Payload Caching: High-Speed Data Forwarding for Network

Intermediaries

Ken Yocum and Jeff Chase
Department of Computer Science
Duke University
{grant,chase}@cs.duke.edu *

Abstract

Large-scale network services such as data delivery
often incorporate new functions by interposing in-
termediaries on the network. Examples of forward-
ing intermediaries include firewalls, content routers,
protocol converters, caching proxies, and multicast
servers. With the move toward network storage,
even static Web servers act as intermediaries to for-
ward data from storage to clients.

This paper presents the design, implementation,
and measured performance of payload caching, a
technique for improving performance of host-based
intermediaries. Our approach extends the func-
tions of the network adapter to cache portions of
the incoming packet stream, enabling the system
to forward data directly from the cache. We pro-
totyped payload caching in a programmable high-
speed network adapter and a FreeBSD kernel. Ex-
periments with TCP /IP traffic flows show that pay-
load caching can improve forwarding performance
by up to 60% in realistic scenarios.

1 Introduction

Data forwarding is increasingly common in large-
scale network services. As network link speeds ad-
vance, networks are increasingly used to spread the
functions of large servers across collections of net-
worked systems, pushing functions such as stor-
age into back-end networks. Moreover, systems
for wide-area data delivery increasingly incorporate
new functions — such as request routing, caching,
and filtering — by “stacking” intermediaries in a
pipeline fashion.

For example, a typical Web document may pass

*Author’s address: Department of Computer Science,
Duke University, Durham, NC 27708-0129 USA. This work is
supported by the National Science Foundation (through EIA-
9870724 and EIA-9972879), Intel Corporation, and Myricom.

through a series of forwarding steps along the path
from its home on a file server to some client, pass-
ing through a Web server and one or more proxy
caches. Other examples of forwarding intermedi-
aries include firewalls, content routers, protocol con-
verters [10], network address translators (NAT), and
“overcast” multicast nodes [13]. New forwarding in-
termediaries are introduced in the network storage
domain [14, 2], Web services [12], and other net-
worked data delivery.

This paper investigates a technique called payload
caching to improve data forwarding performance on
intermediaries. In this paper, we define forward-
ing as the simple updating of packet headers and
optional inspection of data as it flows through an
intermediary. Note that data forwarding is more
general than packet forwarding. While it encom-
passes host-based routers, it also extends to a wider
range of these intermediary services.

Payload caching is supported primarily by an en-
hanced network interface controller (NIC) and its
driver, with modest additional kernel support in the
network buffering and virtual memory system. The
approach is for the NIC to cache portions of the in-
coming packet stream, most importantly the packet
data payloads (as opposed to headers) to be for-
warded. The host and the NIC coordinate use of
the NIC’s payload cache to reduce data transfers
across the I/O bus. The benefit may be sufficient
to allow host-based intermediaries where custom ar-
chitectures were previously required. Section 2 ex-
plains in detail the assumptions and context for pay-
load caching.

This paper makes the following contributions:

o It explores the assumptions underlying payload
caching, and the conditions under which it de-
livers benefits. Quantitative results illustrate
the basic properties of a payload cache.

e It presents an architecture and prototype im-
plementation for payload caching in a pro-
grammable high-speed network interface, with
extensions to a zero-copy networking frame-
work [5] in a FreeBSD Unix kernel. This de-
sign shows how the host can manage the NIC’s
payload cache for maximum flexibility.

e It presents experimental results from the pro-
totype showing forwarding performance under
payload caching for a range of TCP/IP net-
working traffic. The TCP congestion control
scheme adapts to deliver peak bandwidth from
payload caching intermediaries.

e It outlines and evaluates an extension to pay-
load caching, called direct forwarding, that im-
proves forwarding performance further when
intermediaries access only the protocol headers.

This paper is organized as follows. Section 2 gives
an overview of payload caching and its assumptions.
Section 3 outlines interfaces and extensions for pay-
load caching at the boundary between a host and
its NIC. Section 4 describes our payload caching
prototype using Myrinet and FreeBSD. Section 5
examines the behavior and performance of payload
caching. Section 6 describes related work and out-
lines future research. Section 7 concludes.

host

main memory

[]

PCI busl }l

NIC ‘

/z
e AR
- ..
- e

Figure 1: Forwarding a data payload with payload
caching.

2 Overview

The payload caching technique optimizes network
communication for forwarding intermediaries. Pay-
load caching targets a typical host-based structure,
in which the forwarding logic runs on a CPU whose
memory is separated from the network interface.

The NIC moves data to and from host memory using
Direct Memory Access (DMA) across an I/O bus,
such as PCI.

A forwarding intermediary receives a stream of
packets from the network. Each packet DMAs
across the I/O bus into one or more buffers in host
memory. The network protocol stack inspects the
headers and delivers the data to an application con-
taining the intermediary logic, such as a firewall or
caching proxy. The application may examine some
of the data, and it may forward some or all of the
data (the payload) to another destination without
modifying it.

Figure 1 shows the potential benefit of payload
caching in this scenario. Ordinarily, forwarded data
payloads cross the I/O bus twice, once on input
and once on output. Payload caching leaves incom-
ing payloads in place in NIC buffers after delivering
them to the host. If the host forwards the data un-
changed, and if the forwarded data is still cached on
the NIC, then the output transfer across the bus is
unnecessary. This reduces the bandwidth demand
of forwarding on the I/O bus and memory system,
freeing these resources for other I/O or memory-
intensive CPU activity. Payload caching can be es-
pecially effective for intermediaries that do I/O to
other devices, such as disk-based Web proxy caches.

