currently has s only. Flex
starts the experiment on the host over an interposed storage volume
that uses Lazy to move only the increments ∆ from the source to
the host, and applies these increments to s.

Testing and tuning tasks tend to have specific needs regarding the
load mechanism. For example, tuning tasks predominantly need
the Eager mechanism in order to obtain trustworthy results: the
run-time measurements that are generated in an experiment should
correspond to what would have been obtained on the production
database instance. With Lazy, these measurements can become
tainted during the experiment due to unpredictable snapshot copy-
ing latencies.

7. IMPLEMENTATION OF FLEX
Figure 7 shows the overall architecture of the Flex platform. We

describe the roles of each component.
Parser: The Parser extracts the definitions, mappings, and objec-
tives from the Slang program submitted by a user or service, and
performs the syntax checks as well as some basic semantic checks.

Orchestrator: The Orchestrator is the heart of Flex and is, in turn,
composed of zero or more Plan Schedulers, a Snapshot Checker,
zero or more Executors, and a Resource Manager. Once a parsed
Slang program is obtained from the Parser, the Orchestrator in-
stantiates one Plan Scheduler for each Plan statement in the pro-
gram. (Recall that a Slang program can contain multiple Plan
statements.) Each Plan Scheduler proceeds with its own indepen-
dent scheduling. However, updates done or information gathered
on behalf of actions are visible to all schedules.
Plan Scheduler: A Plan Scheduler starts with some initial checks
of the feasibility of the objectives in the corresponding Plan state-
ment, e.g., whether the Budget is enough to allocate at least one
host. If the checks succeed, then the scheduling algorithm from
Section 5.2 is run to generate the Planned_Schedule. The Sched-
uler will retrigger the scheduling algorithm if any of the events de-
scribed in Section 5.1 were to occur. If the algorithm generates a
new Planned_Schedule, then the new schedule becomes effective
immediately (subject to Flex’s policy of no preemption). The Plan
Scheduler also instantiates an Executor for each host allocated by
the schedule, and maintains a host-to-action queue that stores the
ordered list of experiments assigned to this Executor by the current
Planned_Schedule.
Executor: Any experiment in Flex is run by an Executor. When an
Executor is started by the Plan Scheduler, it contacts the Resource
Manager for allocating a host. The allocation as well as connec-
tion to the host use the authentication information provided in the
Credentials statement. The Executor first runs any host-setup
actions specified in the corresponding Host statement in the Slang
program. Then, the Executor repeats the following steps until it is
terminated:
• Get the next 〈ai,sj〉 pair from the head of the host’s host-to-

action queue. Mark 〈ai,sj〉 as RUNNING on this host.
• Reboot the host if the action ai’s Action statement in the pro-

gram specifies it.
• Load the snapshot sj on the host if the present copy is modified

(Section 6 gives the details).
• Run the executable for the action ai.

To track the running time and resource usage by each action, moni-
toring probes are performed once every MONITORING_INTERVAL
(a configurable threshold that defaults to 10 seconds). The moni-
toring data collected is recorded persistently in the History catalog
after the action completes.

The Act_Time(a, parameters) model (see Table 3) to compute
the estimated running time of an action a is updated whenever (i)
an experiment involving a completes, and whenever (ii) the running
time of an (incomplete) experiment involving a starts to overshoot
its current estimated running time by a DEVIATION_THRESHOLD
(a configurable threshold that defaults to 5%). In our current im-
plementation, the Act_Time(a, parameters) model is implemented
as a running average of all the running times of a observed from
(i) and (ii) so far. The scheduling algorithm will be rerun whenever
there is a change in the estimated running time of an action since
the model is part of the INPUT (Table 3).

