
Toward Automatic State Management for Dynamic Web Services �

Geo� C. Berry, Je�rey S. Chase, Geo� A. Cohen, Landon P. Cox, and Amin Vahdat

Department of Computer Science

Duke University

fgcb,chase,gac,lpc1,vahdatg@cs.duke.edu

Abstract

A key challenge in the development of the Inter-
net is to simplify construction of scalable wide-
area services. One approach to scaling wide-area
services is to deploy generic computing power and
storage in the network, and use it to absorb service
load through dynamic resource recruitment, active
caching, or dynamic service replication. Each of
these approaches introduces distributed state and
an accompanying burden on the programmer to
manage that state.
This paper develops an approach to automatic

state management for replicated services, a key step
toward the goal of automatically converting un-
scalable service implementations into scalable ones.
We demonstrate a prototype implementation of au-
tomatic state management, called Ivory. Ivory
transforms the bytecodes of a Java-based service
to trap updates to its data structures and propa-
gate modi�ed objects among to peer replicas. We
demonstrate our approach in the context of a ser-

vice caching framework that replicates service code
and data on demand, and present measurements of
an example Web portal application that shows the
overhead and scalability bene�ts of service replica-
tion using Ivory.

1 Introduction

Dynamic Web content is becoming increasingly im-
portant as Internet services continue to evolve. A
dynamic Web service generates custom documents
on-the-y by executing code over internal service
state often extracted from a database. The gener-
ated response may depend on arguments in the re-
quest, session history, or user information accessed

�This work is supported by the National Science Founda-

tion under grants CCR-96-24857 and CDA-95-12356. Geo�

Cohen was supported in part by an IBM Cooperative Grad-

uate Fellowship.

through a cookie, and the service may update its
internal state as a side e�ect of the request. The
Common Gateway Interface (CGI), Microsoft's Ac-
tive Server Pages (ASP), Java servlets, JavaServer
Pages (JSP), and other technologies for dynamic
Web content are central to the continuing evolution
of \Web servers" into \Web application servers"
supporting personalized content (e.g., my.*.com),
electronic commerce and auctions, online �nancial
services, and communication services such as Web-
based mail. The technology is also gaining popular-
ity as a vehicle for delivering outsourced application
services, e.g., billing or personnel management for
small businesses, and to associate code with static
content, e.g., to track user access patterns.

Scaling these dynamic Web services is a key chal-
lenge for the continuing development of the Inter-
net. Increasing bandwidths enable more advanced
dynamic applications, but these applications are
interactive and must respond quickly. Faster net-
works alone cannot overcome latencies imposed by
server load or the speed of light, or outages caused
by server failures or network glitches. The solution
is to use caching and replication to push applica-
tion data and processing out into the network and
closer to the end users. Unfortunately, dynamic
content defeats current Web proxy caches. Dy-
namically generated documents are not cacheable
because they may change each time they are ac-
cessed. This presents a fundamental limit to the
e�ectiveness of Web document caching. For dy-
namic services to bene�t, caching and replication
strategies must be extended to replicate some or all
of the service itself | its code and internal state |
rather than merely caching or replicating the doc-
uments that it generates.

Several frameworks exist for managing service
replication in the Web, including research sys-
tems [VAD+98, RRRA99] and emerging Web host-
ing providers (e.g., Akamai and Sandpiper Net-

works). One di�culty with replicating service
state is that the service must maintain consistency
among its replicas; updates originating at any site
must propagate to all replicas using the modi�ed
state. The speci�c way to address the consistency
problem depends on the representation of the data,
its internal consistency requirements, and the na-
ture of the updates. For example, some or all of the
server state may be stored in a collection of �les, a
relational database, or data structures generated by
programs. Each requires a di�erent level of system
support to maintain consistency.

This paper presents techniques for automatically
managing replica consistency, taking an impor-
tant step toward transparent replication of dynamic
Web services. We focus speci�cally on services
based on server-side Java technology, as one ex-
ample technology for producing dynamic Web con-
tent. Our approach is based on a toolkit, called
Ivory, that leverages Java binary rewriting tools to
instrument the compiled bytecodes for the service
implementation, adding new instructions to cap-
ture and propagate object updates.

While the general problem of replica consistency
is extremely di�cult, our solution is promising for
state represented as Java object structures with no
concurrent write sharing of any individual object
among the replicas. Our system provides no means
to order updates from multiple replicas. This is ad-
equate for the large class of dynamic Web services
in which content updates disseminate from the pri-
mary server and user updates are limited to state
associated with a particular user (e.g., user pro�les,
shopping carts, mail boxes, account information)
or with a group of clients bound to a single replica
(e.g., a business using an outsourced application).