Payload caching imposes little or no runtime cost,
but it yields a significant benefit under the following
conditions.

e The intermediary forwards a large share of
its incoming data without modifying it. This
is often the case for intermediaries for Web
delivery, including caching proxies, firewalls,
content routers, multicast overlay nodes, and
Web servers backed by network storage. Pay-
load caching also naturally optimizes multicast
transmits, such as mirrored writes to a net-
work storage server or to a network memory
cache [9].

e The payload cache on the NIC is large enough
to retain incoming payloads in the cache un-
til the host can process and forward them.
In practice, the amount of buffering required
depends on the incoming traffic rate, traffic
burstiness, and the CPU cost to process for-
warded data. One contribution of this work is
to empirically determine the hit rates for var-
ious payload cache sizes for TCP/IP streams.
Section 5.3 presents experimental results that
show good hit rates at forwarding speeds up to

1 Gb/s and payload cache sizes up to 1.4 MB.

e Forwarded data exits the intermediary by the
same network adapter that it arrived on. This
allows the adapter to obtain the transmitted
data from its payload cache instead of from
the intermediary’s memory. Note that this
does not require that the output link is the
same as the input link, since many recent net-
working products serve multiple links from the
same adapter for redundancy or higher aggre-
gate bandwidths. Payload caching provides
a further motivation for multi-ported network
adapters.

e The NIC supports the payload cache buffer-
ing policies and host interface outlined in Sec-
tion 3. Our prototype uses a programmable
Myrinet NIC, but the scheme generalizes eas-
ily to a full range of devices including Ethernet
and VI NICs with sufficient memory.

While the payload caching idea is simple and intu-
itive, it introduces a number of issues for its design,
implementation, and performance. How large must
a payload cache be before it is effective? What is
the division of function between the host and the
NIC for managing a payload cache? How does pay-
load caching affect other aspects of the networking
subsystem? How does payload caching behave un-
der the networking protocols and scenarios used in
practice? The rest of this paper addresses these
questions.

3 Design of Payload Caching

This section outlines the interface between the host
and the NIC for payload caching, and its role in the
flow of data through the networking subsystem.

The payload cache indexes a set of buffers resid-
ing in NIC memory. The NIC uses these memory
buffers to stage data transfers between host memory
and the network link. For example, the NIC han-
dles an incoming packet by reading it from the net-
work link into an internal buffer, then using DMA
to transmit the packet to a buffer in host memory.
All NICs have sufficient internal buffer memory to
stage transfers; payload caching requires that the
NIC contain sufficient buffer memory to also serve
as a cache. For simplicity, this section supposes that
each packet is cached in its entirety in a single host
buffer and a single NIC buffer, and that the payload
cache is fully effective even if the host forwards only
portions of each packet unmodified. Section 4 fills

in important details of host and NIC buffering left
unspecified in this section.

The host and NIC coordinate use of the payload
cache and cooperate to manage associations be-
tween payload cache entries and host buffers. A key
goal of our design is to allow the host — rather than
the NIC — to efficiently manage the placement and
eviction in the NIC’s payload cache. This simplifies
the NIC and allows flexibility in caching policy for
the host.

Figure 2 depicts the flow of buffer states and control
through the host’s networking subsystem. Figure 3
gives the corresponding state transitions for the pay-
load cache. The rest of this section refers to these
two figures to explain interactions between the host
and the NIC for payload caching.

The dark horizontal bar at the top of Figure 2 repre-
sents the boundary between the NIC and the host.
We are concerned with four basic operations that
cross this boundary in a typical host/NIC interface.
The host initiates transmit and post receive opera-
tions to send or receive packets. For example, the
host network driver posts a receive by appending an
operation descriptor to a NIC receive queue, speci-
fying a host buffer to receive the data; the NIC de-
livers an incoming packet header and payload by ini-
tiating a DMA operation from NIC memory to the
host buffer. In general, there are many outstand-
ing receives at any given time, as the host driver
attempts to provide the NIC with an adequate sup-
ply of host buffers to receive the incoming packet
stream. When a transmit or receive operation com-
pletes, the NIC signals receive and transmit com-
plete events to the host, to inform it that the NIC
is finished filling or draining buffers for incoming or
outgoing packets.

Payload caching extends these basic interactions to
enable the host to name NIC buffers in its com-
mands to the NIC. This allows the host to directly
control the payload cache and to track NIC buffers
that have valid cached images of host buffers. To
avoid confusion between host memory buffers and
internal NIC buffers, we refer to NIC buffers as pay-
load cache entries. For the remainder of this paper,
any use of the term buffer refers to a host memory
buffer, unless otherwise specified.

Each payload cache entry is uniquely named by an
entry ID. The host network driver specifies an entry
ID of a NIC buffer to use for each host buffer in a
newly posted transmit or receive. This allows the
host to control which internal NIC buffers are used
to stage transfers between host memory and the net-

mapped

(NIC-owned) _ _ _)

receive post receive transmit transmit complete
no post /v bind/pin for I/O
unmapped payload receive
(host-owned) | uncached
transmit transmit

receive invalid/free -~ cached complete
payload pcache entries transmit

R

invalidate/unbind

Deliver host buffer, e.g.,

Unpin host buffer if

)/ valid/bound)e— last/only pending

map it into the file cache
or process address spac

D

pcache entries send completes.

Figure 2: The flow of host buffers and payload cache entries through the networking subsystem.

work links. The NIC retains the data from each
transfer in the corresponding entry until the host
commands the NIC to reuse that entry for a subse-
quent transfer. Thus each transfer effectively loads
new data into the payload cache; the host main-
tains an association between the host buffer and its
payload cache entry as long as the entry’s cached
image of the buffer remains valid. If the host then
initiates a subsequent transmit from the same buffer
without modifying the data, the host sets a field in
the descriptor informing the NIC that it may trans-
mit data cached in the specified entry rather than
fetching the data from the host buffer using DMA.
This is a payload cache hit.

By specifying the entry ID for a transmit or receive,
the host also controls eviction of data from the pay-
load cache. This is because I/O through a payload
cache entry may displace any data previously cached
in the target entry. It is easy to see that most-
recently-used (MRU) is the best replacement policy
for the payload cache when the host forwards data in
FIFO order. This is discussed further in Section 5.3.

We use the following terminology for the states of
payload cache entries and host buffers. An entry is
valid if it holds a correct copy of some host buffer,
else it is invalid. A host buffer is cached if some valid
entry holds a copy of it in the payload cache, else
it is wncached. An entry is bound if it is associated
with a buffer, else it is free. A buffer is bound if
it is associated with an entry, else it is unbound.