Flex is robust to the failure of an experiment 〈ai,sj〉 running on a
host h or the failure of h itself—the Executor for h will detect these
failures—since the 〈ai,sj〉 pair will continue to be (re)considered
by the scheduling algorithm until the experiment is complete. An
Executor terminates when its Plan Scheduler sends a terminate sig-
nal; the Executor will clean up all used resources and release the
host.
Resource Manager: The Resource Manager implements a general
interface that supports any resource provider (e.g., Amazon Web

Services, Rackspace, SQL Azure) from which hosts can be allo-
cated on demand. The Executor uses the interface provided by the
Resource Manager to allocate, establish connections with, and ter-
minate hosts.
Snapshot Checker: The Snapshot Checker checks the History cat-
alog periodically for newly available snapshots. When a new snap-
shot s is detected, the Checker maps s to the appropriate Plan
Schedulers (based on their Snapshot statement and the map-
ping clause in their Plan statement). These Plan Schedulers will
be notified of the new snapshot—the AS_Mapping in INPUT will
change—and they will rerun the scheduling algorithm to update
their current schedule with the newly available snapshot.
History Catalog: The History catalog is the persistent information
repository of the entire Flex platform. This repository stores infor-
mation about actions, snapshots, hosts, and plans, starting from the
information in the Slang program to the execution-time information
collected on actions and hosts through monitoring. Apart from its
use internally in Flex, the catalog is also useful to DBAs as well as
higher-level services implemented on top of Flex. The current im-
plementation of the History catalog is in the form of seven tables in
a PostgreSQL database. (Because of space constraints, the schema
of these tables is given in the technical report [3].) In future, we
plan to port the catalog to a distributed database or NoSQL engine.

Figure 7 shows two other components that are not internal to
Flex, but are important components of the overall Flex platform:
the Snapshot Manager and Flex Services.
Snapshot Manager: The Snapshot Manager is responsible for col-
lecting snapshots regularly from the production database instance,
possibly storing them persistently on remote storage for disaster
recovery, and updating the History catalog as snapshots become
available. Snapshot Managers are becoming an essential part of the
IT environment in modern enterprises given the growing impor-
tance of near-real-time disaster recovery and continuous data pro-
tection. Section 6 describes the Snapshot Manager implemented as
part of the Flex prototype.
Flex Services: A number of manageability tools have been pro-
posed in the literature that rely fully or in part on experiments done
using production-like workloads, configuration, data, and resources
(e.g., [2, 4, 6, 9, 14, 26, 27]). Flex can benefit each tool—if the tool
runs on Flex as a Flex Service—in multiple ways:
• Providing a common high-level interface to specify the exper-

iments needed by the tool. The tool can then focus on deter-
mining what experiments to do rather than how to implement
scheduling, execution, and fault-tolerance for the experiments.
• Automatically learning performance models and generating

time- and host-efficient schedules for the experiments.
Section 8.4 gives a case study based on one such tool called Amulet
[4] that we have ported to run as a Flex Service.

8. EVALUATION
This section presents a comprehensive evaluation of Flex. This

evaluation uses the Amazon Web Services (AWS) cloud platform [1]
as the resource provider. (Note that the applicability of Flex is not
limited to AWS or to cloud platforms.) We present insights from
(i) real-life scenarios that we recreated, (ii) evaluating the major
components of Flex, and (iii) porting existing testing and tuning
applications to run as Flex Services. Most of our experiments con-
sider a production MySQL database instance that runs on an AWS
host with an XFS or Ext3 Linux file-system and storage provided
by AWS’s Elastic Block Store (EBS) or the local disk space of the
host. 50GB EBS storage volumes are used by default.

0.6

0.7

0.8

0.9

1

1.1

Before upgrade After upgrade (without Flex)
After upgrade (with Flex) Experimentation using Flex

Time

N
o

rm
a

li z
e

d
 p

e
r f

o
rm

a
n

c
e

Decision to
upgrade

Upgrade Tuning
Phase

Figure 8: A performance degradation experienced after up-
grading the production MySQL database instance, and how
Flex helps to avoid the problem

8.1 Benefits of Flex in Real-Life Scenarios
We begin with a problem that happened in real life in order to

illustrate how Flex can be used to minimize the occurrence of such
problems. Suppose a DBA has to upgrade the production database
instance from MySQL 4.1 version to MySQL 5.0.42 version. The
timeline in Figure 8 shows the scenarios with and without Flex.
DBAs usually run benchmark workloads before an upgrade. In this
case, the benchmark workloads ran fine, but performance dropped
noticeably when the production instance was upgraded. This prob-
lem happened due to a bug in the 5.0 version of MySQL which
slows the group commit of transactions. A lock gets acquired too
early, causing other concurrent transactions to stall until the lock
is released. This bug only showed up on the high transaction rate
seen in the production database.

