Web Caching and Content Distribution: A View From the Interior

Overview
- Analytical tools have evolved to predict behavior of large-scale Web caches.
 - Are results from existing large-scale caches consistent with the predictions?
 - NLANR
 - What do the models predict for Content Distribution/Delivery Networks (CDNs)?
 - Goal: answer these questions by extending models to predict interior cache behavior.

Goals and Limitations
- Focus on interior cache behavior.
 - Assume leaf caches are ubiquitous.
 - Model CDNs as interior caches.
 - Focus on hit ratio (percentage of accesses absorbed by the “cloud”).
 - Ignore push replication; at best it merely reduces some latencies by moving data earlier.
 - Focus on “typical” static Web objects.
 - Ignore streaming media and dynamic content.

Outline
- Analytical model
 - applied to interior nodes of cache hierarchies
 - applied to CDNs
- Implications of the model for CDNs in the presence of ubiquitous leaf caching
- Match model with observations from the NLANR cache hierarchy
- Conclusion
Analytical Model

- [Wolman/Voelker/Levy et. al., SOSP 1999]
 - refines [Breslau/Cao et. al., 1999], and others
 - Approximates asymptotic cache behavior assuming Zipf-like object popularity
 - caches have sufficient capacity
 - Parameters:
 - \(\lambda \) = per-client request rate
 - \(\mu \) = rate of object change
 - \(p_c \) = percentage of objects that are cacheable
 - \(\alpha \) = Zipf parameter (object popularity)

Cacheable Hit Ratio: the Formula

- \(C_N \) is the hit ratio for cacheable objects achievable by population of size \(N \) with a universe of \(n \) objects.

\[
C_N = \int_1^n \left(1 + \frac{1}{\mu C x + \lambda N} \right) dx
\]

\[
C = \int_1^n \frac{1}{x} dx
\]

[Wolman/Voelker/Levy et. al., SOSP 99]

Inside the Hit Ratio Formula

Approximates a sum over a universe of \(n \) objects...
...of the probability of access to each object \(x \)...
...times the probability \(x \) was accessed since its last change.

\[
C = \int_1^n \frac{1}{x} dx
\]

\[C = \int_1^n \frac{1}{x} dx \]

in [Breslau/Cao 99]

0 < \(\alpha \) < 1

An Idealized Hierarchy

Assume the trees are symmetric to simplify the math.
Ignore individual caches and solve for each level.

Hit Ratio at Interior Level \(i \)

- \(C_N \) gives us the hit ratio for a complete subtree covering population \(N \)
- The hit ratio predicted at level \(i \) or at any cache in level \(i \) is given by:

\[
\frac{h_i}{r_i} = \frac{R_{p_c}(C_N - C_{N_{i+1}})}{r_{i+1} - h_{i+1}}
\]

“the hits for \(N_i \) (at level \(i \)) minus the hits captured by level \(i+1 \), over the miss stream from level \(i+1 \)”

Root Hit Ratio

- Predicted hit ratio for cacheable objects, observed at root of a two-level cache hierarchy (i.e. where \(r_2 = R_{p_c} \)):

\[
\frac{h_1}{r_1} = \frac{C_{N_1} - C_{N_2}}{1 - C_{N_2}}
\]
Generalizing to CDNs

Symmetry assumption: f is stable and "balanced".

What happens to C_n if we partition the object universe?
Hit ratio in CDN caches

Given the symmetry and balance assumptions, the cacheable hit ratio at the interior (CDN) nodes is:

$$\frac{C_{N_j} - C_{N_l}}{1 - C_{N_l}}$$

N_j is the covered population at each CDN cache. N_l is the population at each leaf cache.