A bound (buffer,entry) pair is pending if the host
has posted a transmit or receive operation to the
NIC specifying that pair and the operation has not
yet completed. Note that a bound buffer may be
uncached if it is pending.

Initially, all entries are in the free state. The host
driver maintains a pool of entry IDs for free payload
cache entries, depicted by the cloud near the center
of Figure 2. The driver draws from this pool of free
entries to post new receives, and new transmits of
uncached buffers. Before initiating the I/0, the op-
erating system pins its buffers, binds them to the
selected payload cache entries, and transitions the
entries to the pending state. When the I/O com-
pletes, the NIC notifies the host with a correspond-
ing receive or transmit complete notification via an
interrupt. A receive may complete without deposit-
ing valid cacheable data into some buffer (e.g., if it
is a short packet); in this case, the driver immedi-
ately unbinds the entry and returns it to the free
pool. Otherwise, the operating system delivers the
received data to the application and adds the bound
(buf fer,entry) pair to its bound entry pool, repre-
sented by the cloud in the lower right of Figure 2.

On a transmit, the driver considers whether each
buffer holding the data to be transmitted is bound
to a valid payload cache entry. If the buffer is un-
bound, the driver selects a new payload cache entry
from the free pool to stage the transfer from the
buffer. If the buffer is already bound, this indicates

that the host is transmitting from the same buffer
used in a previous transmit or receive, e.g., to for-
ward the payload data to another destination. This
yields a payload cache hit if the associated entry
is valid. The host reuses the payload cache entry
for the transmit, and sets a field in the operation
descriptor indicating that the entry is still valid.

After the transmit completes, the driver adds the
entry and buffer pairing to the bound entry pool.
Regardless of whether the transmit was a payload
cache hit, the entry is now valid and bound to the
host buffer used in the transmit. A subsequent
transmit of the same data from the same buffer (e.g.,
as in a multicast) yields a payload cache hit.

initial

Host
Unbound

transmit receive complete

. (no payload)
transmit

recycle/modify/uncache
host buffer

transmit
all transmits
complete

receive complete
(payload)

Figure 3: Payload cache entry states and transi-
tions.

Figure 3 summarizes the states and transitions for
payload cache entries. Initially, all entries are in the
free state at the top of the figure. If the driver posts
a transmit or a receive on an unbound/uncached
host buffer, it selects a free NIC payload cache entry
to bind to the buffer and stage the transfer between
the network link and host memory. This causes the
selected entry to transition to the left-hand send-
bound state for a pending transmit, or to the right-
hand receive-bound state for a pending receive.

In the send-bound and receive-bound states in
Figure 3, the entry and buffer are bound with a
pending I/O operation. For a transmit, the en-
try is marked valid as soon as the transfer initi-
ates; this allows subsequent transmits from the same
buffer (e.g., for a multicast) to hit in the payload
cache, but it assumes that the NIC processes pend-
ing transmits in FIFO order. For a receive, the entry
is marked valid only on completion of the received

packet, and only if the received packet deposited
cacheable data in the posted buffer (a short packet
might not occupy all posted buffers).

A valid payload cache entry transitions to the bot-
tom host-bound state when the pending transmit
or receive completes. In this state, the entry retains
its association with the host buffer, and caches a
valid image of the buffer left by the completed I/0.
Subsequent transmits from the buffer in this state
lead back to send-bound, yielding a payload cache
hit.

Once a binding is established between a host buffer
and a valid payload cache entry (the host-bound
state in Figure 3, and the bottom cloud in Figure 2),
the operating system may break the binding and
invalidate the payload cache entry. This returns the
payload cache entry to the free pool, corresponding
to the initial host-unbound state in Figure 3, or
to the top cloud in Figure 2. This system must take
this transition in the following cases:

e The system delivers the payload data to some
application, which subsequently modifies the
data, invalidating the associated payload cache
entry.

e The system links the data buffer into the sys-
tem file cache, and a process subsequently mod-
ifies it, e.g., using a write system call.

e The system releases the buffer and recycles the
memory for some other purpose.

e The system determines that the cached entry
is not useful, e.g., it does not intend to forward
the data.

e There are no free payload cache entries, and
the driver must evict a bound entry in order to
post a new transmit or receive operation.

The payload cache module exports an interface to
higher levels of the OS kernel to release or invalidate
a cache entry for these cases. In all other respects
payload caching is hidden in the NIC driver and is
transparent to upper layers of the operating system.

4 Implementation

This section describes a prototype implementation
of payload caching using Myrinet, a programmable
high-speed network interface. It extends the design
overview in the previous section with details relating
to the operating system buffering policies.

Payload Cache Operations (exported to network driver)

pc_receive_bind(physaddr)

Invalidate old binding if present, and bind the replacement
payload cache entry with a host physical frame.

pc-send_bind(physaddr)

If the buffer is cached on the adapter, use existing binding,
else find replacement and create new binding.

pc_receive_complete(physaddr)

The cache entry is now valid/bound.

pc_send_complete(physaddr)

If this is the last outstanding send, the cache entry is now
valid/bound.

Payload Cache Management (exported to operating system)

pc-invalidate_binding(physaddr)

Invalidate the payload cache entry bound to this physical
address; the entry is now host_unbound.

pc_advise(physaddr, options)

Advise the payload cache manager to increase or decrease
the payload cache entries priority.

Table 1: Payload Cache module APIs for the network driver and OS kernel.

We implemented payload caching as an extension to
Trapeze [1, 4], a firmware program for Myrinet, and
associated Trapeze driver software for the FreeBSD
operating system. The host-side payload cache
module is implemented by 1600 lines of new code
alongside a Trapeze device support package below
the driver itself. While our prototype implemen-
tation is Myrinet-specific, the payload caching idea
applies to Gigabit Ethernet and other network in-
terfaces.