With Flex, the DBA can write a Slang program (like the A/B
testing or Upgrade planning use-cases in Table 1) to test the up-
grade first on production-like workloads, configuration, data, and
resources; without affecting the production database instance. Thus,
the bug is noticed long before the actual upgrade has to be done.
The DBA has time to further use Flex to try different configura-
tions, find a fix, and verify that the fix will work on the produc-
tion instance. To resolve this bug, the DBA either needs to dis-
able the collection of binary logs or set the MySQL parameter inn-
odb_flush_log_at_trx_commit to a value different from 1. When
this parameter is set to 1, MySQL flushes the log after each trans-
action. A value of 0 flushes the log once per second, while a value
of 2 writes the log at every transaction but flushes once per second.

Our next real-life application is tuning surface creation (see the
tuning surface creation use-case in Table 1). For a representative
workload taken from a past database state, the DBA wants to get
a feel for the (hypothetical) response times for different settings
of server configuration parameters [9]. Specifically, the DBA has
a MySQL database that runs on an EC2 m1.large host and uses a
100GB volume of local storage. For the workload, we used the pop-
ular TPC-C benchmark with 100 warehouses, a warm up time of 5
minutes, and measurement time of 20 minutes. The parameters that
the DBA is interested are key_buffer_size (the buffer used to store
index blocks when accessing the tables) and query_cache_size (the
amount of memory allocated for caching query results).

The DBA writes a Slang program to specify the experiments.
Flex orchestrates the program to produce the monitoring data used
to generate the throughput surface in Figure 9. The z-axis repre-
sents the throughput that the MySQL database can sustain given
the different configuration parameter settings. After producing this
tuning surface with little effort, the DBA can confidently find pick
a configuration for good performance on the production database.

Figure 9: TPC-C throughput for various configurations

8.2 Impact of Scheduling Algorithm
Recall the DBA’s task presented in Section 3 and its Slang pro-

gram from Figure 2. The details of this task in our empirical setup
are as follows: action A1 runs myisamchk on table Lineitem (10GB
size); action A2 runs myisamchk on table Order (5GB); and ac-
tion A3 runs fsck on the full 50GB volume. All three snapshots
are Full and Lazy on the storage volume of size 50GB and are
available when the Slang program is submitted for execution. Since
none of the actions modify the snapshot data, the DBA has specified
that no host reboot or snapshot reload is required (see Figure 2).
Schedule and Execution: Figure 3 presents the actual execution of
the Slang program. (All execution timelines are drawn to scale to
represent the actual execution of the actions.) None of the actions
have been run before by Flex, so there is no history information in
the History catalog. Thus, the scheduling algorithm starts with the
exploration step, and tries to obtain models for each of the actions.
For the exploration step, the algorithm uses the maximum 3 hosts
allowed by the DBA. An action that runs on the first snapshot (snap-
1) is scheduled on each host.

Action A2 on snap-1 completes first, and gives a better model
for action A2. This event triggers the scheduling algorithm. The
scheduling algorithm identifies that there are no actions with un-
known models and in the “WAITING” state; thus, it proceeds with
the Greedy Packing step. Note that actions A1 and A3 will be pri-
oritized by the Total Ordering step as their estimated running times
are still unknown (∞). The next action that completes execution
is A3 on snap-1; the scheduling algorithm is invoked again (the
model for action A3 is updated). The scheduling algorithm now
places A3 on snap-2 in Host3’s host-to-action queue (based on the
Total Ordering step, action A3 has higher completion time than A2

for snap-2). When action A1 on snap-1 completes, better models
for all actions become available. The scheduling algorithm now re-
alizes that only 1 host is needed to complete all actions within the
deadline. Thus, Host2 and Host3 are released when they complete
their current actions.

