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ABSTRACT: A new software package, PRODOCK, for protein modeling and
flexible docking is presented. The protein system is described in internal
coordinates with an arbitrary level of flexiblity for the proteins or ligands. The
protein is represented by an all-atom model with the ECEPPr3 or AMBER IV force
field, depending on whether the ligand is a peptidic molecule or not. PRODOCK is
based on a new residue data dictionary that makes the programming easier and
the definition of molecular flexibility more straigthforward. Two versions of the
dictionary have been constructed for the ECEPPr3 and AMBER IV geometry,
respectively. The global optimization of the energy function is carried out with
the scaled collective variable Monte Carlo method plus energy minimization.
The incorporation of a local minimization during the conformational sampling
has been shown to be very important for distinguishing low-energy nonnative
conformations from native structures. To make the Monte Carlo minimization
method efficient for docking, a new grid-based energy evaluation technique
using Bezier splines has been incorporated. This article includes some techniques
and simulation tools that significantly improve the efficiency of flexible docking
simulations, in particular forwardrbackward polypeptide chain generation. A
comparative study to illustrate the advantage of using quaternions over Euler
angles for the rigid-body rotational variables is presented in this paper. Several
applications of the program PRODOCK are also discussed. Q 1999 John Wiley &
Sons, Inc. J Comput Chem 20: 412]427, 1999

Keywords: docking; Monte Carlo minimization; molecular modeling;
quaternions; optimization

Correspondence to: H. A. Scheraga; e-mail: has5@cornell.edu
Contractrgrant sponsor: Association Française pour la

Recherche Therapeutique´
Contractrgrant sponsor: Centre National de la Recherche

Scientifique IMABIO
Contractrgrant sponsor: National Science Foundation; con-

tractrgrant number: MCB95-13167

Contractrgrant sponsor: National Institutes of Health; con-
tractrgrant numbers: GM-14312 and HL-30616

Contractrgrant sponsor: Cornell Biotechnology Center
ŽContractrgrant sponsor: Cornell Theory Center funded in

part by the NSF, New York State, IBM, NIH National Center for
Research Resources Grant P41 RR-04293, CTC Corporation

.Partnership Programs

( )Journal of Computational Chemistry, Vol. 20, No. 4, 412]427 1999
Q 1999 John Wiley & Sons, Inc. CCC 0192-8651 / 99 / 040412-16



PRODOCK

Introduction

etermination of the structure of aD receptor]ligand complex is a prerequisite
for understanding the affinity of an enzyme for
various inhibitors. Once the structure is deter-
mined, comparative free energy calculations can
be carried out on those different inhibitors. One of
the main approaches for drug discovery is to screen
a large molecular database that is usually gener-
ated beforehand by combinatorial chemistry for
that particular target receptor. The docking prob-
lem thus amounts to determining the structure of
the bound ligand correctly, for the binding free
energy calculation to be relevant and fast enough
for screening a large molecular database in a rea-
sonable amount of time.

This docking problem faces two major chal-
lenges common to protein folding and all other
projects in protein modeling: The first is to find an
energy function for which the global minimum
corresponds to the experimentally observed struc-
ture of the receptor]ligand complex, or of a single
polypeptide chain if one is interested in protein
modeling or protein folding. The second challenge
is to find the global minimum of this energy func-
tion. This is the multiple-minima problem. Finding
an energy function having this ‘‘good’’ property is
in fact a challenge on its own. The reason resides

Žin the difficulty for a given protein model e.g.,
lattice model, united residue model, or all-atom

.model to have a corresponding potential energy
function precise enough so that the global energy
minimum of the function corresponds to the struc-
ture observed experimentally. For major projects
such as docking, free energy calculations, loop
modeling, chain packing, etc., an atomic resolution
model is required. However, certain simplifica-
tions in the molecular model are necessary for the
calculations to be realizable in a reasonable amount
of time. In loop modeling and docking, the approx-
imation consists of assigning flexibility to a certain
part of the system only; for instance, the ligand or
the loop, plus eventually some residues of the
target receptor, the rest of it being maintained
fixed at the X-ray observed atomic coordinates. If
one is interested in the dynamics of a single
polypeptide chain, approximations can be made
by freezing some dihedral angles of the molecules
to decrease the total number of variables.

One way to realize this easily, despite substan-
tial programming, is to describe the molecule in

internal and external coordinates where the vari-
ables are the bond lengths, bond angles, dihedral
angles, and translational and rotational degrees of
freedom. The great advantage of this representa-
tion over Cartesian atomic coordinates is that the
variables are separated according to their different
time scales. The perturbation step size or time step
can be adapted to each of them, making the whole
conformational search more efficient in Monte

Ž . Ž .Carlo MC or molecular dynamics MD simula-
tions. This is especially true for docking, for which
the tumbling of the ligand in the active site is
independent of its internal conformational changes,
making the conformational sampling more effi-
cient. It is also easier for the user to control the
different types of conformational moves.

The second advantage of the internal coordinate
representation is that it is easy to control the flexi-
bility of the molecular system under study. The
number of degrees of freedom can be reduced to
an optimum by freezing any type of variables, or
only a subset of a given type. The most common
approach, which is adopted in the ECEPPr3 force
field,1 ] 4 is the rigid geometry approximation for
which bond lengths and bond angles are kept
fixed at standard values. This enables one to re-
duce the number of variables by a factor of about
ten compared with a representation in Cartesian
coordinates. The main drawback is that, for some
cases, the energy barriers between two conforma-
tional states can be artificially large because of
fixed bond lengths and fixed bond angles.

Although the representation in Cartesian coor-
dinates is useful for refining structures, it becomes
less advantageous for sampling the conformational
space of a protein. An explicit comparison between
the Cartesian and dihedral angle representations
has been reported by Abagyan et al.5 They showed
that the radius of convergence of the energy mini-
mization procedure is larger in dihedral angle
space than in Cartesian coordinate space. They
made the comparison by counting the number of
times that a perturbed protein structure returned
back to its energy minimum after various degrees
of perturbation. For large perturbations, structures
do not return to their lowest energy minimum
after Cartesian energy minimization, whereas
most of them were minimized back to the global
minimum using the dihedral angle space repre-
sentation.

In this article, we present a new software pack-
age, PRODOCK, which can be used for docking a

Žligand of any type small organic molecules to
.proteins onto a target protein receptor. It is also
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well adapted for protein modeling such as calcu-
lating protein loops, chain packing, and studying
protein dynamics and thermodynamics. Two gen-
eral principles were kept in mind while develop-

Ž .ing the software: i the possibility of defining an
arbitrary level of molecular flexiblity easily; and
Ž .ii defining the molecule with enough information

Žfor the implementation of new codes e.g., opti-
.mization techniques to be straightforward.

To meet these two requirements, we created a
new residue data dictionary that contains all the
basic information concerning atomic connectivity,
atom name, atom type, internal geometry coordi-
nates, as well as information concerning the rela-
tion between the internal variables and the corre-
sponding atoms moved by those variables. This
information is used to build a few fundamental
arrays that are used in almost all the major sub-
routines of the program. All this information is
independent of the force field, except for six
columns of the dictionary: the ones giving the
atom name; the atom type; the type of torsional
potential of the bond preceding the given atom;
and the three values for bond lengths, bond an-
gles, and dihedral angles.