Our prototype integrates payload caching with
FreeBSD extensions for zero-copy TCP /IP network-
ing [5]. This system uses page remapping to move
the data between applications and the operating
system kernel through the socket interface, avoid-
ing data copying in many common cases. This al-
lows us to explore the benefit of payload caching for
intermediaries whose performance is not dominated
by superfluous copying overhead. Copy avoidance
also simplifies the payload cache implementation be-
cause forwarded data is transmitted from the same
physical host buffer used to receive it. Thus there
is at most one host buffer bound to each payload
cache entry.

The Trapeze network interface supports page
remapping for TCP/IP networking by separating
protocol headers from data payloads, and depositing
payloads in page-aligned host payload buffers allo-
cated from a pool of VM page frames by the driver.
The payload caching prototype manages a simple
one-to-one mapping of bound payload cache entries
with cached host memory page frames; the buffer
bound to each payload cache entry is identified by
a simple physical address.

Any modification to a cached buffer page in the host
invalidates the associated payload cache entry, if
any. Page protections may be used to trap buffer

updates in user space. Note, however, that changes
or reconstruction of packet headers does not inval-
idate the cache entries for the packet payload. For
example, a Web server accessing files from an NFS
file server and sending them out over an HTTP con-
nection may use the payload cache effectively.

4.1 Payload Cache Module

Table 1 shows the interface exported by the pay-
load cache module (pcache) to the Trapeze net-
work driver and upper kernel layers. When the
driver posts a transmit or receive, it invokes the
pe_receive_bind or pc_send_bind routine in pcache to
check the binding state of the target host buffer
frames, and establish bindings to payload cache en-
tries if necessary. The pcache module maintains a
pcache entry table storing the physical address of
the buffer bound to each entry, if any, and a bind-
ing table storing an entry ID for each frame of host
memory. If a posted buffer frame is not yet bound
to an entry, pcache finds a free entry or a suitable
bound entry to evict.

When a send or receive completes, the driver invokes
the pcache pc_send_complete or pc_receive_complete
routine. If there are no more pending I/O opera-
tions on an entry, and the recently completed I/0
left the entry with valid data, then pcache transi-
tions the entry to the host-bound state, shown
earlier in Figure 3.

The pcache module exports routines called
pe_invalidate_binding and pc_advise to the upper
layers of the operating system kernel. The kernel
uses these to invalidate a payload cache entry when
its bound buffer is modified, or to inform pcache
that the cached data is or is not valuable. For
example, the OS may call pc_advise to mark an
entry as an eviction candidate if its payload will

not be forwarded.

caching

replacement

‘receivequeue‘ ‘ send queue ‘

Figure 4: Queues for payload caching and replace-
ment.

The prototype gives eviction priority to data that
has been received but not yet transmitted. Any
payload cache entry that is not pending resides on
one of three replacement queues: unbound (free),
priority, and victim. Figure 4 shows the movement
of payload cache entries between these queues and
the NIC send/receive queues. Entries for completed
sends move to the victim queue, while entries for
completed receives move to the priority queue. En-
tries on either victim or priority transition to the
unbound queue if they are invalidated or demoted
by pc_advise. An evicted entry may come from any
of these queues, in the following preference order:
unbound, victim, priority.

Note that pcache manages the payload cache en-
tirely within the host, including invalidation and re-
placement. Support for payload caching on the NIC
is trivial. The host piggybacks all payload cache di-
rectives on other commands to the NIC (transmit
and post receive), so payload caching imposes no
measurable device or I/O overhead.

4.2 Direct Forwarding

In normal forwarding operation, a payload caching
host receives control and payload from the NIC, but
transmits only headers across the I/O bus, sending
forwarded payloads from the cache. For interme-
diaries that do not access most payloads — such
as protocol translators, multicast nodes, or content
switches — a natural progression is to extend the
separation of control and payload data paths. In
this case the NIC only passes control headers to the
host, not data payloads. We term this configuration
DIRECT forwarding (in contrast to PCACHE forward-
ing). Our prototype supports DIRECT forwarding
mode with a small extension to the NIC firmware
and a small change to the pcache module and driver.
Payload cache entry management does not change.

Experimental results in Section 5 show that DIRECT
enables forwarding at link speeds, limited only by
the CPU overhead for the forwarding logic. How-
ever, a pure DIRECT policy is appropriate only when
the payload cache is adequately sized for the link or
if the send rate is held below the level that overflows
the cache. This is because evictions in a DIRECT
payload cache discard the packet data, forcing the
driver to drop any packet that misses in the payload
cache in DIRECT mode.

Section 5.5 shows that TCP congestion control
adapts to automatically deliver maximum allowable
bandwidth through a DIRECT forwarder with very
low miss rates in the presence of these packet drops.
Even so, DIRECT is narrowly useful as implemented
in our prototype. It would be possible to enhance
its generality by extending the NIC to DMA direct-
cached payloads to the host before eviction or on de-
mand. Another alternative might be to extend the
NIC to adaptively revert from DIRECT to PCACHE
as it comes under load. We have not implemented
these extensions in our prototype, but our imple-
mentation is sufficient to show the potential perfor-
mance benefit from these more general approaches.

5 Payload Caching Performance

This section explores the effectiveness of the payload
caching prototype for a simple kernel-based forward-
ing proxy. The results show the effect of payload
caching on forwarding latency and bandwidth for
TCP streams and UDP packet flows, varying the
payload cache size, number of concurrent streams,
packet size, and per-packet processing costs in the
forwarding host CPU.

While the hit rate in the payload cache directly af-
fects the increase in throughput and decrease in la-
tency, it is not simply a function of cache size or re-
placement policy. Understanding the interplay be-
tween payload caching and forwarder behavior al-
lows us to establish “real-world” performance under
a variety of scenarios.