As Figure 3 shows, action A3 on snap-3 is taking less time than
the same action executed on snapshots snap-1 and snap-2. This
behavior is a result of the snapshot-loading mechanism. During
the execution of action A1 on snapshot snap-3, most of the snap-
3 data needed by action A3 is pre-fetched; so the data-intensive
A3 finishes faster. For action A2, the effect of pre-fetched data is
smaller as this action touches less data.

We further explore the impact of the scheduling algorithm by
tightening the objectives and increasing the amount of data that
needs to be verified from the first DBA task. In this way, we force
the decisions of the scheduling algorithm to have a higher impact
on the overall execution. The setup for this scenario (we refer to
it as Scenario1) is the same as before except for: Lineitem is now
11GB and Order is 7.5GB. The Budget was changed to 2 hosts of
EC2 m1.large type, and Deadline is now 3 hours (180 minutes).

P����

������	

����
�����
����

�����

P����

������	

�����

P����

�����	

�����
�����
����

P����

������	

�����

�����
����

�� �� �� �� ��� �� ��� ��� ��������� �����

(a) Scenario1 execution with Flex scheduling

�����

�������

������ ������
 ��!�

�����

�������

������ ������

�����

�������

������

����

�������

������
 ��!�

����

�������

������

����

�������

������

����

�������

������

�"� #" $" %" �"" ��" �#" �$" �%""&'()� *('�+

(b) Scenario1 execution with FCFS scheduling

P����

������	

����
�����
����

�����

P����

������	

�����

P����

������	

�����

�����
����

P����

������	

�����

�����
����

�� �� �� �� ��� �� ��� ��� ��������� �����

(c) Scenario2 execution with Flex scheduling

P����

������	

����
�����
����

P����

������	

����
�����

P����

������	

����
�����

�����

P����

������	

�����

P����

������	

�����

P����

������	

�����

�� �� �� �� ��� �� ��� ��� ��������� �����

(d) Scenario2 execution with FCFS scheduling
Figure 10: Evaluation of the scheduling algorithms for Scenario1 and Scenario2

20% 80%
300
600
900

1200
1500
1800
2100
2400
2700
3000
3300
3600
3900
4200
4500

Full Snapshots
Base
Lazy
Eager (touched data)
Eager (full data)

C
o

m
p

le
ti

o
n

ti
m

e
(s

ec
)

(a) Full load type

Δ = 1G, 20% Δ = 1G, 80% Δ = 5G, 20% Δ = 5G, 80%
300

400

500

600

700

800

900
Incremental Snapshots

Base Lazy Eager (touched data) Eager (full data)

C
o

m
p

le
ti

o
n

 t
i m

e
(s

e c
)

(b) Incremental load type
Figure 11: Running basic action a on snapshots with incremental and full load types

For comparison purposes, we created a baseline scheduling al-
gorithm which executes the actions on an FCFS (First Come First
Serve) basis. (Recall the challenges we outlined in Section 5 that
scheduling algorithms face in the Flex setting; which make FCFS
a very practical baseline.) Intuitively, FCFS tries to complete ac-
tions as fast as possible, ignoring the flexibility given by the dead-
line. FCFS prioritizes actions on the earliest available snapshots,
and as soon as a host completes an action, it proceeds with the next
available action. The Flex scheduling algorithm does not have any
prior information on the running times of actions, so that it does
not have any starting advantage over the FCFS scheduler. Execu-
tion timelines for Scenario1 for the Flex and the FCFS algorithms
are depicted in Figure 10(a) and Figure 10(b) respectively.