In PRODOCK, the molecules are described with
an all-atom model using the ECEPPr34 or AMBER6

force field depending on the type of the ligand,
whether it is a peptide or a protein, or an organic
molecule. The molecule is described in internal
coordinates for which an arbitrary level of flexibil-
ity can be assigned to the ligand and the receptor.
For each force field, the rigid approximation was
used; that is, the bond lengths and bond angles
were always kept fixed at standard values. This is
the underlying approximation in ECEPPr3 but not
in the AMBER force field for which bond lengths
and bond angles are allowed to vary. Implementa-
tion of the full internal coordinate model of the
molecule is much more demanding in terms of
programming and has not yet been implemented
in PRODOCK. In this respect, docking structures
obtained with the AMBER IV force field may need
to be further refined using the original AMBER

potential; that is, with the energy terms associated
with the bond length elongation and bond angle
deformation. With the ECEPPr3 force field, none of
the geometry or energy parameters have been
modified. The changes concern only the procedure
to store the information that makes the program-
ming easier and the definition of flexibility more
straighforward.

A standard residue data dictionary has thus
been constructed for the ECEPPr3 and AMBER force

fields. For drug molecules, an independent AMBER

dictionary is necessary. At the present stage, this is
done manually knowing the Cartesian coordinates,
atom names, and connectivity matrix of the com-
pound. The type of dictionary used in PRODOCK

was very much inspired by the dictionary devel-
oped by Robson and Platt,7 and later improved by
Voll and used by Higo et al.8, 9

The global optimization tool used in PRODOCK is
the scaled collective variables Monte Carlo

10Ž .SCVMCM method developed by Noguti and Go
with energy minimization after each MC step.11, 12

Energy minimization was shown to be one of the
best techniques for distinguishing between native-
and nonnative-generated conformations of ligands
bound to their receptors.13 Incorporation of this
technique into a Monte Carlo procedure enables
one to distinguish the native conformation directly
during the conformational search. It avoids the
generation of a large number of ligand conformers
for which more sophisticated energy evaluation
tools would have had to be applied to identify the
native-like conformations. The efficiency of the

Ž .Monte Carlo minimization SCV-MCM was
greatly improved by incorporating a new grid-
based energy evaluation technique using Bezier
splines, recently developed in our laboratory.13, 14

The Bezier spline technique enables one to esti-
mate not only the energy at a given point of the
continuous 3D space from its surrounding grid
points but also the first and all derivatives of the
energy, if necessary. Full advantage of the grid
technique can thus be taken in the local energy
minimization procedure. This improvement can
speed up the SCV-MCM method by a factor of ten
up to a few hundred, according to the size of the
rigid part of the protein receptor.

A general description of this new package is
given in this study. The following sections are
devoted to a description of the new ECEPPr3 and
AMBER residue data dictionaries, the definition of
molecular flexibility, and the presentations of the
Monte Carlo and simulated annealing protocols
used for simulating the dynamics of a protein and
for searching for the global minimum of the en-
ergy of the system. Some comparison tests to as-
sess the efficiency of different features of the pro-
gram have also been carried out. These include
improvement in the procedure for generating the
polypeptide chain, and the advantage of using
quaternion parameters over Euler angles for rota-
tional degrees of freedom in docking computa-
tions. The differents applications of PRODOCK will
be reviewed in the Discussion section. These in-
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clude rigid13 and flexible15, 16 docking simulations
using Bezier splines, structure refinement using
NMR data,15 and loop modeling.17 They incorpo-
rate the same features of the program presented
here.

Methods

ECEPP / 3 AND AMBER IV DICTIONARY

Defining the molecule is the first step of every
molecular mechanics program. In a representation
in Cartesian coordinates, it is necessary to know
only the names of the atoms that constitute the
molecule, and the connections between them. In

Žthe rigid geometry representation dihedral angle
.space , the standard values of bond lengths and

bond angles are also needed. This information is
coded in a dictionary for all 20 standard amino
acids plus some amino and carboxyl endgroups.
The main difference between this dictionary and
the previous one1 is that the structure of a given
amino acid residue is given here in terms of inter-
nal coordinates, bond lengths, bond angles, and
dihedral angles, instead of Cartesian coordinates.
This has several advantages: first, any updating of
the dictionary or creation of nonstandard residues
can be done easily, because published structural
data are always presented in internal coordinates.
It should be noted that, in the previous ECEPPr3
dictionary, structural information was stored as
Cartesian coordinates with a limited number of
digits. Using them to regenerate the structure of
the molecule introduces unnecessary numerical er-
rors in the bond angles compared with the original
values published in the literature. These errors are,

Ž .of course, small "0.038 . and are less than the
experimental uncertainties associated with these
structural parameters. These small deviations in
bond angles and dihedral angles introduce small
errors in the ECEPPr3 energies as well. For this
reason, slight differences in energy values can be
observed between this program and the previous
ECEPPr3 package. These differences range between
0.05 and 0.2 kcalrmol for the minimum energy of
all 20 naturally occurring amino acid residues with
various terminal groups. The second advantage of
this new dictionary is that it makes programming
much easier, especially for defining the flexibility
of the polypeptide chain and for specifying 1]4
and 1]5 nonbonded interactions.

An example of this dictionary is given for the
Ž .aspartic acid residue Table I . Columns b]f give

the information associated with the atom connec-
tivities. Columns g]j are related to the variable
dihedral angles of the residue. The dihedral an-
gles, v, can be treated as fixed or variable; in
columns g and h, dihedral angle v is denoted as
the 0th angle. Column i tells whether the atom
belongs to the backbone or the side chain. Column
j gives the type of the preceding dihedral angle;
that is, f, c , v, or zero if the bond before the
atom does not involve a variable dihedral angle.
Columns k and l are the torsional potential type
and Lennard]Jones atom type, respectively. The
following three columns give the geometry of the
residue in terms of the internal coordinates r, t ,
and g for bond length, bond angle, and dihedral
angle, respectively. In the dictionary, the geometry
of the residues is defined with all the variable
dihedral angles equal to zero. These internal coor-
dinates are used to calculate the Cartesian coordi-
nates of the atom associated with any given line in
the Table I. The last column is the partial charge of
the atom. The same information is given in the
computer program for all standard residues and
different kinds of N- and C-terminal groups. This
presentation of the dictionary was proposed sev-

Žeral years ago by Voll personal communication,
. 71989 based on the RobsonrPlatt dictionary.

The AMBER dictionary is similar to the ECEPPr3
dictionary. The differences reside in the seven

Ž .columns a, k, l, m, n, o, p of Table I. The atom
name and atom types to be used with AMBER are
taken from Table I of ref. 6. At the present stage,
the dictionary is constructed manually for drug
molecules. The basic principles for dictionary con-
struction are as follows: the first atom is defined to
be the pivot atom of the molecule; that is, the
origin of the local frame to which rigid body rota-
tion and translation is applied. It should corre-
spond to an atom close to the geometric center of
the molecule. The atomic numbering scheme is the
same as in ECEPP. Partial atomic charges can be
taken from the AMBER dictionary or from different
ab initio calculations consistent with those used to
obtain AMBER charges.

MOLECULAR SYSTEM

A polypeptide chain can be defined as com-
pletely flexible or can be composed of successive
flexible and rigid segments. Each flexible segment
is attached at both extremities to its adjacent rigid
segments of the chain whose internal conforma-
tions do not change during the simulation. The
rigid part of the protein is the set of rigid seg-
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TABLE I.
Dictionary Information for the Aspartic Acid Residue.