Analysis (cont’d)

- Fixed parameters (unless noted otherwise):
 - λ (client request rate) = 590 reqs./day
 - μ (rate of object change) =
 - once every 14 days (popular objects, 0.3%)
 - once every 186 days (unpopular objects)
 - p_c (percent of requests cacheable) = 60%
 - α (Zipf parameter - object popularity) = 0.8

Analysis

- We apply the model to gain insight into interior cache behavior with:
 - varying leaf cache populations (N_l)
 - e.g., bigger leaf caches
 - varying ratio of interior to leaf cache populations (N_i/N_l)
 - e.g., more specialized interior caches
 - Zipf α parameter changes
 - e.g., more concentrated popularity
Cacheable interior hit ratio observed at interior level fixing interior/leaf population ratio

Increasing N_I and N_L →

Cacheable interior hit ratio as percentage of all cacheable requests, fixing interior/leaf population ratio

Increasing N_I and N_L →

Cacheable interior hit ratio fixing leaf population

Increasing “bushiness” →

Cacheable interior hit ratio as percentage of all requests fixing leaf population

Increasing “bushiness” →

Cacheable interior hit ratio as percentage of all requests varying Zipf α parameter

N_L fixed at 1024 clients

Cacheable interior hit ratio as percentage of all requests varying Zipf α parameter

N_I/N_L fixed at 64K
Conclusions (I)

- Interior hit ratio captures effectiveness of upstream caches at reducing access traffic filtered by leaf/edge caches.
 - Hit ratios grow rapidly with covered population.
- Edge cache populations (N_L) are key: is it one thousand or one million?
 - With large N_L, interior ratios are deceptive.
 - At $N_L = 10^5$, interior hit ratios might be 90%, but the CDN sees less than 20% of the requests.

Correlating with NLANR Observations

- Do the predictions match observations from existing large-scale caches?
- Observations made from traces provided by NLANR (10/12/99).
 - Observed total hit ratio at (unified) root is 32%
 - 200 of the 914 leaf caches in the trace account for 95% of requests
 - Daily request rate indicates population is on the order of tens of thousands
 - What is the predicted N?

Model vs. Reality

- NLANR roots cooperate; we filter the traces to determine the unified root hit ratio.
- NLANR caches are bounded; traces imply that capacity misses are low at 16GB.
- Analysis assumes the population is balanced across the 200 leaves of consequence.
- Analysis must compensate for objects determined to be uncacheable at a leaf.

Conclusions (II)

- NLANR root effectiveness is around 32% today; it is serving its users well.
- NLANR experiment could validate the model, but more data from the experiment is needed.
 - E.g., covered populations, leaf summaries
- The model suggests that the population covered by NLANR is relatively small.
 - With larger N and N_L, higher root hit ratios are expected, with lower marginal benefit.
Modeling CDNs

- If the routing function satisfies three properties:
 - an interior cache sees all requests for each assigned object \(x \) from a population of size \(N_i \)
 - every interior cache sees an equivalent object popularity distribution \(\left(\frac{n}{\lambda} \right) \) held constant
 - all requests are routed through leaf caches that serve \(N_L \) clients

- Then interior cacheable hit ratio is:

\[
\frac{C_{N_i} - C_{N_L}}{1 - C_{N_L}}
\]

Hit ratio with detected uncachable documents

- \(p_u \) is the percentage of uncachable requests detected at request time (and not forwarded to parents):

\[
\begin{align*}
\frac{h_1}{r_1} &= \frac{RP_{\bar{c}}(C_{N_i} - C_{N_L})}{R - R_{m} - (1 - p_u)(1 - p_c)r_{m,1}} \\
\frac{h_2}{r_2} &= \frac{H_{m} - H_{m,1}}{1 - H_{m} - (1 - p_u)(1 - p_c)}
\end{align*}
\]

Cache Hierarchies

- As introduced by the Harvest project
 - \(k \) levels of demand-side caches arranged in a tree (for now)
 - clients are bound to leaves
 - each node’s miss stream routes to its parent

- As extended by NLANR (Squid)
 - NLANR-operated root caches cooperate by partitioning URL space

Cache Hierarchies Illustrated