As seen in Figures 10(a) and 10(b), all actions can be run by
just one host and still complete within the given deadline of 3
hours. (That would be the optimal schedule.) However, none of
the scheduling algorithms realize this opportunity. The exploration
phase of the Flex scheduling algorithm uses the maximum num-
ber of two hosts. These hosts are needed to build the models for
the execution of the actions. After that, Flex converges quickly to
the optimal schedule. FCFS uses the two hosts all the time. Note
that FCFS did not converge to the optimal strategy and placed a
higher concurrent resource demand than needed to meet the DBA’s
requirements subject to the specified deadline. This behavior is
undesirable under bursty workloads when a number of Slang pro-
grams will be submitted over a short period of time.

If the deadline was set by the DBA to a lower value of 100 min-
utes, then both algorithms will produce similar execution timelines.
Nevertheless, Flex has an advantage because it exploits the short
execution times of actions that have already preloaded data; see
action A3 on snap-3 in Figure 10(a).

The results observed so far are for cases where all the snapshots
are available. In our next scenario (termed Scenario2), we changed
the snapshots from “already available” to “expected to come in fu-
ture”. The snapshots in Scenario2 arrive at times 0, 60 and 120.
That is, there is a Snapshot Manager that takes snapshots every
hour, and reports them to Flex. Figures 10(c) and 10(d) show the
actual execution of Flex and the baseline FCFS scheduling in Sce-
nario2. Each red dot on the time axis marks the arrival of a snap-
shot. The conclusions from Scenario1 hold here as well. The hosts
are underutilized most of the time by FCFS in Scenario2. However,
Flex will adapt quickly to the optimal schedule of using 1 host. In
summary, these experiments illustrate the elastic and adaptive na-
ture of Flex’s scheduling algorithm.

8.3 Impact of Snapshot Loading Techniques
In Section 6, we described two options each for the snapshot

loading type and mechanism. We now evaluate the four resulting
choices empirically: (i) Full + Eager; (ii) Full + Lazy; (iii)
Incremental + Eager; and (iv) Incremental + Lazy. To
investigate the performance impact of the snapshot loading process,
we use a basic action a that reads all data pages from the snapshot,
extracts the records, validates the data page’s checksum and each
record’s checksum, and verifies that all fields in every record are
consistent with the database schema.

Figure 11(a) shows the results for loading the full snapshot data
with lazy and eager mechanisms. The base bar represents execution
of the action when the data is completely loaded and available on
the host. Note that the y axis starts from 300 seconds in order to
make the graph more legible. We varied the amount of data that
the action touches, and used values of 20% (10GB out of 50GB)
and 80% (40GB) as represented on the x-axis. The bar “Lazy”

Module Lines of Code
Angel Language 300
Input Definitions & Validation 2800
Configuration & Utilities 1100
Main modules 1000
Optimizer 2000
Models Learning 1500
Execution & Monitoring 4000
Cloud communications 1500

Table 4: Lines of code in standalone Amulet

����	
�����

����	
�����

���	��

��
��

��
��

����	
�����	

���	�

����	
�����	

���	�

����	
�����	���	�� ����	
�����	���	��

���	��

����	
�����

���	��

��
��

��
��
����	
�����	

���	��

����	
�����	���	��

���	��

����	
�����	

���	��

��	 �� �� �� �� �� �� � !��"#$%	 &$#�'

(a) Amulet as a Flex service

P����������	�
���� P����������	�
����P����������	�
����

P����������	

�����

�����

�����
�����

P����������	

�����
�����

P����������	

�����
�����

P����������	�
����� P����������	�
�����P����������	�
�����

��� �� �� �� �� �� �� �� ��������

�����

�����

(b) Standalone Amulet
Figure 12: Amulet running as standalone and as a Flex service

represents the execution of the action when the snapshot is loaded
in a lazy manner. The “Eager (touched data)” bar represents the
time to execute the action after loading only the data that the action
touches. The “Eager (full data)” bar represents the loading of the
complete snapshot data and the following action execution time.
Eager (touched data) slightly outperforms lazy due to the fact that
lazy loading process also loads some data that is not touched by the
action.