We illustrate our approach as the core of a service
caching framework for dynamic Web services. This
framework extends the Web proxy caching infras-
tructure to allow on-demand partial replication of
services inWeb application proxies. Service caching
leverages the transportability of Java code and Java
objects, and the partitioning of Java-based services
into discrete code units (servlets). Service caching
is super�cially similar to Java applets in that ap-
plication services are delivered by server-supplied
code without the need for clients to install, admin-
ister, or maintain the application software. How-
ever, service caching di�ers in several fundamental
respects.

� There is little or no burden on the program-
mer to use service caching; bytecode rewriting
transparently adapts the service code to run

outside of the server.

� The transformed service code can make use of
generic processing power and storage in the
network. In particular, it is easy to expand
capacity by adding more application proxies.

� Service caching with Ivory provides for regular,
incremental, transparent, and consistent prop-
agation of updates in both directions between
each proxy and the primary server.

� Web application proxies can exploit sharing of
content within a client population, in a manner
analogous to static Web proxy caching.

We demonstrate service caching with a dynamic
portal application intended to be representative of
my.yahoo.com and other commercial Web services
providing personalized views of news, stock quotes,
sports scores, weather, etc. In this paper, ser-
vice caching and the portal example serve to illus-
trate the Ivory approach to automatic state man-
agement. In particular, this paper does not ad-
dress important security, access control, and re-
source management issues for service migration and
on-demand replication. For example, it would not
be useful for a large search engine to download its
entire index to a proxy. We view service caching as
a speci�c instance of a general vision of migratable
service code, which is addressed more comprehen-
sively by recent research on WebOS [VAD+98] and
Active Names [VDAA99]. Similarly, the Ivory ap-
proach to automatic state management is applica-
ble within these more general frameworks.
This paper is organized as follows. Section 2

presents the Ivory approach to state management
and its prototype implementation. Section 3 illus-
trates the use of Ivory in the service caching ar-
chitecture. Section 4 sets our approach in context
with related work. Section 5 presents experimen-
tal results showing the overhead of automatic state
management and the performance bene�ts of ser-
vice caching. Section 6 concludes.

2 Ivory Architecture

This section describes the structure of the Ivory
system, the techniques and mechanisms used to
manage replicated service state, and the issues
raised by our approach. While the implementation
described here is speci�c to Java, the underlying
principles extend to any similar language. A Java-
based service may instantiate its data from some
external storage, e.g., �les or a database, but Ivory

deals only with the data's representation as Java
data structures.
Ivory consists of a state manager, a serializer,

and a transformer program built using JOIE, a
programmable bytecode rewriting toolkit [CCK98].
The transformer instruments the compiled service
code with write barriers that capture object up-
dates and notify the state manager, which propa-
gates the modi�ed object values. The serializer is
an extended object serialization package used by
the state manager to propagate updates incremen-
tally. The following subsections explore the Ivory
architecture in more detail.

2.1 Replicas and Views

To instantiate a new replica, a server serializes some
set of objects into a TCP stream. The receiver
unpacks the serialized objects to create a complete
or partial replica of the service. The policies for
selecting replica sites or objects to replicate are left
unspeci�ed; the service caching framework outlined
in Section 3 illustrates one useful set of policies.
To simplify the exposition, we describe how the

system manages state shared among a single pair
of replicas. Generalization to multiple replicas is
straightforward. eralization to multiple replicas is
straightforward.
The set of objects shared by a pair of replicas is

called the pair's view. Each replica's state manager
maintains a table of references to objects shared
with its peer, called a view table. The serializer
uses the view table to propagate object updates in-
crementally, as explained in Section 2.4. If either
replica loses state in a failure, it may be reestab-
lished from the survivor's view table.
Connected replicas must agree on the set of ob-

jects contained within the shared view. Views are
not static; either peer may create new objects or
add objects to the view. In our current prototype
each view contains a closed set of objects; any ob-
ject that becomes reachable from other objects in
the view is automatically added to the view and
propagated to the peer, as described in Section 2.4.