5.1 Experimental Setup

We ran all experiments using Dell PowerEdge 4400
systems on a Trapeze/Myrinet network. The Dell
4400 has a 733 MHz Intel Xeon CPU (32KB L1
cache, 256KB L2 cache), a ServerWorks ServerSet
IIT LE chipset, and 2-way interleaved RAM. End
systems use M2M-PCI64B Myrinet adapters with
66 MHz LANai-7 processors. The forwarder uses
a more powerful pre-production prototype Myrinet
2000 NIC with a 132 MHz LANai-9 processor, which

Packet Size || Point to Point | Forwarding | PCACHE | DIRECT |

|

15KB		823lus	153.86us [140.15us	131.5us	
4 KB		108.36us	224.68us	191.68us	173.71us
8KB]	1592us [326.88us	285.94us [260.74us			

Table 2: One-way latency of UDP packets through an intermediary.

does not saturate at the forwarding bandwidths
achieved with payload caching. The Myrinet 2000
NIC on the forwarder uses up to 1.4 MB of its
onboard RAM as a payload cache in our experi-
ments. All NICs, running Trapeze firmware en-
hanced for payload caching, are connected to PCI
slots matched to the 1 Gb/s network speed. Since
the links are bidirectional, the bus may constrain
forwarding bandwidth.

All nodes run FreeBSD 4.0 kernels. The forward-
ing proxy software used in these experiments con-
sists of a set of extensions to an IP firewall module
in the FreeBSD network stack. The forwarder in-
tercepts TCP traffic to a designated virtual IP ad-
dress and port, and queues it for a kernel thread
that relays the traffic for each connection to a se-
lected end node. Note that the forwarder acts as an
intermediary for the TCP connection between the
end nodes, rather than maintaining separate con-
nections to each end node. In particular, the for-
warder does no high-level protocol processing for
TCP or UDP other than basic header recognition
and header rewriting to hide the identity of the
endpoints from each other using Network Address
Translation (NAT). This software provides a ba-
sic forwarding mechanism for an efficient host-based
content switch or load-balancing cluster front end.
It is equivalent to the kernel-based forwarding sup-
ported for application-level proxies by TCP splic-
ing [8].

To generate network traffic through the forwarder
we used netperf version 2.1pl3, a standard tool
for benchmarking TCP/IP networking performance,
and Flowgen, a network traffic generator from the
DiRT project at UNC.

5.2 Latency

Table 2 gives the latency for one-way UDP trans-
fers with packet sizes of 1500 bytes, 4KB, and 8KB.
Interposing a forwarding intermediary imposes la-
tency penalties ranging from 86% for 1500-byte
packets to 105% for 8KB packets. Payload caching
(PcACHE) reduces this latency penalty modestly, re-
ducing forwarding latency by 8% for 1500-byte pack-
ets, 14% for 4KB packets, and 12% for 8KB pack-

ets. Direct forwarding (DIRECT) reduces forwarding
latency further: the total latency improvement for
DIRECT is 14% for 1500-byte packets, 22% for 4KB
packets, and 20% for 8KB packets.

This experiment yields a payload cache hit for ev-
ery forwarded packet, regardless of cache size. The
resulting latency savings stems from reduced I/0
bus crossings in the forwarder. PCACHE elimi-
nates the I/O bus crossing on transmit, and DIRECT
eliminates bus crossings on both transmit and re-
ceive. For all experiments the NIC uses a store-
and-forward buffering policy, so I/O bus latencies
are additive.

Propagation delays are higher in wide-area net-
works, so the relative latency penalty of a forward-
ing intermediary is lower. Therefore, the relative
latency benefit from payload caching is also lower.

5.3 Payload Cache Size and Hit Rate

The next experiment explores the role of the for-
warder’s packet processing overhead on payload
cache hit rates across a range of cache sizes. It yields
insight into the amount of NIC memory needed to
achieve good payload cache hit rates under various
conditions.

The NIC deposits incoming packets into host mem-
ory as fast as the I/O bus and NIC resources al-
low, generating interrupts to notify the host CPU
of packet arrival. In FreeBSD, the NIC driver’s re-
ceiver interrupt handler directly invokes the IP in-
put processing routine for all new incoming pack-
ets; this runs the protocol and places the received
data on an input queue for delivery to an applica-
tion. Incoming packets may accumulate on these
input queues if the forwarder CPU cannot keep up
with the incoming traffic, or if the incoming traffic
is bursty. This is because the NIC may interrupt
the application for service from the driver as more
packets arrive.

The behavior of these queues largely determines the
hit rates in the payload cache. Consider our sim-
ple forwarder example. The forwarder application
runs as a thread within the kernel, and the network
driver’s incoming packet handler may interrupt it.

400

w
o
o

Input Queue (Pkts)
N
o
=

—
o
o

+128 KB
--308 KB
=488 KB
+668 KB
- 848 KB
+1028 KB

o
=)

- 1208KB\ .
= 1028KB |
- 848 KB :
-~ 668 KB T~

Hit Rate
o
[o2)

o
~

—~+ 488 KB

,,,,,,,,,,,,,,,,,,,,

+1208 KB
=1388 KB

12 14 16 18 20 22 24 26 28 30
CPU Overhead(Microsecondy

10

. 308KB o~
= 128KB

0.

N

10 12 14 16 18 20 22 24 26 28 30
CPU Overhead(Microsecond9

Figure 5: Forwarder queue size and hit rate for a 25 MB/s (200 Mb/s) stream of 4KB UDP packets. Each
line shows results for a given effective payload cache size across a range of per-packet forwarding overheads

on the z-axis.

As the driver consumes each incoming packet ac-
cepted by the NIC, it allocates a new host buffer
and payload cache entry to post a new receive so
the NIC may accept another incoming packet. Un-
der ideal conditions the driver simply allocates from
unused entries released as the forwarder consumes
packets from its input queue and forwards their pay-
loads. However, suppose traffic bursts or process-
ing delays cause packets to accumulate on the in-
put queue, awaiting forwarding. Since each buffered
packet consumes space in the payload cache, this
forces pcache to replace payload cache entries for
packets that have not yet been forwarded, reducing
the hit rate.

It is easy to see that under MRU replacement the
payload cache hit rate for the forwarder will roughly
equal the percentage of the buffered packet payloads
that fit in the payload cache. Once an MRU cache is
full, any new entries are immediately evicted. With
FIFO forwarding, every buffered payload that found
space in the cache on arrival ultimately yields one
hit when it is forwarded; every other buffered pay-
load ultimately yields one miss. Thus the average
hit rate can be found by determining the average
forwarder queue length — the number of payloads
buffered for forwarding in the host — and dividing
into the payload cache size. Note that MRU is the
optimal behavior in this case because there can be
no benefit to replacing an older cached payload with
a newer one until the older one has been forwarded.