Figure 11(b) shows the results for loading the snapshot incre-
mentally (only the delta changes are loaded) with lazy and ea-
ger mechanisms. Note that, to use incremental snapshot loading,
an earlier version of the snapshot data should be present on the
host. We varied the delta change (denoted ∆), i.e., the amount
of changed data between the earlier version and the snapshot that
needs to be loaded. We used ∆ of 1GB and 5GB. The action a
touches 20% and 80% of the data. This percentage also reflects
the data that is part of the delta. That is, when the action touches
20% (10GB) of the overall data, then it also touches 20% of the
∆ change. For ∆ = 5GB, the action touches 9GB of the regular
snapshot data, and 1GB of the ∆ change. Again, we see that lazy
outperforms or is equal to the eager mechanism.

In summary, incremental + lazy is a robust strategy that outper-
forms or is equal to the other options, followed by incremental + ea-
ger, full + lazy, and last full + eager. However, recall from Section 6
that incremental + lazy cannot be used for all actions. If an action
needs trustworthy measurements of running time as what would
have been observed on the production database instance, then the
eager mechanism is mandatory.

8.4 How Flex Reduces Development Effort
To study the utility of Flex as a platform for rapid development

of testing and tuning applications, we ported the Amulet testing tool
[4] to run as a Flex Service. Amulet aims to verify the integrity of
stored data proactively and continuously. Amulet runs tests which
are special programs that perform one or more checks—e.g., com-
parison of a disk block with its stored checksum, comparing data

in a table T versus the corresponding data in an index on T , or
comparing the recent versions of data in a table versus the database
log—in order to detect corruption in stored data. To satisfy all the
data correctness and performance constraints specified by the DBA,
Amulet plans and conducts a series of tests. For planning purposes,
Amulet has a long training phase where it first runs tests in order to
collect performance data for learning models.

Table 4 shows the lines of code for different modules in the
standalone implementation of Amulet. The total lines of code are
14200 (a reasonable amount for Amulet’s functionality). Note that
execution and cloud communications are major parts of the source
code, comprising 5500 lines. Porting Amulet to run as a Flex ser-
vice directly makes this part of the Amulet code obsolete. Convert-
ing Amulet’s testing plans to Flex’s Slang language required around
700 lines of code. By creating a single Slang program, Amulet’s
model learning functionality can also be offloaded to the Flex plat-
form; reducing the total code base to 6300 lines (taking into ac-
count some changes to create the input for Flex). This significant
code base reduction shows how Flex allows developers to focus on
the functionality of the service rather than the low-level details of
scheduling and running experiments; especially on remote cloud
platforms where failures are more common than on local clusters.

Next, we investigate the behavior of Amulet when run as a stan-
dalone tool and as a Flex service. Figure 12 shows the respective
runs on snapshots that arrive over time. Note that both runs are
almost identical. Flex starts with 3 hosts to learn the models of
the actions. Amulet uses only 2 hosts as the model learning is per-
formed before the execution of the testing schedule. When Flex
learns the models, it converges quickly to the Amulet plan. There
is a difference in the order of actions A2 and A3, but the order does
not affect the DBA’s requirements.5

This result illustrates how Flex can provide testing and tuning
tools with fairly good performance while freeing them from the
nontrivial complexity of generating training data, model learning,
and scheduling. Also note that a Slang program (omitted due to
space constraints) with less than 100 lines of code is all it takes
to obtain the monitoring data needed for Figure 9. Adding this
program to a library makes it reusable by other Flex users.

8.5 Scalability Test for Bursty Workloads
Since we expect the typical workload of Flex to be bursty, Flex is

designed to run multiple Slang programs concurrently. As a scala-
bility test, we had twenty different applications connecting to Flex
and submitting Slang programs. To run all programs, Flex allocated
40 hosts from the resource provider (AWS). The experiments from
all programs were completed as per the requirements specified.