2.2 View Consistency

Replicated data may include arbitrarily linked data
structures with strong internal consistency require-
ments. Therefore, Ivory must propagate updates
in such a way that each replica observes only inter-
nally consistent states. Our solution is to borrow
the notion of an atomic commit from ACID trans-
action systems. The state manager records new

object values only at well-de�ned commit points oc-
curring at the completion of sequences of updates
that transition the modi�ed structures from one
consistent state to another. When a service thread
reaches a commit point, all objects modi�ed since
its last commit point are committed to the state
manager. The state managers observe the follow-
ing constraints, which are both necessary and suf-
�cient to preserve consistent views: (1) the state
manager never propagates an object that is dirty
but uncommitted, (2) if the state manager sends
to a peer any object modi�ed in a given commit,
then it sends all objects in the peer's view that were
modi�ed in that commit or in a preceding commit,
and (3) the receiving replica applies updates from
a given commit as an atomic unit, and never in-
terleaves them with processing for a request that
might access the modi�ed objects.

Our approach leads to the following consistency
guarantee for each replica's view. For each peer P ,
consider the set of locally replicated objects whose
latest update originated at P . The objects in this
set have the same state that they had at some
commit point recently occurring on P . Thus this
state is internally consistent, but it is permitted
to be stale, i.e., subsequent commits may have es-
tablished a more recent state not yet reected in
the replica. In general, a client bound to a single
replica of a dynamic Web service cannot detect that
its replica's data is stale, since any state presented
to the client in a response could change before the
client submits the next request. However, stricter
session guarantees are needed if clients migrate be-
tween replicas. Also, if multiple sites may generate
conicting updates then the system must impose
some safe ordering on these updates. Safely repli-
cating this class of service requires an external con-
currency control scheme [FCNyML94] or restricted
data representations that can tolerate multiple up-
date orderings [PST+97].

Rather than attempt to determine appropriate
commit points automatically, we currently require
the programmer to direct the placement of com-
mits. Ivory de�nes a null interface called Consis-

tent; methods of interfaces marked by the program-
mer as extending the Consistent interface are as-
sumed to transform the data from one consistent
state to another. The bytecode transformer instru-
ments these methods to commit updates before re-
turning.

Our Ivory prototype imposes coarse-grained con-
currency control on the service to ensure that
updates and requests do not interleave within
any replica. Our approach establishes a global

reader/writer lock in the state manager. Consis-

tent methods, which update replicated state, are
instrumented to include a prologue that acquires
the global lock in write mode. Request handlers
acquire the lock in read mode, and may promote to
write mode if the handler encounters a consistent
method. The serializer holds the lock in read mode
when it is propagating updates, and in write mode
when it is applying received updates. The locking
rules prevent any thread from observing a possibly
inconsistent state while it is processing a request.

2.3 Propagating Updates

The state manager is responsible for propagating
the new object values to replicas as needed, as de-
termined by the lists of dirty objects passed to its
commit method. Each site must track object mem-
bership in the views of connected replicas, so that
it may propagate any modi�ed object to all views
that contain it. To meet this need, the state man-
ager maintains a copyset table mapping each object
to a list of views that contain the object. The copy-
set table is updated when the state manager adds
or removes objects from a view.

Ivory accommodates both push and pull policies
for propagating updates to peer replicas. To im-
plement a push, the state manager simply serial-
izes all committed objects into the stream(s) bound
to each containing view at commit time. The pull
state manager retains records of dirty objects un-
til the peer asks for them; it maintains with each
view a list of objects that are dirty in the view, i.e.,
objects that have not been propagated since they
were last modi�ed. Each object that is dirty in
the view is marked with a dirty bit in the object's
view table record. On commit, modi�ed objects
that are not already dirty in the view are added to
the view's dirty list. When the replica requests up-
dates, the state manager serializes the view's dirty
objects into the stream, clears the view's dirty bits
for the objects in the list, and empties the list. The
pull (lazy) model may impose a round-trip latency
on some requests, but it is less consumptive of net-
work bandwidth, it matches the request/response
structure of HTTP, and it supports the browser
\refresh" button.

The state managers require state proportional
to the sum of the number of objects in all the
views. There are three hash table entries for each
(object; view) pair, one in the copyset table and two
in the view table (OID-to-reference and reference-
to-OID). Each entry contains at most an object ref-
erence and a dirty bit. State management overhead

for a dirty object is proportional to the number of
views containing the object.

2.4 The Serializer

The state manager uses a new serialization pack-
age to propagate modi�ed object values. The Ivory
serializer is similar to Java Serialization in that it
packs and unpacks object values into and out of a
stream, in this case a network connection between
a replica pair. However, the Ivory serializer di�ers
in three key respects:

� It is incremental: the serializer transmits only
the objects that have been modi�ed or added
to the view, rather than reserializing the entire
data structure. This minimizes the overhead
to propagate updates, and it allows di�erent
sites to concurrently update di�erent portions
of a connected data structure.

� It is iterative rather than recursive, so it is not
vulnerable to stack overows for deeply nested
data structures.