Queuing theory predicts these forwarder queue
lengths under common conditions, as a function of

forwarder CPU overhead (per-packet CPU service
demand) or CPU utilization. This experiment il-
lustrates this behavior empirically, and also shows
an interesting feedback effect of payload caching.
We added a configurable per-packet CPU demand
to the forwarder thread, and measured forwarder
queue lengths and payload cache hit rate under a
25 MB/s (200 Mb/s) load of 4KB UDP packets.
We used the UNC Flowgen tool to generate poisson-
distributed interarrival gaps for even queue behav-
ior. This allows us to explore the basic relationship
between CPU demand and payload cache hit rate
without the “noise” of the burstier packet arrivals
common in practice.

The left-hand graph of Figure 5 shows the average
number of packets queued in the intermediary as a
function of the CPU demand. We ran several ex-
periments varying the effective payload cache size,
the number of payload cache entries not reserved
for pending receives. As expected, the queues grow
rapidly as the CPU approaches saturation. In this
case, the OS kernel bounds the input packet queue
length at 400 packets; beyond this point the IP in-
put routine drops incoming packets at the input
queue. This figure also shows that the queues grow
more slowly for large payload cache sizes. Queuing
theory also predicts this effect: hits in the payload
cache reduce the effective service demand for each
packet by freeing up cycles in the I/O bus and mem-
ory system.

The right-hand graph of Figure 5 shows the aver-
age payload cache hit rate for the same runs. At

low service demands, all packets buffered in the for-
warder fit in the payload cache, yielding hit rates
near 100%. As the forwarder queue lengths increase,
a smaller share of the packet queue fits in the pay-
load cache, and hit rates fall rapidly. As expected,
the hit rate for each experiment is approximated by
the portion of the packet queue that fits in the pay-
load cache.

This experiment, shows that a megabyte-range pay-
load cache yields good hit rates if the CPU is power-
ful enough to handle its forwarding load without ap-
proaching saturation. As it turns out, this property
is independent of bandwidth; if CPU power scales
with link rates then payload caching will yield sim-
ilar hit rates at much higher bandwidths. On the
other hand, payload caching is not effective if the
CPU runs close to its capacity, but this case is un-
desirable anyway because queueing delays in the in-
termediary impose high latency.

5.4 UDP Forwarding Bandwidth

140 —pirRECT 56K

- -DIRECT 8k
120! = PCACHE 56k , /’d‘
—-PCACHE 8k _m — - - —n

100|- - Forwarding 56k
— Forwarding 8k
80 -«-DIRECT 1.5k
-= PCACHE 1.5k
—-Forwarding 1.5k ~

Delivered Load(MB /s)

60
40
20 »//* ‘

~x — A

A A

60 80 100 120 140 160
Offered Load(MB /s)

20 40

Figure 6: UDP forwarding bandwidth with PCACHE
and DIRECT, for MTUs of 56KB, 8KB, and 1500
bytes.

The next experiment shows the bandwidth benefits
of payload caching for netperf UDP packet flows.
Figure 6 shows delivered UDP forwarding band-
width as a function of input traffic rate for packet
sizes of 1500 bytes, 8KB, and 56KB. The payload
cache size is fixed at 1.4 MB. Bandwidth is measured
as the number of bytes arriving at the receiver per
unit of time. For these experiments, smaller packet
sizes saturate the CPU at modest bandwidths; since
UDP has no congestion control, the saturated inter-
mediary drops many packets off of its input queues,
but only after consuming resources to accept them.
This livelock causes a significant drop in delivered
bandwidth beyond saturation.

With 1500-byte packets, packet handling costs
quickly saturate the forwarder’s CPU, limiting for-
warding bandwidth to 29 MB/s. PCACHE improves
peak forwarding bandwidth by 35% to 40 MB/s.
In this case, the benefit from PCACHE stems pri-
marily from reduced memory bandwidth demand to
forward each packet, as hits in the payload cache
reduce the number of bytes transmitted from host
memory.

The 8KB packets reduce packet handling costs per
byte of data transferred, easing the load on the
CPU. In this case, the CPU and the I/O bus are
roughly in balance, and both are close to saturation
at the peak forwarding rate of 48 MB/s. PCACHE
improves the peak forwarding bandwidth by 75% to
84 MB/s due to reduced load on the I/O bus and
on the forwarder’s memory.

With 56KB packets, forwarding performance is lim-
ited only by the I/O bus. The base forwarding rate
is roughly one-half the I/O bus bandwidth at 60
MB/s, since each payload crosses the bus twice.
With PCACHE, the forwarding bandwidth doubles
to 110 MB/s, approaching the full I/O bus band-
width. This shows that payload caching yields the
largest benefit when the I/O bus is the bottleneck
resource, since it cuts bus utilization by half under
ideal conditions. A faster CPU would show a similar
result at smaller packet sizes. Note that for 56KB
packets the forwarding rate never falls from its peak.
This is because the CPU is not saturated; since the
I/O bus is the bottleneck resource, the input rate
at the forwarder is limited by link-level flow control
on the Myrinet network. This is the only significant
respect in which our experiments are not represen-
tative of more typical IP networking technologies.

The DIRECT policy reduces memory and I/O bus
bandwidth demands further, and sustains much
higher bandwidth across all packet sizes. At 1500
bytes, DIRECT reduces CPU load further than
PCACHE, yielding a peak forwarding bandwidth of
60 MB/s. DIRECT can forward at a full 1 Gb/s for
a 56KB packet size, with the CPU load at 20% and
the I/O bus mostly idle for use by other devices.
However, a payload cache miss affects bandwidth
much more for DIRECT than for PCACHE, since a
miss results in a packet drop. In these experiments,
DIRECT suffered a 22% miss rate for a 100 MB/s
input rate with 8KB MTU. The next section shows
that TCP congestion control adapts to throttle the
send rate when packets are dropped, yielding the
best bandwidth and high hit rates for DIRECT.

