Uhuru: An Inbuilding Location Tracking System
Vijay Abhijit and Carla Ellis, Department of Computer Science, Duke University

Goal: Build and explore various aspects of an RF based inbuilding location tracking system

Motivation
Build RF based in-building Location Tracking System

Sample Application: Allow authorized users to track other users in building, iff users are willing!

Location Tracking System

No need for human guides in places of interest

*users in building, iff users are willing!

Location Detection With Uhuru
Involves two stages (Naïve Algorithm):

Off Line Phase: User manually informs program of location within building

- Record information about radio signal as function of user’s location
- Wireless card put into “Scan Mode”
- Record signal strength, location, direction tuples

Real Phase: Compare measured signal strengths against those from Off Line Phase

- Simple table lookup in order to ‘guess’ location
- Metric: ‘Euclidean Distance in Signal Space’
 \[d = \sqrt{ (O_1 - R_1)^2 + (O_2 - R_2)^2 + \ldots + (O_n - R_n)^2} \]

History Monitoring Algorithm

- To improve accuracy, devised and implemented History Monitoring algorithm
- Maintain graph of building,
 - Vertices represent locations where signal strength readings were taken in Off Line Phase
 - Edges model possible transition paths from one such location to another
- Don’t report best physical location from table lookup, but maintain list of k closest signal strength matches
- Look these up, closest in signal space first, against window of n nearest neighbors of previously reported location value
- Report best value as obtained from table lookup that leads to a physical location in n neighbors

Heuristic for Base Station Placement

- Investigation of placement important to get better accuracy with a given number of base stations
- \[PL(d) = PL(d_0) + 10 \log(d/d_0) \]
 - Model predicts two points equidistant from same base station records identical signal strengths
 - Distance affects signal strength more when point is closer to base station than when it is farther away
 - Deploy majority, say 50% of base stations on second floor
- Arrange base stations (say k in number) randomly on second floor so that minimum distance between any two stations \((d_i, d_j)\), \(i \neq j\), is \(D\)

Algorithms in Action

Results

Research Directions

- Adopt more efficient algorithms and data structures for faster search of signal space, imperative when signal space is bigger (eg: optimal k-nearest neighbor search)
- Combine multiple types of technologies: Infrared, Bluetooth etc.
- Deploy base stations according to heuristic and quantify improve ments