ASP Aspartic acid
a b c d e f g h i j k l m n o p

N 1 0 3 2 0 y1 0 1 31 0 14 1.325 115.0 0.0 y4.59
HN 2 1 0 0 0 0 0 3 0 0 2 1.000 124.0 y180.0 2.27
CA 3 1 6 5 4 0 1 1 11 0 9 1.453 121.0 0.00 0.82
HA 4 3 0 0 0 1 0 3 0 0 1 1.090 105.2 121.0 0.26
CB 5 3 9 8 7 1 2 2 41 2 6 1.530 111.1 y119.1 y1.29
1HB 7 5 0 0 0 2 0 4 0 0 1 1.090 108.6 122.0 0.78
2HB 8 5 0 0 0 2 0 4 0 0 1 1.090 108.6 y122.0 0.78
CG 9 5 11 10 0 2 3 2 42 1 7 1.530 115.0 0.0 6.44
OD1 10 9 0 0 0 3 0 2 0 0 17 1.240 121.0 0.0 y4.64
OD2 11 9 12 0 0 3 4 2 43 8 18 1.290 115.0 180.0 y4.51
HD2 12 11 0 0 0 4 0 4 0 0 1 1.000 110.0 0.0 2.83
C 6 3 14 13 0 1 5 1 21 0 7 1.530 109.3 0.0 5.80
O 13 6 0 0 0 5 0 1 0 0 17 1.230 120.5 y180.0 y4.95

( )Columns: a: Name of the current atom i. b: Atom number of the current atom i. c: Atom number of its father preceding atom .
( )d: Atom number of the first atom following the current atom i son 1 ; atom 14 is the N atom of the next residue. e: Atom number of

( ) ( )the second atom following the current atom i son 2 . f: Atom number of third atom following the current atom i son 3 . g: Number
of the variable dihedral angle that will move current atom i; by definition, the 0th dihedral angle corresponds to the dihedral angle

( )v, y1 is the dihedral angle c of the preceding residue, 1 corresponds to the dihedral angle f of the current residue here ASP ,
and 2, 3, 4 . . . correspond to the side-chain dihedral angles x s. The last dihedral angle, in this case 5, corresponds to the dihedral
angle c of the current residue. h: Number of the variable dihedral angle preceeding atom i. A value of zero is assigned for dihedral
angles that are not variable or for the dihedral angle v that can be defined as fixed or variable. 2, 3, 4 . . . are defined in g. i:
1 = backbone heavy atom; 2 = side-chain heavy atom; 3 = backbone hydrogen atom; 4 = side-chain hydrogen atom. j: Type of the
dihedral angle preceding atom i: f = 11, c = 21, v = 31, x s = 41, 42, 43 . . . . k: Type of torsional potential. In ECEPP / 3, each
number corresponds to one of the 11 types of torsional potentials for all standard amino acids. They vary in terms of the value of
the energy barrier and the symmetry and the sign of the trigonometric function. The form of these functions and their
corresponding codes, from 1 to 11, are the same as in the earlier version of the ECEPP / 3 packages.2, 3 , 5 l: Atom type for the

˚( )Lennard ]Jones interaction. This is the same code as in the earlier version of ECEPP / 3. m: Bond length r A between atom i and
( ) ( ) ( )its father column c . n: Bond angle t degrees between atom i, its father, and its grandfather. o: Dihedral angle g degrees

( ) 1/ 2between atom i, its father, its grandfather and its great grandfather. p: Partial charge of atom i multiplied by 332 / D , where D is
( ) 5the dielectric constant D = 2 ; these are ECEPP / 3 charges.

ments. They usually represent the observed X-ray
conformation. The number and the length of these
segments are purely arbitrary, and depend on the
type of problem under study. An example of the
definition of such segments is given for a docking
type of problem in Table II. The receptor is human
a-thrombin and the ligand is a tripeptide NH ]D-2

Ž .Phe]Pro]Arg]COOH FPR . This tripeptide is the
analog of NH ]D-Phe]Pro]Arg]chloromethyl ke-2

Ž .tone PPACK , an antagonist of human a-throm-
bin.18, 19 The residues of the active site and those of
the ligand are taken as flexible, whereas residues
located further away from the active site are con-

Žsidered as rigid i.e., they do not move during the
.simulation . For a rigid docking calculation, the

Ž .ligand would be rigid but its center of mass CM
would be movable. In this example, the CMs of the
A and B chains of thrombin are fixed, and the CM
of the ligand is movable.

For each segment, FLEXIBLE means flexible side
Ž . Ž .chain only SIDE , flexible backbone only BACK ,

Ž .or both ALL . Also, the energy of each segment
can be turned ON or turned OFF during the simu-
lation. This feature is particularly important in the
docking procedure for two reasons: first, it simpli-
fies the topology of the active site by removing
some surrounding loops that prevent the entrance
of the ligand. Second, it allows one to remove from
the interaction list the atoms that are far from the
active site. The access of the substrate to the active
site is made possible by turning off the energies of
the surrounding loops that lie at the edge of the
active site, which usually act as a lid. Thus, it is
the set of residues that form the bottom of the
active site that remain. Knowledge of the location
of the active site is of course necessary, because
the residues having energies that are ‘‘turned off’’
are determined visually on a graphics screen. With
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TABLE II.
( ) aExample of Definition of Flexibility for Complex of Thrombin with NH – Phe – Pro – Arg – COOH FPR .2

Residue
number

Segment in the Chymotrypsin Type of Energy turned off
bnumber sequence numbering Flexibility flexibility or turned on

FPR:
1. 1 ]3 1 ]3 FLEXIBLE ALL ON

Thrombin a chain:
1. 1 ]36 1 ]15 RIGID ON

Thrombin b chain:
1. 1 ]19 16 ]34 RIGID OFF
2. 20 ]29 35 ]43 RIGID ON
3. 30 ]40 44 ]54 RIGID OFF
4. 41 ]43 55 ]57 FLEXIBLE SIDE ON
5. 44 ]46 58 ]60 RIGID ON
6. 47 ]54 60A ]60H FLEXIBLE ALL ON
7. 55 ]89 60I ]93 RIGID OFF
8. 90 ]99 94 ]102 RIGID ON
9. 100 ]140 103 ]140 RIGID OFF

10. 141 ]156 141 ]151 FLEXIBLE ALL ON
11. 157 ]175 152 ]170 RIGID OFF
12. 176 ]180 171 ]175 RIGID ON
13. 181 ]197 176 ]187 RIGID OFF
14. 198 ]201 188 ]191 RIGID ON
15. 202 ]206 192 ]196 FLEXIBLE SIDE ON
16. 207 ]224 197 ]212 RIGID OFF
17. 225 ]230 213 ]219 FLEXIBLE SIDE ON
18. 231 ]241 220 ]229 RIGID ON
19. 242 ]259 230 ]247 RIGID OFF

aThis is just an example for illustration only. It is not used anywhere.
bChymotrypsin numbering rather than sequence numbering is usually used for serine proteases such as thrombin.

this simplification, it is even possible to dock
molecules into an active site that is buried inside a
deep narrow cleft of the protein.