9. RELATED WORK
A/B testing has become a popular methodology that companies

use to test new user-interfaces or content features for websites.
Tests are run on a random sample of live users to gauge user re-
actions fairly quickly and accurately. An example is the Microsoft
ExP platform for analyzing experimental features on websites [17].
Facebook has a related, but architecturally different, initiative called
Dark Launch [8]. Dark launch is the process of enabling a feature
without making it visible to users. The goal is to test whether the
back-end servers will be able to handle the workload if the feature
were to be made generally available. Both of these are examples of
platforms that are related to Flex’s goal of easy experimentation in
production deployments. However, Flex differs from them in two
major ways: focusing on database testing and tuning and not tar-

5An order of actions can be enforced using the 〈ai,sj ,hk〉 triples
form of mapping; see Section 4.

geting experiments on live applications or users, leading to a very
different architecture.

Salesforce’s Sandbox initiative underscores the need for plat-
forms like Flex [23]. Sandbox provides a framework that devel-
opers can use to create replicas of the production data for test-
ing purposes. The Dexterity automated testing framework verifies
database correctness and performance by performing regression or
ad-hoc testing based on the database schema [12]. JustRunIt is
an automated framework for experimentation [27]. JustRunIt uses
virtual machines to replicate the workload and resources. While all
these frameworks automate the low-level details of running exper-
iments, each one of them is specific to one or more tasks. Frame-
works like Chef, Puppet, and Scalr take declarative system speci-
fications as input and use them to configure and maintain multiple
systems automatically as well as start and stop dependent services
correctly.

Compared to the above frameworks, Flex innovates in a num-
ber of ways by providing: (i) the Slang language with key abstrac-
tions suited for specifying experiments and objectives, (ii) a new
scheduling algorithm with a mix of exploration and exploitation to
meet the given objectives, (iii) adaptive and elastic behavior to re-
duce resource usage costs, and (iv) multiple techniques to transfer
evolving data from the production database to hosts that run exper-
iments.

A large body of work focuses on minimizing the impact on the
production database instance while performing administrative tasks
such as online index rebuild [20], database migration [11], and de-
fragmentation. This line of work helps the migration from one host
to another or from one configuration to another. However, before
doing a change to the production database, the DBA needs to deter-
mine the benefits and drawbacks of this change. Here is where Flex
helps by allowing the DBA to experiment before actually doing the
change. As future work, we can integrate these services with Flex
so that the DBA can easily experiment with changes and then apply
them non-intrusively to the production database.

A number of testing and tuning tools from the literature such as
Amulet, HTPar, and iTuned can be implemented as Flex Services
easily. Section 8.4 described our experiences in porting the Amulet
testing tool to run as a Flex Service. HTPar is a regression testing
tool [14]. iTuned is tuning tool for database configuration param-
eters [9]. To find a good configuration from an unknown tuning
surface like Figure 9, iTuned proceeds iteratively: each iteration
issues a set of experiments with different server configurations to
collect performance data.

10. FUTURE WORK
We presented Flex, a platform that enables efficient experimen-

tation for trustworthy testing and tuning of production database in-
stances. Flex gives DBAs a high-level language to specify defini-
tions and objectives regarding running experiments for testing and
tuning. Flex orchestrates the experiments in an automated manner
that meets the objectives. We presented results from a comprehen-
sive empirical evaluation that reveals the effectiveness and useful-
ness of Flex. We envision three interesting avenues for future work:
• Using Flex to create self-tuning cloud databases: Consider a

