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CONDITIONS FOR
UNIQUE GRAPH REALIZATIONS*

BRUCE HENDRICKSONT

Abstract. The graph realization problem is that of computing the relative locations of a set of
vertices placed in Euclidean space, relying only upon some set of inter-vertex distance measurements.
This paper is concerned with the closely related problem of determining whether or not a graph has a
unique realization. Both these problems are NP-hard, but the proofs rely upon special combinations
of edge lengths. If one assumes the vertex locations are unrelated, then the uniqueness question can
be approached from a purely graph theoretic angle that ignores edge lengths. This paper identifies
three necessary graph theoretic conditions for a graph to have a unique realization in any dimension.
Efficient sequential and NC algorithms are presented for each condition, although these algorithms
have very different flavors in different dimensions.

Key words. graph embeddings, graph realizations, graph algorithms, rigid graphs, connectivity

AMS(MOS) subject classifications. 05C10, 05C85

1. Introduction. Consider a graph G = (V, F) consisting of a set of n vertices
and m edges, along with a real number associated with each edge. Now try to assign
coordinates to each vertex so that the Euclidean distance between any two adjacent
vertices is equal to the number associated with that edge. This is the graph realization
problem. It appears in situations where one needs to know the locations of various
objects, but can only measure the distances between pairs of them. Surveying and
satellite ranging are among the more obvious problems that can be expressed in this
form [27], [39]. A less obvious but potentially more important application has to
do with determining molecular conformations. It is possible to analyze the nuclear
magnetic resonance spectra of a molecule to obtain pairwise interatomic distance
information [13]. Solving the graph realization problem in this context would allow
us to determine the three-dimensional shape of the molecule, which is important in
understanding the molecule’s properties.

Unfortunately, the graph realization problem is known to be difficult. Saxe has
shown it to be strongly NP-complete in one dimension and strongly NP-hard for
higher dimensions [35]. In practice, this means that we are unlikely to find an efficient
general algorithm to solve it. However, the graphs and edge lengths that Saxe uses
in his proofs are very special and are highly unlikely to occur in practical problems.

This paper will address a closely related problem: when does the graph realiza-
tion problem have a unique solution? (For our purposes, translations, rotations, and
reflections of the entire space are not considered to be different realizations.) Clearly,
if the location of a satellite or an atom is to be determined unambiguously the solution
to the realization problem must be unique.

Saxe has shown this uniqueness problem to be as hard as the original realization
problem, but again his proofs rely on very special graphs. In particular, he needs
special combinations of edge lengths, implying specific algebraic relations among the
coordinates of the vertices. This paper will address the more typical behavior of
graphs.

* Received by the editors October 1, 1990; accepted for publication (in revised form) March 6,
1991. This research was performed while the author was at Cornell University and supported by a
fellowship from the Fannie and John Hertz Foundation.

T Mathematics and Computational Science Department, Sandia National Laboratories, Albu-

querque, New Mexico 87185.
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A realization of a graph G is a function p that maps the vertices of G to points in
Euclidean space. The combination of a graph and a realization is called a framework
and is denoted by p(G). A realization is satisfying if all the pairwise distance con-
straints are satisfied. Consider a set S with nonzero measure. A subset 7T of S is said
to contain almost all of S if the complement of T, {q € S|q ¢ T}, has measure zero. A
realization is said to be generic if the vertex coordinates are algebraically independent
over the rationals. This computationally unrealistic requirement is actually stronger
than we truly need. We just have to avoid several specific algebraic dependencies.
However, the set of generic realizations is dense in the space of all realizations, and
almost all realizations are generic.

Restricting ourselves to generic realizations will greatly simplify our analysis. It
will allow us to ignore the edge distances and base our analysis solely on the underlying
graph. The results we develop will apply to graphs in almost all realizations. However,
nongeneric realizations might have different properties.