GENERATION OF STRUCTURE

The generation of a protein structure consists of
three steps: the first is the generation of all flexible
segments in a reference system using a given set of
dihedral angles. At this point, all ‘‘origin atoms’’
of each flexible segment are located at the same

Ž .origin of a reference frame 0, 0, 0 . These ‘‘origin
atoms’’ can be the nitrogen atom of the first residue

Žof the flexible segment, or the pivot atom i.e., a
a. ŽC in the middle of the chain see definition in

.what follows if this flexible segment corresponds
Ž .to a full molecule e.g., the ligand . At this stage,

the amino acid residues of the flexible segments
have been connected and the flexible dihedral an-

gles defined. The second step is the transfer of
these newly generated segments from the refer-
ence frame to their correct location in the protein.
The final step is the alteration of the overall posi-
tion and orientation of the ligand using rigid body
external variables. The procedure to generate the
polypeptide chain varies according to the location
of the flexible segment in the protein. The first is a
‘‘forward’’ generation procedure, which means that
the segment is built from the N- to the C-terminal
residue. This type of generation is applied for
flexible segments located between rigid segments
or at the C-terminus of the polypeptide chain. The
second type of generation procedure is ‘‘backward
generation,’’ which means that the chain is gener-
ated from the C- to the N-terminal residue. This
procedure is applied only for the first segment of
the polypeptide chain in cases in which this seg-
ment has been defined as flexible. This segment is,
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therefore, attached to a rigid segment forward in
the sequence. Finally, the last option is the for-
wardrbackward generation. This is applied when
the whole molecule, protein or ligand, is flexible.
The generation is carried out forward from the
pivot atom to the C-terminal group and backward
from the pivot atom to the N-terminal group. The
pivot atom is chosen to be the C a of the residue
that is in the middle of the sequence. The side
chain of the residue bearing the pivot atom is
generated during the forward generation proce-
dure. This forwardrbackward generation proce-
dure has previously been shown20 to improve the
convergence of the energy minimization procedure
significantly when several polypeptide chains are
considered. A comparison test for a single chain
when generating forward only and backwardrfor-
ward will be presented in the Results section.

The external variables of the ligand correspond
to the translation vector between the pivot atom

Ž .and the origin of the reference system 0, 0, 0 , and
Ž .the four quaternion parameters see later that give

the relative orientation of the local frame com-
pared with the reference frame. The local frame

Ž .centered on the pivot atom at 09, 09, 09 is built by
applying the Gramm]Schmidt orthonormalization
procedure21 to produce three mutually perpendic-
ular unit vectors from the two vectors represented
by the C a—H a and C a—C9 bonds. The first unit
vector is colinear with the first bond, the second
unit vector is in the plane spanned by the two
bonds, and the third unit vector is the crossprod-
uct between the two previously generated unit
vectors.

QUATERNION PARAMETERIZATION

Quaternions were discovered by Hamilton in
1843, and independently by Rodrigues.22 Their
motivation was to find some kind of numbers
whose product would correspond to rotation in
three-dimensional space, just as the product of
complex numbers corresponds to the rotation of
vectors in a plane.

According to Euler’s theorem, any sequence of
rotations with one point fixed is equivalent to a
single rotation about a given axis. If we designate

Ž .the unit vector on that axis as a a , a , a and the1 2 3
angle of rotation by f, then the quaternion four-

Ž .vector Q q , q , q , q is defined as:1 2 3 4

Ž . Ž .Q q , q , q , q ' Q a, w1 2 3 4

Ž w x w x . Ž .s sin wr2 a, cos wr2 1

The quaternion has a norm of 1; that is:

q2 s 1.Ý i
i

The q s are related to the Euler angles by thei
following equations:

u f y c u f q c
q s sin cos q s cos sin1 32 2 2 2 Ž .2

u f y c u f q c
q s sin sin q s cos cos2 42 2 2 2

where the definition of the three Euler angles
Ž . 23f, u , c is that of Goldstein. The rotation matrix,
D, is given in terms of the four parameters
Ž . 24, 25q , q , q , q by :1 2 3 4

2 2 2 2 Ž . Ž .q y q y q q q 2 q q y q q 2 q q q q q1 2 3 4 1 2 3 4 1 3 2 41
2 2 2 2Ž . Ž . Ž .2 q q q q q yq q q y q q q 2 q q y q qD s 31 2 3 4 1 2 3 4 2 3 1 4p

2 2 2 2Ž . Ž .2 q q y q q q q q q q q yq y q q q q q1 3 2 4 2 3 1 4 1 2 3 4

where:

2 2 2 2 Ž .p s q q q q q q q 41 2 3 4

is the norm of Q that is equal to 1. There are two
ways to minimize the energy with quaternions as
variables. The first is to let the four quaternion
parameters, q to q , vary in such a way that they1 4
always stay on the three-dimensional sphere mani-
fold, S ; that is, by determining q from the con-3 4

Ž .straint eq. 4 . The disadvantage of this protocol is

that it requires a constrained minimizer. The sec-
ond and simpler approach is to consider the four
quaternion parameters as independent variables
evolving in the four-dimensional real field R4. The
rotation matrix D is scaled by the norm of the
quaternion vector Q to keep Det D s 1. This scal-
ing would be sufficient if random rotation matri-
ces were needed, with no correlation between suc-
cessive matrices. On the contrary, if we wanted to
simulate the dynamic trajectory of the molecule
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in space, as in molecular dynamics for example,
it would be necessary to keep the quaternions as
close as possible to the manifold S3. This is
achieved by adding a harmonic constraint term in
the energy function, which keeps the norm close

w Ž .xto 1 see eq. 7 .
Dr defines an active rotation of the vector ro o

centered at the origin of the local frame. ‘‘Active’’
means that the vector r is rotated and the axes ofo
the local frame are fixed. Goldstein23 defined a
‘‘passive’’ rotation as one in which the vector r iso
fixed and the axes of the local frame are rotated.
Goldstein’s corresponding rotation matrix is equal
to Dy1.

In a standard MC procedure, the generation of
random unit-quaternion vectors is realized using
the three following steps26, 27:

1. Generate one pair of random numbers r , r1 2
independently and uniformly distributed in

Ž .the interval y1, 1 until:

S s r 2 q r 2 - 11 1 2

2. Do the same for pairs r , r until:3 4

S s r 2 q r 2 - 12 3 4

3. Form the random unit four-vector:

Ž . Ž . Ž .Qs r , r , r 1yS rS , r 1yS rS 5' '½ 51 2 3 1 2 4 1 2

and use it to prepare a new orientation.

Beside the elegance of quaternion algebra, there
are several advantages to working with quater-
nions instead of the more familiar Euler angle
parameters: The most important advantage is that
the orientation of a rigid body relative to a refer-
ence system is determined uniquely by the quater-

Ž .nion Q q , q , q , q except for a change of sign. In1 2 3 4
the Euler angle representation, there is an infinite

Ž .number of triplet angles f, u , c that define the
same orientation of the rigid body, when the sec-
ond Euler angle, u , is equal to zero or p . This
means that different sets of Euler angles produce
the same energy. In the special case in which the
orientation of the molecule corresponds to u s 0 or
p and to a local energy minimum or a saddle
point of the energy hypersurface, a local energy
minimizer encounters weak or degenerate minima
and, in practice, would take an extremely long
time to converge, as we will show in the Results

section. Another advantage of quaternions over
Euler angle parameters is that computers work
faster with algebraic functions than with trigono-
metric functions.