� It uses e�cient class-speci�c serialization
methods generated and installed in each class
by the bytecode transformer, rather than us-
ing reection to discover each object's internal
structure at runtime.

The view tables are the basis for the Ivory se-
rialization scheme. Each view table maintains a
mapping between object references to integer ob-
ject IDs (OIDs) that are unique within the view.
The state manager initializes the mappings when it
creates the view, and updates it by assigning new
OIDs as objects are added to the view. View ta-
bles allow the peers on either side of a connection
to agree on a common space of OIDs. OIDs enable
incremental and iterative serialization because they
provide a means to represent objects by reference

in the serialized stream.
One role of the serializer is to automatically add

objects to the view when those objects become
reachable from other objects in the view. This can
occur only when an object A already in the view
is modi�ed to include a reference to an object B

that is outside of the view, causing B and its de-
scendents to become reachable from the view. The
serializer discovers and handles all such cases while
serializing the updated A, when it queries the view
table for an OID to represent the referenced object
B. The sending serializer allocates an OID for B,
adds the mapping to the view table, and transmits

ALOAD 0 // this
GETFIELD <Ivory dirty>

IFNE @END // if true goto end
ALOAD 0 // this
ICONST 1 // true
PUTFIELD <Ivory dirty>

ALOAD 0 // this
INVOKESTATIC <Hamper::setDirty>

END

Table 1: Bytecode transformer splice for write barrier on put�eld operations.

B together with its new OID. The receiver instanti-
ates a new copy of B and installs the new mapping.

2.5 The Role of Bytecode Rewriting

Ivory uses bytecode rewriting to make state man-
agement automatic. The replication system is a
general-purpose Java package; a service implemen-
tor could design the service to use the replication
package by making explicit calls to the state man-
ager. Our goal is to automate this process, provid-
ing a means to automatically convert unscalable
service implementation into scalable ones. Byte-
code transformation is a promising approach to
injecting new system functionality into Java pro-
grams without modifying the application source
code or the Java system itself (the language, com-
piler, and JVM).
The Ivory bytecode rewriter is built using

JOIE [CCK98], a bytecode rewriting toolkit. JOIE
bytecode rewriters are transformer classes written
in Java using JOIE primitives for deconstructing
and instrumenting compiled Java classes. JOIE
transformers can be used to transform stored class-
�les after compilation, or they may be applied on-
the-y by a transformer-enabled JOIE ClassLoader
as it loads service classes into the JVM.
Ivory includes three JOIE transformers that il-

lustrate simple tasks easily achieved with byte-
code transformation. First, a serialization trans-
former injects code used by the incremental seri-
alizer for e�cient, transparent serialization, as de-
scribed in Section 2.4. Second, a consistency trans-
former identi�es methods that implement the inter-
face Consistent (Section 2.2), and injects a prologue
and epilogue to synchronize the consistent method
and to commit dirty objects on completion. Finally,
a write barrier transformer installs write barriers to
track and record object updates.
The write barrier transformer modi�es each class

to add a dirty bit to each instantiated object. It in-

jects new instructions (a splice) into the bytecode
to set an object's dirty bit each time one of its
�elds is modi�ed with a putfield instruction. To
capture all needed updates, the transformer must
rewrite any class that updates any replicated ob-
jects, including classes that set a public �eld rather
than calling a method. The spliced code sequence,
shown in Table 1, collects modi�ed objects on a
dirty list (a globally shared hamper) as the dirty
bit transitions from clean to dirty. The epilogue
for Consistent methods commits the dirty list to
the state manager, which records the dirty objects,
resets their dirty bits, and empties the hamper.

For automatic state management to be practi-
cal, it is critical to minimize state management
overheads in the transformed bytecodes. The sim-
plest write barrier transformer instruments every
putfield instruction, which is wasteful when mul-
tiple writes occur within the same code path. The
JOIE toolkit provides primitives to partition the
bytecode into basic blocks and to perform simple
control ow analysis. We have used these primi-
tives to implement two re�nements of the simple
write barrier transformer. The BasicBlock trans-
former updates the dirty bit at most once per ba-
sic block. The Dominator transformers performs
a dominating path analysis to reduce dirty bit up-
dates for basic blocks accessed through the same
code path. The more sophisticated transformers
trade o� transformation speed for more e�cient
runtime performance. Section 5 presents perfor-
mance results from these transformers.

3 Service Caching

This section outlines the structure of the service
caching framework used in our experiments. The
framework is designed to illustrate use of Ivory in
conjunction with a simple scheme for replica cre-
ation and request routing. It allows on-demand

caching of service code and data in application

proxy servers, which extend static proxy caching
to support local execution of cached Java classes
and data.