How can a framework have multiple realizations? There are several distinct man-
ners in which nonuniqueness can appear. First, the framework can be susceptible to
continuous deformations, like the one in Fig. 1. The rightmost vertex in this graph

Fic. 1. A flezible framework in two dimensions.

can pivot freely since it is underconstrained. A framework that can be continuously
deformed while still satisfying all the constraints is said to be flexible; otherwise it is
rigid. Even a rigid framework can suffer from nonuniqueness. The rigid framework in
Fig. 2 has two realizations in the plane. One half of the graph can reflect across the

Fic. 2. A graph with two realizations in the plane.

central two vertices. Continuous deformations and graph rigidity will be discussed in
§2. Although graph rigidity is a well-studied problem, the connections to the graph
realization problem have not been well explored. Discontinuous transformations like

reflectior
its iImpo:
The
practical
present
differenc
will lead

2. €
to contit
occupiec
drawn t
The frar
endpoint
edges of
must be
of rigid
unanswe

Sect
of the r
reference
for rigid

2.1.
nition of
in an ar

Afe
by £ so t
p;i(t))? =
edge len

(1)

where v
satisfies
Clearly,
verse is ;
Correspc

The
motion
of a fini
indepen
infinites
As note
flexings.
refer to

We
flexible.
followin

THI
then all




35 of G to points in
called a framework
‘wise distance con-
thset 7 of & is said
is measure zero. A
ucally independent
s actually stronger
raic dependencies.
Il realizations, and

fy our analysis. It
ron the underlying
izations. However,

reral distinct man-
1 be susceptible to
rrtex in this graph

n be continuously
ble; otherwise it is
igid framework in
reflect across the

ill be discussed in
ions to the graph
nsformations like

v—%

UNIQUE GRAPH REALIZATIONS 67

reflections will be covered in §§3 and 4. The definition of redundant rigidity in §4 and
its importance in this context is entirely new.

The graph realization problem can be posed in any dimension. Clearly, the most
practically interesting dimensions are two and three. Where possible, this paper will
present the most general results. However, there are some substantial theoretical
differences between two-space and three-space that will be elucidated in §2. These
will lead to completely different algorithms for these different dimensions.

2. Graph rigidity. A graph that has a unique realization cannot be susceptible
to continuous flexings. It must be rigid. Questions about the rigidity of graphs have
occupied mathematicians for centuries. More recently, structural engineers have been
drawn to the problem because of novel building architectures like geodesic domes.
The framework of a building can be thought of as a set of rigid rods, joined at their
endpoints. One can consider the endpoints to be vertices of a graph and the rods to be
edges of a fixed length. For the building to bear weight, the corresponding framework
must be rigid. For an old problem with an easy description, the characterization
of rigid graphs has proved to be difficult, and many important questions remain
unanswered.

Section 2.1 will develop the essentials of rigidity theory, stressing the importance
of the rigidity matrix. A more complete discussion can be found in some of the
references [2], [3], [33], [L1]. Section 2.2 will present sequential and parallel algorithms
for rigidity testing.

2.1. Basic concepts. A mathematical analysis of rigidity requires a formal defi-
nition of our intuitive notion of a flexible framework. Everything in this section occurs
in an arbitrary Euclidean dimension d. .

A finite flering of a framework p(G) is a family of realizations of G, parameterized
by t so that the location of each vertex 1 is a differentiable function of ¢t and (p;(t) —
p;j(t))? = constant for every (i,j) € E. Thinking of t as time, and differentiating the
edge length constraints we find that

(1) (vi —v;) - (pi —pj) =0 forevery (,j) € E,

where v; is the instantaneous velocity of vertex i. An assignment of velocities that
satisfies (1) for a particular framework is an infinitesimal motion of that framework.
Clearly, the existence of a finite flexing implies an infinitesimal motion, but the con-
verse is not always true. However, for generic realizations infinitesimal motions always
correspond to finite flexings [33].

The infinitesimal motions of a framework constitute a vector space. Note that a
motion of the Euclidean space itself, a rotation or translation, satisfies the definition
of a finite flexing. Such finite flexings are said to be trivial. In d-space there are d
independent translations and d(d — 1)/2 rotations. If a framework has a nontrivial
infinitesimal motion, it is infinitesimally flexible. Otherwise it is infinitesimally rigid.
As noted above, for generic realizations infinitesimal motions correspond to finite
flexings. Since we are considering only generic realizations we will drop the prefix and
refer to frameworks as either rigid or flexible.