ENERGY FUNCTION

A general description of the molecular system is
presented in Figure 1. The different energy terms
associated with this model are as follows:

E s l E q l E q l Eintra intra inter inter tors tors

q l E q l Ebridge bridge closure closure

q l E q l E q l Equat quat dist dist x-ray x-ray

Ž .q l E 6NOE NOE

The ls are the weights of the different terms of the
potential energy. They offer much variability for
simulated annealing calculations. In such calcula-
tions, changing the temperature consists of chang-
ing the ls with the condition that they are all
equal. If the weights were to differ, this would be

FIGURE 1. Schematic diagram of a molecular system.
The uniform lines correspond to rigid segments, whereas
the wavy lines represent flexible segments. In this
example, the two molecules represent a ligand and its
receptor.
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equivalent to having a different temperature for
each energy term. The standard ECEPPr3 energy1 ] 4

that is, nonbonded, electrostatic, hydrogen bonded,
plus the hydration free energy,28 are incorporated
into the first two terms. The ‘‘intra’’ energy, E ,intra
stands for the interaction energy between atoms of

Ž .a given segment only if flexible and ‘‘inter’’ en-
ergy, E , refers to the interaction energy be-inter
tween different segments. This energy is taken into
account only if the relative atomic positions of

Žthese segments change during the simulation if at
least one of them is flexible or belongs to a protein

.for which the CM is movable . Two other terms
are part of ECEPPr3: E , the intrinsic torsionaltors
potential associated with certain side-chain dihe-
dral angles and E , the constraint energy asso-bridge
ciated with the disulfide bridges.1 ] 4 The harmonic
constraint potential E plays the role of loopclosure
closure for joining a flexible segment onto a rigid
segment. It is applied to the last three backbone
atoms C a, C9, and O of the flexible segment. Equat
is the harmonic penalty function to constrain the
norm of the quaternions to unity 24, 25:

1 2Ž . Ž .E s 1 y p 7quat 2

The last three terms are distance penalty functions.
E is used in our docking experiments to main-dist
tain the CM of the ligand within a given region
around the active site. In this study, we use a
quadratic function of the form:

2low lowE s d y d if d - dÝdist i i i i
i

low up Ž .8E s 0 if d - d - ddist i i i

2up upE s d y d if d ) dÝdist i i i i
i

where d low and dup are the lower and upper limitsi i
of the distance constraint. The term E is ax-ray
harmonic distance constraint of similar form:

2x-rayw x Ž .E s r y r 9Ýx-ray i i
i

This term is used mainly to regularize the PDB
Ž .structure see Regularization section or during the

first stage of a minimization procedure to prevent
the protein atoms from moving too far from the
positions given by the X-ray experiments. The last
term, E , is used for incorporating NOE dis-NOE
tance constraints during the simulation. Different

types of functions can be adopted here. Usually,
the function is chosen in such a way that E isNOE
zero when the distance between two atoms, i and
j, are within the distance interval provided by the
NMR experiments. When the distance is smaller
than the lower limit, there is a quadratic con-
straint. When the distance is greater than the up-
per limit, there is a quadratic constraint until a
certain limit d : when the violation is larger than d ,
the quadratic parabola is replaced by a linear
asymptotic branch. This term in the potential pre-
vents the system from being trapped in high-
energy minima due to large NOE violations,
especially at the beginnning of the simulations.
See ref. 15 for details.

HYDRATION FREE ENERGY

A new hydration volume model has recently
been developed in our laboratory.28 The purpose
of this model was to include the solvation free
energy in a pairwise atomic potential in a form
that can be treated by the diffusion equation

Ž .method DEM , a technique to search for the global
energy minimum of peptides and proteins.29 This
solvation model is based on the approximation
that the hydration free energy of a given atom is
proportional to the solvent-exposed volume of the
hydration shell. In the original work,28 the volume
of intersecting spheres was approximated by
Gaussian functions because this form is easily
transformed analytically by the Fourier]Poisson
integral, a key element of the DEM. Because we
are not smoothing the potential function by the
DEM, the Gaussian approximation of the volume
of intersecting spheres is not necessary. A saving
in CPU time can thus be achieved by using the
exact formula for intersecting spheres. This for-
mula involves only rational functions of the inter-
atomic distances and does not make use of expo-
nential functions, which are computationally ex-
pensive. We found that the CPU time to estimate
an exponential in double precision corresponds to
18 multiplication operations on an IBM-SP2 RX6000
computer. By transforming the four exponential
functions for each atomic pairwise interaction back
into a power function of the interatomic distance
r , our energy minimization procedure with totali j

Ž .energy ECEPPr3 q hydration becomes only 1]5%
more expensive than with the ECEPPr3 energy
alone. Another reason that this additional expense

Ž .is so small is that a cutoff distance r - R q R2 1 2
can be applied for all the atomic interactions to
estimate the exact volume.
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The formula used for the volume of intersection
of two spheres with radii R and R separated by1 2
a distance r is a spline of three functions28:12

2p r 3
123 3Ž .V r , R , R s R q R q12 1 2 1 2ž /3 8

p r12 2 2Ž .y R q R1 22
p 22 2Ž . Ž .y R y R 101 24r12

Ž .where R y R - r - R q R , V r , R , R s1 2 12 1 2 12 1 2
0 when r is greater than the separation distance12

Ž . Ž . 3R q R and V r , R , R s 4pr3 R when r1 2 12 1 2 2 12
- R y R . This spline function is continuous1 2
and differentiable at r s R y R and r s R q12 1 2 12 1
R . In this formulation, we assume that R ) R .2 1 2
The hydration free energy parameters for each
atom type have been determined by least-squares
fitting of some experimental free energy of transfer
values with the theoretical free energy values cal-
culated with the Gaussian approximation for the
intersecting volume.28 When the exact formula as

Ž .expressed in eq. 10 is used to calculate the hydra-
tion free energy, it would be necessary to recali-
brate the hydration free energy parameters. How-

Žever, the very good fit correlation coefficient ;
.0.9 obtained in the original work between the

Žexact and Gaussian-approximated volume Fig. 4
.of ref. 28 suggests that the error made by keeping

the same set of hydration free energy parameters
for calculating the hydration free energy of a
molecule or peptide would be similar to the aver-
age deviation between the experimental and fitted
hydration free energies obtained in the previous
work. This average deviation, obtained for the
140 compounds used for the calibration, was
0.35 kcalrmol, with a standard deviation of

Ž0.53 kcalrmol J. D. Ausgpurger, personal commu-
.nication . A test on the complex FPR]human a-

thrombin showed that the differences ranged from
0.3 to 1.0 kcalrmol between the hydration energies
calculated with the exact volume formula and the
Gaussian approximation. We thus make the as-
sumption that the general feature of the hydration
potential is conserved between these two expres-
sions for the volume of intersecting spheres.

GRADIENT AND HESSIAN CALCULATION

The analytical gradient of the energy with re-
spect to the dihedral angles was computed with
the method proposed by Levitt.30 The second

Ž .derivative matrix Hessian of the energy with
respect to the internal and external variables has
been obtained from the numerical derivatives of
the analytical gradient.