Our prototype enables transparent service
caching for services implemented using the
JavaServer Pages (JSP) standard [PLC99], a re-
cent extension of the earlier Java Servlet stan-
dard [Dav99]. The JSP standard supports con-
struction of dynamic Web services from static tem-
plates (e.g., HTML) containing embedded scripting
code invoked at page-fetch time to �ll in dynamic
content. The JSP script code is written in Java,
although future releases may support other script-
ing languages. JSP scripts access the service data
using a registry that allows them to retrieve some
subset of the underlying service objects by sym-
bolic name. JSPs are compiled to generate Java
servlets, which are Java classes implementing stan-
dard methods for handling HTTP requests.

The service caching framework uses JSP servlets
and the retrieved objects as the granularity of
caching. The proxies cache servlets by the URL
name pre�x (not including arguments). The proxy
can then service any URL operation with a match-
ing pre�x by executing the cached JSP servlet lo-
cally. As the servlet retrieves objects by name, the
Ivory-enabled proxy server contacts the home site
to retrieve the objects and add them to its view.
The proxy maintains a local cache over the name
registry, so that it can serve repeat references by
symbolic name from its object cache. Of course,
the retrieved objects may reference other objects
directly; the serializer in the home server automat-
ically adds these descendent objects to the view
as described in Section 2.4. Thus the local ob-
ject cache may contain service objects that are not
named symbolically.

This replication scheme results in a simple hier-
archy in which each proxy has a connection for ex-
changing updates with a parent, e.g., the home site.
Updates may ow in either direction. For example,
in the portal application described in Section 5, the
server noti�es the proxies of updates on the con-
tent provider (e.g., news and stock quotes). Our
prototype application proxy pulls updates from the
server on each client request. A weaker but more
e�cient implementation could limit the pull rate
according to some policy, e.g., pull at most once
a minute unless the client hits the \refresh" but-
ton. In the other direction, the proxy may notify
its parent of updates to user-speci�c information
(e.g., a user pro�le). For security reasons a server
may refuse to accept updates to service state from

a proxy, but our prototype has no access control.
Service caching in application proxies can im-

prove the scalability, availability, and response time
of a dynamic Web service. The bene�ts accrue from
several factors:

� It o�oads the processing cost of generating dy-
namic content. This allows the home server to
support a larger community of clients before it
saturates.

� It exposes to the application proxies the \as-
sembly" of dynamic documents from static and
dynamic components, allowing the proxy to
cache the static content. Requests that hit in
the cache retrieve at most the objects needed
to generate the dynamic components. In many
(but not all) services this will reduce network
bandwidth consumption to satisfy the request.

� For requests that hit in the cache, a pull to
refresh the cache state will transfer only the
objects that were modi�ed. This can sub-
stantially reduce overhead and network band-
width demand for services with su�ciently low
update rates. On lower bandwidth links the
smaller transfer size can substantially reduce
response time.

� Many services can tolerate delays in the dis-
semination of content updates from the server.
This can reduce the propagation frequency
and the overhead of round-trips to query for
updates, reducing latency and bandwidth de-
mands. It also improves service availability,
since a client may continue interacting with a
replica if the home server fails or is unreach-
able.

� Like static proxy caches, application proxies
can deliver caching bene�ts from shared data
brought into the cache by multiple users ac-
cessing the same Web sites.

4 Related Work

Replication for improving server performance is not
a new technique, having analogs in �le servers,
databases, and web servers. Many of these sys-
tems propagate updates to replicated state incre-
mentally. For example, Delis and Roussopoulos
explore a log-based approach for updating client
caches in a relational database system [DR92]. Up-
dates are centralized at the server; before a client
accesses a data item in its cache, it �rst contacts

0

20

40

60

80

100

120

0 50 100 150 200

demand (requests/sec ond)

th
ro

ug
hp

ut
(r

eq
ue

st
s/

se
co

nd
)

original

transformed

1-view

5-views

1-proxy

Figure 1: Request throughput for the portal application on a single server.

the server to retrieve log records generated since
the cached copy of the item was last updated. Rel-
ative to this large body of work, our contribution
lies in: (1) system support for incremental updates
to replicated Java data structures, (2) our use of
bytecode rewriting to make state management au-
tomatic for Java-based services, and (3) our use of
automatic state management to extend the Active
Cache idea [CZB98] to handle Java-based dynamic
content.