We would like to be able to determine whether a particular framework is rigid or
flexible. Conveniently, this is substantially a property of the underlying graph, as the
following theorem indicates [18].

THEOREM 2.1 (Gluck). If a graph has a single infinitesimally rigid realization,
then all its generic realizations are rigid.
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This theorem is critical for a graph theoretic approach to the realization problem.
The frameworks built from a graph are either all infinitesimally flexible or almost all
rigid. This allows for the characterization of graphs as either rigid or flexible according
to the typical behavior of a framework, without reference to a specific realization. It
also allows us to be somewhat cavalier in the distinction between rigid frameworks
and graphs that have rigid realizations. Henceforth such graphs will be referred to as
Tigid graphs.

How can a rigid graph be recognized? Clearly, graphs with many edges are
more likely to be rigid than those with only a few. In some sense the edges are
constraining the possible movements of the vertices. In d-space a set of n vertices
has nd possible independent motions. However, a d-dimensional rigid body in d-space
has d translations and d(d — 1)/2 rotations. (If the body has dimension d’ < d then
it has only d'(2d — d’ — 1)/2 rotations. This corresponds to a framework with only
d’ + 1 vertices.) The total number of allowed motions is the number of total degrees
of freedom, nd, minus the number of rigid body motions. For convenience, we will
call this quantity S(n,d), where

o [ rd=dli+ 12 Eazd
A= { n(n —1)/2 otherwise.

If each edge adds an independent constraint, then S(n,d) edges should be required to
eliminate all nonrigid motions of the graph. This intuition is sound, as the theorems
in this section will demonstrate.

Any realization of a flexible graph has a nontrivial infinitesimal motion. An
infinitesimal motion is a solution for velocities in (1). The matrix of this set of
equations is the rigidity matriz. It has m rows and nd columns. Each row corresponds
to an edge while each column corresponds to a coordinate of a vertex. FEach row
has 2d nonzero elements, one for each coordinate of the vertices connected by the
corresponding edge. The nonzero values are the differences in the coordinate values
for the two vertices. For example, consider the graph K3, the complete graph on
three vertices, positioned in R®. If the realization maps the vertices to locations
(0,1), (—=1,0), and (1,0), the rigidity matrix would be:

I

vl ]

Us

€1,2 1 1 -1 -1 0 0
€13 -1 1 0 0 1 -1 7.
€23 ( 0 0 -2 0 2 0 )

The rank of the rigidity matrix is closely related to the rigidity behavior of the
framework, as this section will elucidate.

THEOREM 2.2. A framework p(G) is rigid if and only if its rigidity matriz has
rank ezactly equal to S(n,d).

Proof. All infinitesimal motions must be in the null space of M since the rigid-
ity matrix expresses all constraints on the infinitesimal velocities. By construction,
S(n,d) is the size of the rigidity matrix minus the number of trivial infinitesimal mo-
tions. If the null space of M contains any nontrivial infinitesimal motions, then the
rank must be less than S(n,d). O

So the question of whether a framework is flexible can be reduced to a question

about the rank of the rigidity matrix. The framework is rigid if and only if the rank
of the rigidity matrix is maximal, S(n,d).
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THEOREM 2.3. Every rigid framework p(G) has a rigid subframework with exactly
S(n.d) edges.

Proof. The rigidity matrix has rank S(n,d) and each of its rows corresponds to
an edge. Simply discard redundant rows and the corresponding edges until only §
remain. O

COROLLARY 2.4. For a framework p(G), if m > S(n,d), then there is linear
dependence among the rows of the rigidity matriz.

Proof. The maximum rank of the rigidity matrix is S (n,d). 0

Dependence among rows in the rigidity matrix can be expressed in terms of a
matroid [30], {15]. For our purposes it will be sufficient to say that a set of edges is
independent if their rows in the rigidity matrix are linearly independent in a generic
realization. A rigid graph has S(n,d) independent edges.

THEOREM 2.5. If a framework p(G) with ezactly S(n, d) edges is Tigid, then there
is no subgraph G' = (V', E) with more than S(n',d) edges, where n' = [V'.