REGULARIZATION

The bond lengths and bond angles observed in
the X-ray structure of the protein are generally
slightly different from the standard values defined
by ECEPPr3 geometry. Regularization consists of
finding the set of dihedral angles that produces the
best fit between the ECEPPr3 and X-ray structures.
The regularization procedure is composed of three

Ž .steps: i calculating the dihedral angles from the
Ž .X-ray structure; ii generating an ECEPPr3 confor-

mation using this set of dihedral angles; and
Ž . w Ž .xiii minimizing the cost function eq. 9 applied
to all the heavy atoms of the molecule. The mini-
mization is carried out with the minimizer SUMSL
Ž .secant unconstrained minimization solver devel-
oped by Gay.31

MONTE CARLO SIMULATION

Ž .Scaled collective variables SCV Monte Carlo. The
Ž .Monte Carlo MC algorithm used in this program

serves several different purposes. First, it is a
method of global optimization; that is, finding

w Ž .xthe lowest value of the energy function eq. 6 .
Second, it can also be used as a sampling method
to calculate free energy. Because of the large
anisotropy of the energy surface due to the high
density of protein atoms, unbiased Monte Carlo
methods, especially in Cartesian coordinate space,
are known to be rather inefficient for conforma-

Žtional sampling see discussion in refs. 9, 32, and
.33 . To simulate the concerted motion of the atoms

inside proteins, we use the MC algorithm devel-
10oped by Noguti and Go. The trial conformations

of the protein are generated by using information
about the topology of the energy hypersurface. At
a particular point in the conformational space, we
approximate the energy surface by a multidimen-
sional parabola and determine the principal axes
components of this hyperparabola. This is obtained
by calculating the eigenvectors of the second
derivative matrix of the energy with respect to the
internal and external variables. By scaling each
variable increment by a quantity proportional to
the inverse of the corresponding eigenvalue, the
perturbation vector will be larger in the directions

Ž .of small curvature ‘‘soft’’ directions and smaller
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in the directions where the energy increases rapidly
Ž .‘‘hard’’ directions . The perturbation vector, DQ,
with elements called ‘‘scaled collective variables,’’
is defined as:

N 1
Ž .DQ s s r m 11Ý k k< <s'ks1 k

It is obtained by a linear combination of the eigen-
vectors m , where the coefficients are the corre-k
sponding eigenvalues s . The second derivativek
matrix can be calculated at an arbitrary point on
the potential energy surface, different from the
global or local minimum leading to negative
eigenvalues. Hence, the absolute values are taken
instead.9 The length of the vector is scaled by a
step size, s. In the eigenvector space, the sampling
is isotropic. Therefore, random numbers, r , arek
generated with a uniform distribution in the inter-

w xval y0.5; 0.5 . The summation is carried out over
ŽN, the total number of variables internal plus

.external . The perturbation vector, DQ, is added to
the vector of variables, Q, defining the current
conformation of the molecular system. The energy
of the trial conformation is accepted according to
the Metropolis criterion34 ; that is, with the proba-

w Ž .xbility min 1, exp yD Erk T where D E is the en-B
ergy difference between the trial and the current
conformation, k is the Boltzmann constant, and TB
is the absolute temperature.

When the system is large, the calculation of the
Hessian can be computationally expensive. There-
fore, it is updated every ten or hundred MC steps
according to the size of the system. It should be
noted that, within a given interval, microre-
versibility of the transition probabilities is main-
tained, but not when the Hessian is recalculated.9

Therefore, the convergence toward the Boltzmann
distribution is no longer certified. However, be-
cause we are using the Monte Carlo technique as a
global optimization method, we are not interested
in calculating statistical average quantities. Hence,
this problem is not relevant in our study. A way to
circumvent this problem partially for the calcula-
tion of thermodynamic quantities has been dis-
cussed by Gibrat et al.9 and more recently by
Leontidis and Suter.35 The SCV Monte Carlo pro-
cedure was used in refs. 8]10, 13, and 15]17.

Quaternion generation in standard Monte Carlo al-
gorithm. In the standard MC algorithm,34 all vari-
ables are perturbed randomly without any bias.
For dihedral angles and translation variables, the
perturbation vector is added to the current vari-

ables. For rotation variables, the new orientation
Ž X .Q9, Q of the molecule is determined by multi-4

Ž .plying the current quaternion Q, Q by the4
Ž .quaternion increment q, q according to the fol-4

lowing equation36 :

Ž X X . Ž . Ž .Q , Q s Q, Q = q , q4 4 4

Ž .s Q q y Q ? Q, Q q q q Q q Q = q4 4 4 4

Ž .12

where Q and q are the vector parts of the quater-
nions and Q and q are the scalar parts.4 4

For standard MC simulations, a step size is
Žassigned to each type of variable dihedral angles,

.translations, and rotations . For the dihedral angles
and translation vectors, the corresponding vari-
ables are multiplied by the step sizes, s andtors
s . For the rotation variables, we cannot simplytrans
multiply the quaternion parameters q by a scalari
s, because the norm of the quaternion, q, must be
preserved. However, the definition of the step size,
s , for quaternions should be such that a smallquat
step size should correspond to a small perturba-
tion of the current orientation of the molecule and
a large step size should produce a completely
random orientation of the molecule uncorrelated
with the previous orientation. The procedure to

Ž .generate the quaternion increment q, q is thus4
the following:

B Step 1. Generate three random numbers, r ,1
w xr , r , in the interval y1, 1 using a Gauss-2 3

ian distribution in which the width of the
distribution is controlled by the step size.
We repeat that process until:

S s r 2 q r 2 q r 2 - 11 2 3

The Gaussian probability density function is:

1 x 2

Ž . Ž .C x , l s exp y 132ž /2' 2l2pl

where l s s is the step size for quater-quat
nions and represents the standard deviation
of the distribution, and x stands for r , r , r1 2 3
successively.

B �Step 2. Form the quaternion q s r , r ,1 2
4r , r with:3 4

'r s 1 y S4

B
XŽ .Step 3. The new orientation Q9, Q is ob-4

tained by multiplying the quaternion incre-
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Ž .ment q, q with the previous orientation4
Ž . Ž .Q, Q using eq. 13 .4

The larger the step size s , the broader thequat
Gaussian function and more uniform the probabil-
ity distribution. On the contrary, a small step size
would correspond to a narrow Gaussian distribu-
tion, which will produce three numbers, r , r , r1 2 3
very close to zero, producing an r close to 1. The4
corresponding rotation matrix will therefore be
close to the unit matrix.

Ž .Monte Carlo with minimization MCM . The MCM
algorithm used in our study is the one presented
several years ago by Li and Scheraga.11, 12 The
algorithm consists of carrying out a random MC
move followed by a local energy minimization. In
their procedure, the MC moves were unbiased. In
our case, they are generated according to the
Noguti]Go algorithm. In the following, MCM re-
ally stands for SCV-MC with energy minimization
Ž .SCV-MCM . The minimization aims at removing
the clashes between the atoms of the ligand and
the protein. Hence, the minimization might not
need to be carried out until convergence. In prac-
tice, the minimization is stopped after a certain
number of iterations predetermined by the user.