Our pull-based incremental update propagation
is also similar to delta encoding of updates to web
pages [MDFK97]. HPP [DHR97] preprocesses web
pages to identify static versus dynamic portions.
HPP could be used for our simulated web portal
application to cache portions of the web page. Ivory
extends these ideas to handle the Java state used
to generate dynamic content. In this sense, these
systems are complementary to Ivory and can be
used together for e�cient delivery of web content.

Software write detection has been used previ-
ously for distributed shared memory, fault isola-
tion, garbage collection, and dynamic data race de-
tection [ZSB94, HM93, SG97]. It has been used
for Java in the PSE persistent storage engine from
Object Design Inc. [Obj98], which includes a util-
ity that transforms Java classes to be storable in
their persistence storage infrastructure, but does
not detect if the instances have become dirty.
PJama [ADJ+96], earlier called PJava, uses a mod-
i�ed JVM to supply orthogonal persistence to user

classes. Our approach using transformation allows
the key elements of this functionality on a standard
JVM.
The Ivory prototype is applicable to pure Java-

based services. However, techniques similar to our
own, for example, leveraging related work in the
database community on materialized views [GM95]
are more generally applicable to other kinds of ser-
vices.

5 Experience

This section presents experimental performance re-
sults to illustrate the bene�ts and quantify the costs
of automatic state management using Ivory. We
experimented with a simple portal application to
demonstrate the potential of the service caching
framework. The portal site is implemented as a
JSP servlet that generates \personalized" HTML
viewing a selection of content objects that are ran-
domly generated and regularly updated. The con-
tent mimics common information such as news cat-
egories and headlines, stock quotes, weather, and
sports scores. The content is stored in a variety of
Java data structures and referenced by randomly
generated user customization pro�les.
Personalized Web portals are illustrative of a

growing class of Web services that generate docu-
ments dynamically based on user preferences and
changing underlying content. We show how to
improve the scalability of these services by using

0

100

200

300

400

0 100 200 300 400 500 600

demand (requests/sec ond)

th
ro

ug
hp

ut
(r

eq
ue

st
s/

se
co

nd
)

1-proxy

2-proxy

3-proxy

4-proxy

ideal

Figure 2: Request throughput for the portal application using Ivory-enabled Web application proxies.

Ivory to cache subsets of the underlying content ob-
jects at application proxies; this allows the proxies
to generate the documents locally, contacting the
server only to receive updates. In this way, prox-
ies can service requests for dynamically generated
data, acting as logical extensions of the service.

The simulated web portal consists of a server (the
portal site) and a varying number of proxies and
clients. The server and proxies are based on Tiny-
Server, a simple Java-based servlet engine devel-
oped for a distributed systems class. A collection
of servlets and associated classes implements the
application proxy cache engine, the server interface
to the state manager, the naming registries for the
JSP service caching framework, and the portal ap-
plication. URL requests to the portal servlet spec-
ify a user by name, demand loading the user pro�le
and any referenced content objects if they are not
already resident in the cache.

Figures 1 and 2 show the overhead costs and scal-
ing bene�ts of Web application proxies using Ivory
for the portal application with representative pa-
rameter settings. In these experiments a commu-
nity of client processes generates a stream of page
view requests, with each process using a di�erent
user pro�le. These are closed loop experiments in
which each client process issues a request, awaits
the response, then sleeps for �ve seconds before is-
suing the next request. The �gures give delivered
throughput as a function of demand, the request
arrival rate for an ideal server that responds to

each request with zero latency. The number of user
pro�les scales with demand; in these experiments
500 pro�les generate a demand of 100 requests per
second. Each pro�le references 60 items randomly
selected from a universe of 2500 content objects.
While the total data size is less than a megabyte,
we stress the system by aggressively updating the
data: 15% of the objects are updated each second.
All proxies and servers are 167 MHz Sun Ultra 140
workstations running Solaris 2.6 and JDK 1.1.5,
interconnected with the clients by a switched 100
Mb/s network.

5.1 Service Overhead

Figure 1 quanti�es the overhead of our prototype by
showing the saturation points of a single server in
various con�gurations. The top two lines show that
transforming the service code to track object up-
dates degrades its saturation throughput by about
6%; Section 5.3 explores this cost in more detail.
In addition to the �xed cost of tracking object
updates, servers incur an additional cost to track
the objects that are dirty in the view of each peer
replica. This cost scales with the number of peers
and with the number of updates recorded for the
objects in each peer view. The next two lines in
Figure 1 show that this cost is signi�cant in the
prototype: maintaining copy sets and dirty sets for
each complete replica degrades request throughput
by about 3% to 4% in this experiment, primarily
due to the aggressive update rate.