Proof. Since there are only S(n,d) edges, their rows in the rigidity matrix must all
be independent by Theorem 2.3. But if G’ has |E'| > S(n',d), then by Corollary 2.4
there must be linear dependence among these edges, which is a contradiction. 0

Theorems 2.3 and 2.5 say that a rigid graph with n vertices must have a set of
S{n.d) well-distributed edges, where well-distributed means that no subgraph with n’
vertices has more than S(n’', d) edges. This requirement is often referred to as Laman’s
condition after Laman [28], who first articulated the two-dimensional version. This
condition is necessary for a graph to be rigid in any dimension. It is sufficient in one
dimension where S = n — 1. 1t is straightforward to show that this is equivalent to
requiring the graph to be connected. Laman was able to show that it is also sufficient
in two dimensions where § = 2n — 3. -

THEOREM 2.6 (Laman). The edges of a graph G = (V, E) are independent in two
dimensions if and only if no subgraph G' = (V', E') has more than 2n' — 3 edges.

COROLLARY 2.7. A graph with 2n — 3 edges is rigid in two dimensions if and
only if no subgraph G' has more than 2n' — 3 edges.

This was the first graph theoretic characterization of rigid graphs in two-space.
Several equivalent characterizations have since been discovered (36], [24], [30], [37],
[12].

Unfortunately, for all its intuitive appeal Laman’s condition is not sufficient in
higher dimensions. A three-dimensional counterexample is depicted in Fig. 3. Al-
though this graph has the required 18 well-distributed edges, it is still flexible. The
top and bottom halves can pivot about the left- and right-most vertices.

The problem with Fig. 3 is that its edges are not independent in the sense of
Theorem 2.2. The rows of the rigidity matrix are linearly dependent. Expressing
this independence graph theoretically has proved to be a very difficult problem. No
general characterization of rigid graphs in three dimensions is known, although the
problem has been considered by many researchers, and several special cases have been
solved. Cauchy proved that triangulated planar graphs (those with all 3n — 6 edges)
are generically rigid in three-space [6]. Fogelsanger recently generalized this result
to include complete triangulations of any two-manifold in three-space [14]. Another
class known to be rigid is complete bipartite graphs with at least five vertices in each
vertex set [5], [38]. However, the characterization of general graphs remains open.

Recent work by Tay and Whiteley [37] has brought such a characterization almost
within reach. However, it is difficult to see how this possible solution could lead to
an efficient algorithm. Any straightforward implementation of their approach would
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Fic. 3. A flerible graph in three-space that satisfies Laman’s condition.

have a worst-case exponential time behavior.

2.2. Algorithms for rigidity testing. In one-space, rigidity is equivalent to
connectivity. There are simple connectivity algorithms that run in time proportional
to the number of edges in the graph [1].

2.2.1. Rigidity algorithms in two dimensions. In two dimensions Laman’s
condition characterizes rigidity, but in its original form it gives a poor algorithm.
It involves counting the edges in every subgraph, of which there are an exponential
number. Sugihara discovered the first polynomial time algorithm for determining
the independence of a set of edges in two dimensions [36]. Imai presented an O(n?)
algorithm for rigidity testing using a network flow approach [24]. This time complexity
was matched by Gabow and Westermann using matroid sums [15]. In this section we
will develop a new O(n?) algorithm based on bipartite matching. Besides any intrinsic
interest, this new algorithm will be needed in §4 when we need to test for a stronger
graph condition.

We will first need to introduce a particular bipartite graph B(G) generated by our
original graph G = (V, E). The bipartite graph has the edges of G as one of its vertex
sets, and two copies of the vertices of G for the other. Edges of B(G) connect the edges
of G with the two copies of their incident vertices. More formally, B(G) = (W, V3, €),
where V] = E, V; = {Q%1Q%s L 'Qﬂ}vqg}v and £ = {(6,(}}), (e,qf), (evq'rl')! (e, qu)

e = (vi,v;) € E}. B(G) has 2n + m vertices and 4m edges, where n and m are,
respectively, the number of vertices and edges in G. A simple example of the corre-
spondence between G and B(G) is presented in Fig. 4 for the graph K.