SIMULATED ANNEALING

Ž .37In this package, simulated annealing SA con-
sists of a series of homogeneous Markov chains
computed at a given temperature.8, 9 The tempera-
ture is controlled by changing the weights, l,
associated with each energy term. In the case in
which all the ls are the same, the effective temper-
ature of the simulation is T s Trl, where T seff
1000 K. Decreasing the temperature is thus similar
to increasing the weight factors, l, and keeping
parameter T constant during the MC run. The
possibility of choosing different weights for the

w Ž .xcomponents of the energy function eq. 6 pro-
vides additional alternatives for the user than
simply changing temperature parameter T. This
approach can be pursued even further when ap-
plied to flexible docking, by assigning a small

Ž .l i.e., high T for the ligand and l s 1 forintra intra
the rest of the flexible segments; that is, proteins
loops. Similarly, l can be set to less than 1.0inter
Ž .i.e., high T when interactions between the ligand
and the receptor are involved, and l s 1.0inter
when considering the interactions between protein
loops. This allows the ligand to escape easily from
local minima while simulating the protein loops at
normal temperature.

Results

FORWARD / BACKWARD CHAIN GENERATION

The forwardrbackward chain generation proce-
dure has been shown to provide a major improve-
ment in multichain simulations.20 We found that
this type of generation procedure is also of prime
importance for docking a flexible ligand into its
active site. To test the gain in efficiency, we made
some comparisons with the standard generation

Ž .procedure forward from the N-terminal residue ,
used in the earlier version of the ECEPPr3 program.
The test consists of superimposing FPR onto the
X-ray structure. The superposition is done by min-

Ž .imizing the cost function given by eq. 9 . At the
beginning of the minimization, the tripeptide is in
the extended conformation in a random orienta-

˚tion and located at a distance about 10 A away
from the target structure. Both the initial and the
target structure have ECEPPr3 geometry. The mini-
mum of the cost function is thus unique and equal
to 0, within six digits of accuracy.

To test the efficiency of the minimization, we
compared the convergence for both generation
types, forward and forwardrbackward. The two
curves of Figure 2 show the evolution of the loga-
rithm of the rms gradient of the energy with the
number of iterations during the energy minimiza-
tion. A clear difference appears in terms of conver-
gence. The forwardrbackward procedure reached
the minimum after 131 iterations compared with
2121 for the forward simulation. The ratio of effi-
ciency between the two minimizations is about 15,
similar to the one reported previously.20 This for-
wardrbackward type of generation is thus adopted
in this package whenever a molecule is defined as
completely flexible as is usually the case for the
ligand in docking simulations.

QUATERNIONS VERSUS EULER ANGLES

The degeneracy of the energy when the second
Euler angle, u , is equal to zero or p creates singu-
larities for certain quantities that are calculated

Ž .during simulations. In molecular dynamics MD ,
singularities appear in the time derivative of the
angular momentum. Evans and Murad38 showed
that these singularities induce large numerical
fluctuations in the total energy in simulations of
polyatomic fluids where the energy is considered

Ž .as constant microcanonical ensemble . In molecu-
lar mechanics, singularities of the Hessian occur
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FIGURE 2. Comparison of the convergence of the rms gradient during energy minimization when the chain is
a ( ) ( )generated forward / backward from the C of the middle residue a or forward from the first residue b .

when u s 0 or p and all the components of the
gradient are equal to zero. These singularities thus
occur at any local minimum or saddle point, where
u s 0 or p . At those points, the second partial
derivative of the energy with respect to the second
Euler angle u and any other type of variable X is
equal to zero. All the elements of the Hessian,
d 2Erdud X, are equal to zero, because both terms,
dErdu and dErd X, are equal to zero. The first

Žterm is zero because u s 0 or p in that case, a
small perturbation, Du , would not change the ori-
entation of the molecule; therefore, the energy does

.not change and dErdu s 0 . The second term is
zero because the molecule is at a local energy
minimum or a saddle point. The Hessian is thus
singular. If the minimizer does not involve the
calculation of the Hessian matrix, there is still a
convergence problem when the molecule is at a
local energy minimum and when the second Euler
angle u s 0 or p . It is important to note that there
are no singularities at u s 0 when the energy is
not a minimum. Therefore, starting the simulation
at a point that is not a minimum, with a unit

Ž .rotation matrix u s 0 , does not create any con-
vergence problem contrary to what is sometimes

.stated in the literature; e.g., ref. 24 .
The inconvenience of these weak minima be-

comes more apparent as the number of indepen-
Ždent molecules in the system increases e.g., simu-

.lations with explicit water molecules . Indeed, the
larger the number of molecules, the higher the
probability that one of the molecules will have a u

close to 0 or p when the system is at an energy
Ž .minimum global or local . In MD simulations of

liquids, the presence of such singularities is thus
an important issue. In docking simulations, this
problem might remain unnoticed because the
number of minima with u close to 0 is probably a
small fraction of all the local minima and saddle
points of the energy hypersurface. For docking, the
simulation will fail mainly if the optimized struc-

Ž .ture of the ligand the one of lowest energy has a
Ž .‘‘bad’’ orientation u close to 0 or p . In this

section, we assess the bad convergence properties
of the energy minimization due to these singulari-
ties. This illustrates the advantage of quaternions
over the Euler-angle representation.

The tests consist of docking the tripeptide FPR
onto a-thrombin by minimizing an energy func-
tion which is the sum of the X-ray constraint plus
the ECEPPr3 energy. We use the X-ray constraint to
force the simulation to finish very close to the
X-ray structure, which is very close to the global
minimum, because the harmonic constraint energy
term makes the major contribution. Therefore, we
can compare the convergence properties for differ-
ent trajectories that all finish at the same point. At
the beginning of the docking simulation, the lig-

˚and is located about 10 A outside the active site in
the extended conformation in a random orienta-
tion. The ligand is thus flexible and the atoms of
the receptor are fixed at their ECEPPr3 energy-
minimized X-ray coordinates. The weights l ,intra
l , and l are equal to 1, whereas l isinter tors x-ray
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equal to 1000. For simulations with quaternions,
l is equal to 5000. A more detailed descriptionquat
of the system and docking simulation can be found
in ref. 13.

Two types of docking experiments have been
carried out: in the first, the target structure of the
ligand is the X-ray structure with a u value for the

Ž .second Euler angle 1178 different from zero. In
the second experiment, the X-ray structure of the
ligand has been rotated in such a way that the u
value is equal to zero. Ten docking energy mini-
mizations have been carried out in both cases
for which a comparison between quaternions and
Euler angles has been made.

For the first series of docking simulations, the
Euler angles and quaternions perform similarly
because the final lowest energy conformation cor-
responds to a u / 0. The energy minimum is
reached after an average number of iterations
of 341 " 22 with quaternions and 341 " 41 with
Euler angles. For these minimizations, the angle u
crosses the zero value without affecting the con-
vergence of the minimization. For example, by
choosing the initial conformation as one for which
u s 0 does not create any problem of convergence,
and the global minima is achieved after 352 itera-
tions. Problems arise when u s 0 coincides with
the global minimum as seen in what follows.

In the second series of simulations in which the
target structure corresponds to u s 0, the two rep-
resentations differ significantly: with Euler angles,
none of the ten docking minimizations led to a
minimum close to the global minimum of the
energy. The minimization was stopped because
the relative convergence had been achieved; that
is, the energy decrease was less than 10y8 kcalrmol
between two successive iterations. The energy of
the final structures ranged between 0.4 = 10q4

q5 Ž .and 0.2 = 10 kcalrmol with l s 1000 , andx-ray
Ž .the root-mean-square-deviation rmsd , between

the calculated and the X-ray structure, for all
˚heavy atoms ranged between 0.3 and 0.8 A. Using

quaternions, all the simulations except one led to
a structure which was close to the global mini-
mum. The energies ranged between y67.6 and
y71.2 kcalrmol and the rmsd values were less

˚than 0.001 A. For the one simulation that led to a
higher energy, relative convergence was achieved.
This corresponds to a local minimum of the poten-
tial energy surface. The minimizer did not stop
because of the presence of weak minima as was
the case with the Euler-angle representation.