H\/Q—Q—FH—Q—O—‘WW

120f —— DIRECTS8K
@ s
2 100 DIRECT 1.5K
s s~ PCACHE 8K .
£ 80} - PCACHE15K e T
5 —a-
2 A
é 60 .}l*'/.'. * PR A
@ ,111.%;*¢'+$_1_l_&+4'—1;&_‘
@ 40 e

200 ..
128 308 488 668 848 1028 1208 1388

Payload Cache Siz¢KB)

1h s ; M = Eoai B el
| I "
i /k
08 o e
o a /
| |
5 0.6 / /
o : rd
I ! /
04t 4 /\\/ —+ DIRECT 1.5K
, / DIRECT 8K
" /'\\‘/
02 ", = PCACHE 15K
—«~ PCACHE 8K

128 308 488 668 848 1028 1208 1388
Payload Cache Siz¢KB)

Figure 7: TCP bandwidth improvements with PCACHE and DIRECT for MTUs of 8KB and 1500 bytes, as a

function of effective payload cache size up to 1.4 MB.

5.5 TCP Forwarding

We now show the effectiveness of payload caching
for fast forwarding of TCP streams. For this ex-
periment, we used netperf on four clients to initi-
ate sixteen simultaneous TCP streams to a single
server through a forwarding intermediary, with the
interface Maximum Transmission Unit (MTU) con-
figured to 1500 bytes or 8KB (Jumbo frames).

Figure 7 shows the resulting aggregate bandwidth
and payload cache hit rate as a function of effec-
tive payload cache size. The graph does not show
forwarding bandwidths without payload caching,
since they are constant at the throughputs achieved
with the smallest payload cache sizes. These base
throughputs are 30 MB/s (240 Mb/s) with 1500-
byte MTUs and 55 MB/s (440 Mb/s) with 8KB
MTUs.

Using PCACHE, aggregate TCP bandwidth through
the forwarder rises steadily as the payload cache size
increases. With 1500-byte MTUs, payload caching
improves bandwidth by 56% from 30 MB/s to a
peak rate of 47 MB/s. With 8KB MTUs, pay-
load caching improves bandwidth by 60% from 55
MB/s to 88 MB/s at the 1.4 MB payload cache size.
It is interesting to note that these bandwidths are
slightly higher than the peak bandwidths measured
with UDP flows. This is because TCP’s congestion
control policy throttles the sender on packet drops.
We measured slightly lower peak bandwidths for a
single TCP stream; for example, a single stream
with 8KB MTUs yields a peak bandwidth of 85
MB/s through a payload caching forwarder.

The right-hand graph in Figure 7 shows the payload
cache hit rates for the same runs. Hit rates for the
PCACHE runs rise steadily as the payload cache size
increases, driving forwarding bandwidth up. For
this experiment a megabyte of payload cache is suf-
ficient to yield 100% hit ratios for all experiments.

Using direct forwarding (DIRECT) yields even higher
peak bandwidths. A direct forwarder handles traffic
at a full gigabit per second with 8KB MTUs, despite
its I/O bus limitation. It might seem anomalous
that bandwidth rises with larger cache sizes, even as
the hit rate appears to be pegged at 100% even with
small sizes. This effect occurs because all payload
cache misses under DIRECT result in packet drops.
Although a very small number of misses actually
occur, they are sufficient to allow TCP’s conges-
tion control policy to quickly converge on the peak
bandwidth achievable for a given cache size. With
PCACHE, a payload cache miss only increases for-
warding cost for an individual packet, which alone
is not sufficient to cause TCP to throttle back un-
til a queue overflows, forcing a packet drop. In all
of our experiments, TCP congestion control policies
automatically adjusted the send rate to induce peak
performance from a payload caching forwarder.

6 Related Work

This section sets payload caching in context with
complementary work sharing similar goals. Related
techniques include peer-to-peer DMA, TCP splic-
ing, and copy avoidance.

Like payload caching, peer-to-peer DMA is a tech-

nique that reduces data movement across the I/0
bus for forwarding intermediaries. Data moves di-
rectly from the input device to the output de-
vice without indirecting through the host memory.
Peer-to-peer DMA has been used to construct scal-
able host-based IP routers in the Atomic project
at USC/ISI [18], the Suez router at SUNYSB [16],
and Spine at UW [11]. The Spine project also ex-
plores transferring the forwarded payload directly
from the ingress NIC to the egress NIC across an
internal Myrinet interconnect in a scalable router.
Like DIRECT payload caching, this avoids both I/0
bus crossings on each NIC’s host, reducing CPU
load as well. In contrast to peer-to-peer DMA, pay-
load caching assumes that the ingress link and the
egress link share device buffers, i.e., they are the
same link or they reside on the same NIC. While
payload caching and peer-to-peer DMA both for-
ward each payload with a single bus crossing, pay-
load caching allows the host to examine the data and
possibly modify the headers. Peer-to-peer DMA as-
sumes that the host does not examine the data; if
this is the case then DIRECT payload caching can
eliminate all bus crossings.

TCP splicing [8] is used in user-level forwarding in-
termediaries such as TCP gateways, proxies [17],
and host-based redirecting switches [6]. A TCP
splice efficiently bridges separate TCP connections
held by the intermediary to the data producer and
consumer. Typically, the splicing forwarder per-
forms minimal processing beyond the IP layer, and
simply modifies the source, destination, sequence
numbers, and checksum fields in each TCP header
before forwarding it. A similar technique has also
been used in content switches [3], in which the port
controller performs the sequence number transla-
tion. Once a TCP splice is performed, the data
movement is similar to the NAT forwarding inter-
mediary used in our experiments.

The primary goal of TCP splicing is to avoid copy-
ing forwarded data within the host. Similarly, many
other techniques reduce copy overhead for network
communication (e.g., Fbufs [7], I/O-Lite [15], and
other approaches surveyed in [5]). These techniques
are complementary to payload caching, which is de-
signed to reduce overhead from unnecessary I/O bus
transfers.