This bipartite graph leads to an alternate form of Laman’s condition, expressed
in the following theorem. As above, a set of edges is said to be independent if the
corresponding rows in the rigidity matrix are linearly independent in a generic real-
ization.

THEOREM 2.8. For a graph G = (V, E) the following are eguivalent:

(A) The edges of G are independent in two dimensions;

(B) For each edge (a,b) in G, the graph G, , formed by adding three additional

edges between a and b has no subgraph G' in which m' > 2n';
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" Ui vy U3 -
2
€1 €2
Vi
v2 €3 U3 €1 €7 €3
G B(G)

FiG. 4. The correspondence between G and B(G).

(C) For each edge (a,b), the bipartite graph B(G,p) generated by Gap has no

subset of V| that is adjacent only to a smaller subset of V5.

(D) For each edge (a,b), the bipartite graph B(G,,) generated by G,p has a

complete matching from V) to V.

Proof. The equivalence of A and B is a restatement of Laman’s condition. The
equivalence of B and C is a straightforward consequence of the construction of B(Gg ).
Property D is equivalent to C by Hall’s theorem from matching theory. Assertions C
and D were first discovered in a slightly different form by Sugihara [36]. 0

Our algorithm will be based upon the characterization in Theorem 2.8(D). The
basic idea is to grow a maximal set of independent edges one at a time. Denote
these basis edges by E. A new edge is added to the basis if it is discovered to be
independent of the existing set. If 2n — 3 independent edges are found, then the graph
is rigid. Determining whether a new edge is independent of the current basis can be
done quickly using the bipartite matching characterization.

Assume we have a (possibly empty) set of independent edges E. Combined with
the vertices of G these form a graph G, which generates a bipartite graph B(G).
Note that |E| = O(n) and so B(G) will have O(n) edges. We wish to determine if
another edge, e, is independent of E. Adding e to G produces G and B(G). By
characterization (D), e is independent of E if and only if there is a complete bipartite
matching in B after any edge in G is quadrupled. Actually, only e needs to be
quadrupled, as the following Lemma demonstrates.

LEMMA 2.9. If a complete matching exists when e is quadrupled, then e is inde-
pendent of E.

Proof. Assume the matching succeeds but e is not independent of E. Then there
must exist some edge in ' whose quadrupling causes G’, a subgraph of G, to have
m' > 2n’ — 3. Since the edges of E are independent, this bad subgraph must include e.
But this bad subgraph has the same number of edges it had when e was quadrupled.
Since the matching succeeded when e was quadrupled, we have a contradiction. 0

Determining whether a new edge can be added to the set of independent edges
is now reduced to the problem of trying to enlarge a bipartite matching. This is
a standard problem in matching and it is performed by growing Hungarian trees
and looking for augmenting paths. The basic idea is to look for a path from an
unmatched vertex in V; to an unmatched vertex in V5 that alternates between edges
that are not in the current matching and edges that are. When such an augmenting
path is found the matching can be enlarged by changing the unmatched edges in

B — T R RTIS  w s s it Al
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the path to become matching edges. and vice versa. These paths can be found by
growing Hungarian trees from the unmatched vertices in V;. These trees grow along
the unmatched edges from the starting vertex to its neighbor set in 15. \Iatchmg
edges are followed back to Vi and unmatched edges back to V5. If an unmatched
vertex in V3 is ever encountered, an augmenting path has been identified. Growing a
Hungarian tree takes time proportional to the number of edges in the bipartite graph

LEMMA 2.10. If E is independent and a corresponding matching in B(G) is
known, then determining whether a new edge is independent requires O(n) time.

Proof. By Lemma 2.9, testing for independence of e requires Jjust enlarging the
matching in B(G) to include the four copies of e. This involves growing four Hungarian
trees in a bipartite graph of size O(n). O

This gives a two-dimensional rigidity testing algorithm that runs in time O(nm).
Build a maximal set of independent edges one at a time by testing each edge for
independence. Each test involves the enlargement of a bipartite ma.tchmg requiring
O(n) time. If the matching succeeds, the edge is independent and is added to the
basis. Otherwise it is discarded.