In conclusion, the quaternion representation
avoids the convergence problem encountered with

Euler angles. The use of quaternions is highly
recommended when the number of molecules
in the system becomes large, for example when
explicit water molecules are present.

Discussion

The Results section shows how technical details,
such as the way to describe the variables of the
molecule for example, determine the efficiency of a
molecular simulation. The applications of the pro-
gram PRODOCK that have already been made con-
cern the docking of a small ligand onto a target
receptor,13, 16 a study of protein]protein interac-

Ž .tions work in progress , the determination of the
structure of a fibrinogen-like peptide bound to
human a-thrombin using NMR data,15 and an
analysis of the global motion of a large single

Ž .polypeptide chain work in progress . These appli-
cations are discussed in what follows.

SIMULATION OF LARGE
POLYPEPTIDE CHAIN

Molecular simulation of a very large protein is
very demanding computationally because of the
large number of atomic interactions to be consid-
ered. There are different approaches to decrease
the computational cost. One of the most prominent
is the multipole cell expansion method.39 For large
distances, it considers only the interactions be-
tween multipole moments that have been esti-
mated for each cell into which the protein system
is divided. Using a cell-hierarchical representation,
the calculation of the electrostatic energy scales
linearly with the number of atoms instead of as
N 2. The second approach, that was used here for a
large protein, is to freeze the dihedral angles of
certain domains or structural elements of the pro-
tein. For example, helices might be frozen, and
variable dihedral angles assigned only to the turns
and loops that connect these structural elements.
This is done simply by changing appropriate ele-
ments of the arrays associated with columns g and
h; that is, ‘‘switching on’’ these dihedral angles.
The list of interactions would be modified accord-
ingly in such a way that no interactions need to be
calculated within the fixed structural elements.
This approximation decreases the number of vari-
ables, making standard MC or MD simulations of
large polypeptide chains possible.
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DOCKING OF SMALL LIGANDS OR
PROTEINS ONTO TARGET
PROTEIN RECEPTORS

Docking of a small ligand or protein was made
efficient by combining different techniques, such
as the grid-based energy calculation using Bezier
splines,14 the SCV Monte Carlo method, the grow-
ing MC procedure15 and the multiscale annealing
approach that uses an independent annealing
schedule for each weight of the potential energy

w Ž .xfunction eq. 6 .
With the Bezier splines, it is possible to carry

out local energy minimization during the docking
simulation. This has been shown to be crucial for
distinguishing between native and nonnative low-
energy structures. Any conformational search pro-

Ž .cedures, such as MC or genetics algorithm GA
for example, might generate structures of the lig-
and that are very close to the native X-ray struc-
ture but with very high energy because of some
atomic clashes. Without energy minimization,
those conformations would be rejected from the
list of acceptable candidates, whereas the ones that
are accepted might be only remotely related to the
X-ray structure. The Bezier spline technique en-
ables local energy minimization of the molecules
during the conformational sampling to be carried
out in a reasonable amount of time. This technique
speeds up the MCM simulation by one or two
orders of magnitude depending of the size of the
rigid part of the receptor. The docking of two
proteins, both being rigid except perhaps at the
interface, might be carried out by MCM within
a few hours of CPU time using the grid-based
energy evaluation.

Most of the advantages of the SCV-MCM
method are realized when the protein is fully flexi-
ble or when protein loops are simulated. The global
motion of a large or even a small protein can be
characterized by concerted motions of all the
atoms. Standard MC in such a system would be
very inefficient because it is very unlikely to gen-
erate a low-energy conformation of the protein by
randomly changing all the dihedral angles, unless
the step size is very small. The ellipsoid associated
with the hessian at a given point of the energy
landscape might differ significantly from the
long-range shape of the energy landscape at that
particular region, but at least the eigenvectors of
the Hessian give some information about which
directions of the energy landscape should be
avoided. For protein loop calculations, the SCV-
MCM method always ensures that each new set of

dihedral angles for the loop will more or less
Ž .satisfy the loop closure penalty term of eq. 6 .

The separation of the energy into different terms
allows the user to experiment with different strate-
gies for modeling protein structure. Also, it offers
a much better control of the protein system during
simulated annealing. Each energy term E has itsi

own annealing schedule; that is, a starting and a
Ž .final temperature T where T s 1rl , and a rate

that tells how fast the l is upgraded during thei
MC procedure.

Finally, some techniques have been incorpo-
rated into PRODOCK to calculate the structure of
large ligands weakly bound to their receptor, us-
ing NMR data. The method consists of optimizing
simultaneously the NOE distance constraints of
the ligand and its energy of interaction with the
receptor. To make this possible, a growing MC
procedure has been implemented. The ligand is
generated in an extended conformation inside the
active site. The intramolecular energy and the NOE
distance constraints are optimized during the SCV-
MCM procedure using a certain schedule for these
different energy terms. To avoid atomic clashes
with the receptor, the size of the ligand is reduced

Ž .by a certain factor around 0.3 before calculating
the intermolecular energy with the receptor. As the
simulation proceeds, the ligand grows in size, and
the influence of the receptor becomes more and
more important. This method can be applied for
the docking of a large peptide onto a well-defined
groove of the receptor. For such a system, the
random tumbling of the ligand into the active site
Ž .used in refs. 13 and 16 is not adequate.

Conclusion

The PRODOCK package incorporates many simu-
lation techniques that are relevant for docking. The
advantage of this package for docking simulations
resides in the possibility of defining arbitrary flexi-
bility for the ligand and the receptor molecule and
the incorporation of the Bezier spline energy grid
to speed up the global optimization procedure.
This Bezier spline interpolation scheme provides
the possibility to estimate gradients from grid
points, making the grid technique fully adaptable
for energy minimization. Technical issues such as
forwardrbackward generation and quaternion pa-
rameters were shown to be important ingredients
for efficient multichain simulations.
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From experience, each protein system under
study requires special modeling techniques to
make the conformational sampling or the search
for the global minimum efficient. Such techniques
might consist, for example, of defining various
simulated annealing temperatures for different
terms of the energy, and various chain perturba-
tion protocols depending on whether the dihedral
angles to be considered belong to the ligand, to a
protein loop, or to a residue side chain inside the
active site. Also, the possibility of shrinking the
size of the ligand or part of it has been shown
to be very efficient to generate the structure of a
decapeptide inside the active site cavity.15

Our goal was to achieve an optimal choice be-
tween the precision of the model, the degree of
flexibility of each molecule, and the efficiency of
the energy optimization procedure. At present, the
program presents all the important features neces-
sary to carry out protein simulations efficiently,
especially docking. Further major improvements
concern the updating of the energy function, e.g.,
incorporation of the solvation electrostatic energy
using a Poisson]Boltzmann approach and the im-
plementation of new global optimization methods.
One of the latter is conformational space anneal-
ing40 using GA. It has proven to be very efficient
for calculating protein structures starting only from
the amino acid sequence. Finally, by enabling
PRODOCK to incorporate the 2-D and 3D structures
of a given compound automatically, this will en-
able it to be used for database screening and drug
design.
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