7 Conclusion

Data in the Internet is often forwarded through in-
termediaries as it travels from server to client. As
network speeds advance, the trend in Web archi-

tecture and other large-scale data delivery systems
is towards increasing redirection through network
intermediaries, including firewalls, protocol trans-
lators, caching proxies, redirecting switches, mul-
ticasting overlay networks, and servers backed by
network storage.

Payload caching is a technique that reduces the
overhead of data forwarding, while retaining the
flexibility of host-based architectures for network
intermediaries. By intelligently managing a cache
of data payloads on the network adapter (NIC),
the host can improve forwarding bandwidth and la-
tency.

This paper shows how to incorporate payload
caching into Unix-based frameworks for high-speed
TCP/IP networking. It shows the interface between
the host and the NIC and the new host functions to
manage the payload cache. A key feature of our sys-
tem is that the host controls all aspects of payload
cache management and replacement, simplifying the
NIC and allowing the host to use application knowl-
edge to derive the best benefit from the cache. The
NIC support for our payload caching architecture is
straightforward, and we hope that future commer-
cial NICs will support it.

Experimental results from the prototype show that
payload caching and the direct forwarding extension
improve forwarding bandwidth through host-based
intermediaries by 40% to 60% under realistic scenar-
ios, or up to 100% under ideal conditions. TCP con-
gestion control automatically induces peak forward-
ing bandwidth from payload caching intermediaries.
These bandwidth improvements were measured us-
ing effective payload cache sizes in the one-megabyte
range on a gigabit-per-second network.

8 Availability

For more information please visit the website at
http://www.cs.duke.edu/ari/trapeze.

9 Acknowledgments

Over the years many people have contributed to
the development and success of the Trapeze project.
Most notably Andrew Gallatin for his FreeBSD
expertise and Bob Felderman at Myricom for his
timely help. We thank the anonymous reviewers
and our shepherd, Mohit Aron, for helpful critiques
and suggestions.

References

[1]

[2]

3]

[4]

[9]

Darrell Anderson, Jeffrey S. Chase, Syam
Gadde, Andrew J. Gallatin, Kenneth G.
Yocum, and Michael J. Feeley. Cheating
the I/O bottleneck: Network storage with
Trapeze/Myrinet. In 1998 Useniz Technical
Conference, June 1998.

Darrell C. Anderson, Jeffrey S. Chase, and
Amin M. Vahdat. Interposed request routing
for scalable network storage. In Proceedings
of the Fourth Symposium on Operating System
Design and Implementation (OSDI), October
2000.

G. Apostolopoulos, D. Aubespin, V. Peris,
P. Pradhan, and D. Saha. Design, imple-
mentation and performance of a content-based
switch. In Proceedings of IEEE Infocom 2000,
March 2000.

Jeffrey S. Chase, Darrell C. Anderson, An-
drew J. Gallatin, Alvin R. Lebeck, and Ken-
neth G. Yocum. Network I/O with Trapeze.
In 1999 Hot Interconnects Symposium, August
1999.

Jeffrey S. Chase, Andrew J. Gallatin, and Ken-
neth G. Yocum. End system optimizations
for high-speed TCP. IEEE Communications,
Special Issue on High-Speed TCP, 39(4):68-74,
April 2001.

A. Cohen, S. Rangarajan, and H. Slye. The
performance of TCP splicing for URL-aware
redirection. In Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Sys-
tems, October 1999.

Peter Druschel and Larry L. Peterson. Fbufs: A
high-bandwidth cross-domain transfer facility.
In Proceedings of the Fourteenth ACM Sym-
posium on Operating System Principles, pages
189-202, December 1993.

K. Fall and J. Pasquale. Exploiting in-kernel
data paths to improve I/O throughput and
CPU availability. In USENIX Conference,
pages 327-334, January 1993.

Michael J. Feeley, William E. Morgan, Fred-
eric H. Pighin, Anna R. Karlin, and Henry M.
Levy. Implementing global memory manage-
ment in a workstation cluster. In Proceedings
of the Fifteenth ACM Symposium on Operating
Systems Principles, 1995.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. E. Fiuczynski, V. K. Lam, and B. N. Ber-
shad. The design and implementation of an
IPv6/IPv4 network address and protocol trans-
lator. In Proceedings of USENIX, 1998.

Marc E. Fiuczynski, Brian N. Bershad,
Richard P. Martin, and David E. Culler.
SPINE: An operating system for intelligent net-
work adapters. Technical Report UW TR-98-
08-01, Washington University, Department of
Computer Science, September 1998.

Armando Fox, Steven D. Gribble, Yatin
Chawathe, and Eric A. Brewer. Cluster-based
scalable network services. In Proceedings of

Symposium on Operating Systems Principles
(SOSP-16), October 1997.

J. Jannotti, D. K. Gifford, K. L. Johnson, M. F.
Kaashoek, and J. W. O’Toole Jr. Overcast:
Reliable multicasting with an overlay network.
In Proceedings of the Fourth Symposium on

Operating System Design and Implementation
(OSDI), October 2000.

David F. Nagle, Gregory R. Ganger, Jeff But-
ler, Garth Gibson, and Chris Sabol. Network
support for network-attached storage. In Pro-
ceedings of Hot Interconnects, August 1999.

V.S. Pai, P. Druschel, and W. Zwaenepoel. 10-
Lite: A unified I/O buffering and caching sys-
tem. In Proceedings of the Third Symposium on

Operating Systems Design and Implementation
(0OSDI’99), February 1999.

P. Pradhan and T. Chiueh. A cluster-based,
scalable edge router architecture. In Proceed-

ings of the 1st Myrinet Users Group Confer-
ence, 2000.

O. Spatscheck, J. Hansen, J. Hartman, and
L. Peterson. Optimizing TCP forwarder per-
formance. IEEE/ACM Transactions on Net-
working, 2(8):146-157, 2000.

S. Walton, A. Hutton, and J. Touch. Efficient
high-speed data paths for IP forwarding us-
ing host based routers. In Proceedings of the
9th IEEE Workshop on Local and Metropolitan
Area Networks, pages 46-52, November 1998.