To improve this to O(n?) we need to make use of failed matchings to eliminate
some edges from consideration. Define a Laman subgraph as a subgraph with n’
vertices and 2n’ — 3 independent edges. A matching will fail precisely when the
new edge lies in a subgraph that already has 2n’ — 3 independent edges. No edge
can be added between vertices in this subgraph, so it is a waste of time even to
try. By avoiding these unnecessary attempts, we can improve the performance of our
algorithm. To accomplish this we will need some further insight into the bipartite
matching.

THEOREM 2.11. In a bipartite graph (Vy, V5, €), if a Hungarian tree fails to find

alternating path, then it spans a minimal subgraph that violates Hall's theorem.
That is, it identifies a minimal set of k vertices in Vi with fewer than k neighbors.

Proof. The proof is a simple consequence of Hall’s theorem. 0

LEMMA 2.12. If the new edge e is tripled instead of quadrupled, generating a
graph G from G, then B(G) has a complete matching.

Proof. Assume the contrary. Then there is some subgraph G’ of G with m’ > 2n’.
Remove the three copies of e from this subgraph and quadruple one of the other edges.
This altered subgraph still has m’ > 2n/, but it is the graph generated by quadrupling
an edge in G. But since the edges of G are assumed to be independent, this is a
contradiction. 0

LeEmMma 2.13. If edge e fails the matching test, then the failing Hungarian tree
spans a set of edges of E that form a Laman subgraph.

Proof. By Lemma 2.12, when e is quadrupled the first three copies of it can be
matched. By Theorem 2.11, when the fourth fails it spans a set of vertices of V;
adjacent to a smaller set from V3. Discarding the four copies of e leaves a set of k
elements of V; adjacent to no more then k + 3 vertices from V;. By the construction
of the bipartite graph this is a set £ of k edges of E incident upon no more than
(k +3)/2 vertices. That is, m’ > 2n’ — 3. Since the edges of E are independent, we
must have equality. 0

We will need the following result to analyze the running time of our algorithm.

LemMMA 2.14. Let G = (V,E) be a graph whose edges are independent. If two
Laman subgraphs of G share an edge, then their union is a Laman subgraph.

Proof. Let the subgraphs be (V', E') and (V", E") with union (V, E). Let m =
m'+m"” — 1l and 2 = n’ +n” — k. Since the subgraphs share at least one independent
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edge. | < 2k — 3. Hence,

'+ " —-6—1

T‘_ﬂ =
> 2n'+2n" -2k-3
= 2(n"+n" -k)-3
= 2n—3.
Since the edges are independent, we must have equality. O

We are now ready to present our algorithm. We will maintain the appropriate
bipartite graph with a matching of all the independent edges discovered so far. We
will also keep a collection of all the Laman subgraphs that have been identified,
represented as linked lists of independent edges. The algorithm is outlined in Fig. 5.

basis + 0
For Each vertex v
Mark each vertex in a Laman subgraph with v, and unmark all others
For Each edge (u,v)
If u is unmarked Then
If (u,v) is independent of basis Then
add (u,v) to basis
create Laman subgraph consisting of (u,v)
Else a new Laman subgraph has been identified
Merge all Laman subgraphs that share an edge
Mark each vertex in a Laman subgraph with v

F1G. 5. An O(n?) algorithm for two-dimensional graph rigidity.

By Lemma 2.14 we know that no edge need be in more than one subgraph.
By merging whenever a new Laman subgraph is found, we guarantee that the total
number of elements in all the subgraphs is kept to O(n). This ensures that the
marking and merging operations can be done in O(n) time. As above, checking for
independence of (u,v) requires O(n) time. Each time an edge is checked it results in
either a new basis edge or a merging of components, so this can only happen O(n)
times. Hence the total time for the algorithm is O(n?).