0

100

200

300

400

500

600

compress jess db mtrt jack

T
ra

ns
fo

rm
at

io
n

S
pe

ed
(K

B
/s

ec
)

All Writes Basic Blocks Dominators

Figure 3: Transformation speed for Ivory bytecode rewriting.

The lowest line in Figure 1 shows the steady-
state request throughput through a single proxy
using the pull-based state manager with a two-
second update window. This gives a pessimistic
estimate of the e�ect of update propagation on re-
quest throughput. Once the proxy's cache has been
loaded in the �rst few seconds of the experiment,
the proxy satis�es each request from the cache un-
less the update window expires. On the �rst request
after the update window expires, the proxy queries
the primary server for updates to its view, which in
this experiment returns new values for an average
of 30% of the objects in the cache. The proxy can-
not execute any more requests until it has applied
these updates, leading to a signi�cant drop in re-
quest throughput. This is a pessimistic test for two
reasons. First, a practical con�guration would use
a larger update window. Second, the proxy in this
experiment is serving requests for a single service,
and these requests cannot be overlapped with up-
date propagation for the service. In practice, each
proxy would serve requests for multiple services,
and would overlap update propagation with request
processing for other services.

5.2 Scaling Bene�ts

Figure 2 illustrates the scalability bene�ts of Web
application proxies using Ivory. Like Figure 1, Fig-
ure 2 gives request throughput as a function of re-
quest demand. In these experiments, each client
process is bound to a Web application proxy, with

the clients evenly distributed among varying num-
bers of proxies backed by a single primary server.
The proxies use a �ve-second update window.
Figure 2 shows that serving the portal appli-

cation from Web application proxies allows it to
scale to larger numbers of clients. Aggregate re-
quest throughputs at saturation scale almost lin-
early as proxies are added. In principle, proxies
can be added and will deliver linear scalability up
to the point at which the primary server saturates
in delivering updates to the proxies.
This experiment is conservative in that it does

not reect the cost to fetch server data over a wide-
area link, which often carries higher latency and
lower bandwidth than the link to the proxy. Of
course, the performance delivered in practice will
also depend on application parameters including
the size of the generated content, the size of the
objects used to generate the content, the update
rate for those objects, the processing cost to gener-
ate the content, client bandwidths to the proxy and
the server, and the degree of sharing among mul-
tiple clients bound to the same proxy. We leave a
more complete exploration of the parameter space
to future work.

5.3 Write Barrier Overhead

We ran a second set of experiments to better ap-
proximate the cost of bytecode transformation for
tracking updates. We transformed �ve programs
from the SpecJVM98 suite (compress, jess, db,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

compress jess db mtrt jack

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e

Untransformed All Writes Basic Blocks Dominators

Figure 4: Runtime overhead for code instrumented with write barriers.

mtrt, and jack) using the three versions of the
write barrier transformer outlined in Section 2.5.
We measured both the speed of the transforma-
tion and the slowdown of the transformed byte-
code. Figure 3 and Figure 4 show results from
a 300 MHz UltraSPARC-IIi processor running So-
laris 5.7 and JDK 1.2. The transformers process
and rewrite bytecode at between 280 KB/s and
500 KB/s, with the more sophisticated transform-
ers running slightly slower but producing more e�-
cient transformed code. The slowdown of the trans-
formed code is under 10% (using the Dominator

transformer) for three of the �ve benchmarks, with
only compress showing a signi�cant slowdown of
22%. The bene�t of control ow analysis is typ-
ically modest but is signi�cant for some applica-
tions. For mtrt, Dominator reduces the slowdown
from 12% (with AllWrites) to 6%.

6 Conclusion

Caching and replication are key techniques for scal-
ing Web services. Unfortunately, state replication
introduces a di�cult state management problem,
since service state must be kept consistent across
replicas. This is a challenging and problem for ser-
vices with dynamically generated content, which is
increasingly prominent.
This paper describes the design and implementa-

tion of Ivory, a system that automates state man-
agement for dynamic services based on server-side

Java technology. Ivory uses bytecode rewriting to
instrument compiled service code with hooks into
a state management package, taking automatically
converting centralized service implementations into
scalable, replication-aware, wide-area applications.
We illustrate use of Ivory in a service caching frame-
work for dynamic services based on JavaServer
Pages (JSPs). The JSP standard is well-suited
to service caching because it imposes a partition-
ing on the service code and data, and its naming
infrastructure is easily extended to demand-fault
service objects referenced by symbolic name. Our
approach takes a signi�cant step toward general-
izing Web caching and replication infrastructures
to handle dynamic content. This can signi�cantly
improve scalability, response times, and consumed
wide-area bandwidth for dynamic Web services.