Flex Service that automatically tunes production database in-
stances running on a cloud platform like AWS or SQL Azure.
This service will continuously monitor databases for perfor-
mance degradation, e.g., tracking Service-Level-Agreement vi-
olations. Based on the workload observed, the service will use
tuning tools like index wizards and iTuned [9] to come up with
potential fixes. The service will then perform experiments to

find and validate the best fix, which will then be applied to the
production database to complete the self-tuning loop.
• Extending Flex to support parallel databases: A promising di-

rection is the integration of Flex with Mesos which is a cluster
manager that provides efficient resource isolation and sharing
across distributed applications [15]. Flex can use Mesos to cre-
ate a “distributed host” which will encapsulate a set of hosts
required to run an experiment for a parallel OLTP database or a
NoSQL engine.
• Making the Flex platform richer: Many opportunities exist to

integrate Flex with orthogonal tools like fine-grained workload
replay [13] or the UpSizeR that enables data sizes to be scaled
up or down in a trustworthy manner [25]. Flex can also be ex-
tended with fine-grained access control when providing access
to production data; enforced currently by the coarse-grained
Credentials statement in Slang.

11. REFERENCES
[1] Amazon Web Services. aws.amazon.com.
[2] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A.

Patterson. Automatic Exploration of Datacenter Performance
Regimes. In Automated Control for Datacenters and Clouds, 2009.

[3] N. Borisov and S. Babu. Rapid Experimentation for Testing and
Tuning a Production Database Deployment. Technical report, Duke
University, 2012. http://bit.ly/Hz6U5w.

[4] N. Borisov, S. Babu, N. Mandagere, and S. Uttamchandani. Warding
off the Dangers of Data Corruption with Amulet. In SIGMOD, 2011.

[5] Business Process Execution Language. http://bit.ly/HI1LFY.
[6] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy. Exact

Cardinality Query Optimization for Optimizer Testing. PVLDB,
2009.

[7] Data corruption in CouchDB. couchdb.apache.org/notice/1.0.1.html.
[8] Facebook dark launch. http://on.fb.me/RWsOO.
[9] S. Duan, V. Thummala, and S. Babu. Tuning Database Configuration

Parameters with iTuned. In VLDB, 2009.
[10] Running MySQL on Amazon EC2 with EBS. http://bit.ly/b7SWwg.
[11] A. J. Elmore, S. Das, D. Agrawal, and A. E. Abbadi. Zephyr: Live

Migration in Shared Nothing Databases for Elastic Cloud Platforms.
In SIGMOD, 2011.

[12] D. J. Farrar. Schema-driven Experiment Management: Declarative
Testing with Dexterity. In DBTest, 2010.

[13] L. Galanis, S. Buranawatanachoke, et al. Oracle Database Replay. In
SIGMOD, 2008.

[14] F. Haftmann, D. Kossmann, and E. Lo. Parallel Execution of Test
Runs for Database Application Systems. In VLDB, 2005.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center. In USENIX,
2011.

[16] The Exploding Digital Universe. http://bit.ly/bzgTBq.
[17] R. Kohavi, T. Crook, and R. Longbotham. Online Experimentation at

Microsoft. In Workshop on Data Mining Case Studies and Practice
Prize, 2010.

[18] Data corruption at Ma.gnolia.com. en.wikipedia.org/wiki/Gnolia.
[19] MySQL upgrade from 4 to 5. http://bit.ly/sV9PIf.
[20] Oracle online index rebuild. http://bit.ly/trDrGe.
[21] Oracle upgrade regression. http://bit.ly/uOHwB1.
[22] PostgreSQL TPCH bug. http://bit.ly/rIJK1w.
[23] Salesforce Sandbox. http://bit.ly/7Bi1jU.
[24] S. Subramanian, Y. Zhang, R. Vaidyanathan, H. S. Gunawi, A. C.

Arpaci-Dusseau, R. H. Arpaci-Dusseau, and J. F. Naughton. Impact
of Disk Corruption on Open-Source DBMS. In ICDE, 2010.

[25] UpSizeR. http://upsizer.comp.nus.edu.sg/upsizer/.
[26] K. Yagoub, P. Belknap, B. Dageville, K. Dias, S. Joshi, and H. Yu.

Oracle’s SQL Performance Analyzer. DEB, 2008.
[27] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and

Y. Turner. JustRunIt: Experiment-Based Management of Virtualized
Data Centers. In USENIX, 2009.