References

[ADJ+96] M.P. Atkinson, L. Daynes, M.J. Jor-
dan, T. Printezis, and S. Spence. An
Orthogonally Persistent Java. ACM
SIGMOD Record, December 1996.

[CCK98] Geo� A. Cohen, Je�rey S. Chase,
and David L. Kaminsky. Automatic
Program Transformation with JOIE.
In USENIX 1998 Annual Techni-

cal Conference, pages 167{178, June
1998.

[CZB98] Pei Cao, Jin Zhang, and Kevin
Beach. Active Cache: Caching Dy-
namic Contents on the Web. In Pro-

ceedings of Middleware, 1998.

[Dav99] James Duncan Davidson. Java
Servlet API: Version 2.2. Techni-
cal report, Sun Microsystems, June
1999.

[DHR97] Fred Douglis, Antonio Haro, and
Michael Rabinovich. HPP: HTML
Macro-Preprocessing to Support Dy-
namic Document Caching. In Pro-

ceedings of the 1997 Usenix Sympo-

sium on Internet Technologies and

Systems, Monterey, California, De-
cember 1997.

[DR92] A. Delis and N. Roussopoulos. Per-
formance and Scalability of Client-
Server Database Architectures. In
Proceedings of the 18th International

Conference on Very Large Databases,
pages 610{623, August 1992.

[FCNyML94] Michael J. Feeley, Je�rey S. Chase,
Vivek R. Narazayya, and Henr
y M. Levy. Integrating coherency
and recoverability in distributed sys-
tems. In Proceedings of the First

Symposium on Operating System De-

sign and I mplementation, pages
215{227, November 1994.

[GM95] Ahish Gupta and Inderpal Singh
Mumick. Maintenance of Material-
ized Views: Problems, Techniques,
and Applications. In Data Engineer-

ing Bulletin, June 1995.

[HM93] Antony L. Hosking and J. Eliot B.
Moss. Protection traps and alter-
natives for memory management of
an object-or iented language. In
SOSP93, pages 106{119, December
1993.

[MDFK97] Je�rey Mogul, Fred Douglis, Anja
Feldmann, and Balachander Krish-
namurthy. Potential Bene�ts of
Delta Encoding and Data Compres-
sion for HTTP. In Proceedings of

ACM SIGCOMM, pages 181{194,
August 1997.

[Obj98] Object Design Inc. ObjectStore
PSE Resource Center, 1998.
http://www.odi.com/content/

products/PSEHome.html.

[PLC99] Eduardo Pelegri-Llopart and Larry
Cable. JavaServer Pages Speci�ca-
tion: Version 1.1. Technical report,
Sun Microsystems, August 1999.

[PST+97] Karin Petersen, Mike J. Spre-
itzer, Douglas B. Terry, Marvin M.
Theimer, and Alan J. Demers. Flex-
ible update propagation for weakly
consistent replication. In Proceed-

ings of the Sixteenth ACM Sympo-

sium on Operating System Princi-

ples (SOSP), pages 288{299, Octo-
ber 1997.

[RRRA99] M. Rabinovich, I. Rabinovich, R. Ra-
jaraman, and A. Aggarwal. A Dy-
namic Object Replication and Mi-
gration Protocol for an Internet
Hosting Service. In IEEE Int. Conf.

on Distributed Computing Systems,
May 1999.

[SG97] Daniel J. Scales and Kourosh Ghara-
chorloo. Towards Transparent
and E�cient Software Distributed
Shared Memory. In Proceedings

of the Sixteenth ACM Symposium

on Operating Systems Principles

(SOSP), pages 157{169, October
1997.

[VAD+98] Amin Vahdat, Thomas Anderson,
Michael Dahlin, Eshwar Belani,
David Culler, Paul Eastham, and
Chad Yoshikawa. WebOS: Oper-
ating System Services for Wide-
Area Applications. In Proceedings

of the Seventh IEEE Symposium on

High Performance Distributed Sys-

tems, Chicago, Illinois, July 1998.

[VDAA99] Amin Vahdat, Michael Dahlin,
Thomas Anderson, and Amit Ag-
garwal. Active Names: Flexible
Location and Transport of Wide-
Area Resources. In Proceedings of

the USENIX Symposium on Internet

Technologies and Systems (USITS),
October 1999.

[ZSB94] Matthew J. Zekauskas, Wayne A.
Sawdon, and Brian N. Bershad. Soft-
wareWrite Detection for Distributed
Shared Memory. In Proceedings of

the First USENIX Symposium on

Operating Systems Design and Im-

plementation (OSDI), pages 87{100,
November 1994.