2.2.2. Rigidity algorithms in higher dimensions. For dimensions greater
than two there are no graph theoretic characterizations of rigidity, so there are no
good combinatoric algorithms to test for it. One approach would involve a symbolic
calculation of the rank of the rigidity matrix by symbolically constructing the deter-
minant. However, the determinant can have an exponential number of terms, so this
requires an exponential amount of time. A different approach is possible that relies
instead upon Theorem 2.1. Since this theorem is valid in all dimensions, the following
discussion is applicable to all spaces. If the graph is rigid, then almost any realization
will generate a rigid framework. Simply select a random realization for the graph.
Once these vertex locations are selected it is a straightforward matter to determine
the rigidity of the framework using Theorem 2.2. Just construct the rigidity matrix
M and determine its rank. If the rank is S(n,d), then the graph is rigid. A lower
rank indicates that the framework is flexible. Unless the selection of vertex coordi-
nates was extremely unlucky the underlying graph will be flexible as well. So even
without a graph theoretic characterization an efficient practical randomized algorithm
for rigidity exists.

e R ——————
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To determine the rank of M we suggest using a QR decomposition with column
pivoting, requiring O(mn?) time [19]. This is more numerically stable than Gaussian
elimination, but not as costly as a singular value decomposition. A QR factorization
has several advantages over an SVD in this application. Performing a QR on M7T will
identify a maximal independent set of rows of M one at a time, corresponding to a
maximal set of independent edges in the graph. This ability to identify independent
rows will be needed in §4. Also, the rigidity matrix is quite sparse, having only 2d
nonzeros in each row. To save time and space, sparse techniques could be used for
large problems. There are sparse QR algorithms, but none for SVD 8], [16], [17].

There are also efficient parallel algorithms for finding the rank of a matrix. Ibarra,
Moran, and Rosier [23] discovered an algorithm that runs in O(log® m) time on O(m?)
processors. This means that rigidity testing is in random NC for any dimension. The
class NC is the set of problems that can be solved in polylogarithmic time using a
polynomial number of processors. It is a standard measure of a good parallel algorithm,
although its applicability is more theoretical than practical.

3. Partial reflections. Even rigid graphs can have multiple realizations as was
shown in Fig. 2. This discontinuous flavor of nonuniqueness has not been well studied,
probably because it is not relevant to structural engineers. Buildings can only deform
continuously. For the graph realization problem these discontinuous transformations
must be considered. This section and the next will be concerned with multiple real-
izations that do not arise from flexibility. These are cases in which there are two or
more noncongruent realizations that satisfy all the distance requirements, but there
is no continuous flexing of the framework to transform one to another while main-
taining the constraints. Whereas flexible graphs have an infinite number of potential
configurations, the number of realizations of a rigid graph is finite, although possibly
exponential in the size of the graph. ;

A two-dimensional example of the simplest type of discontinuous transformation
is depicted in Fig. 2. The right half of this graph is able to fold across the line formed
by the two middle vertices. When can this type of nonuniqueness occur? As in Fig. 2,
there must be a few vertices about which a portion of the graph can be reflected. These
vertices form a mirror. There must be no edges between the two halves of the graph
separated by this mirror. For the general d-dimensional problem, the mirror vertices
must lie in a (d — 1)-dimensional subspace. We will say that a framework in d-space
allows a partial reflection if a separating set of vertices lies in a (d — 1)-dimensional
subspace.

The realizations in which more than d vertices lie in a (d—1)-dimensional subspace
are not generic. So for almost all frameworks, partial reflections only occur when there
is a subset of d or fewer vertices whose removal separates the graph into two or more
unconnected pieces, that is, when G is not vertex (d + 1)-connected. This gives us
the following well-known result.

THEOREM 3.1. A rigid graph positioned generically in dimension d will have a
partial reflection if and only if it is not verter (d + 1)-connected.

The connectivity of a graph is an important property, and it has been well studied.
There are well-known O(m) time algorithms for vertex two-connectivity, also known
as biconnectivity [1]. Avoiding partial reflections in two dimensions requires a vertex
three-connected (or triconnected) graph. Hopcroft and Tarjan [22] were the first to
discover an O(m) time algorithm to find triconnected components. Miller and Ra-
machandran [31] have recently proposed a parallel algorithm to identify triconnected
components in O(log? n) time with O(m) processors, placing triconnectivity in NC.
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Four-connected components are more difficult, but Kanevsky and Ramachandran
125] have recently found an O(n?) time algorithm. They also discovered a parallel
implementation of their algorithm that runs in O(logn) time using O(n?) processors.
So the problem of partial reflections is in NC in both two and three dimensions.

For k greater than 4, the question of k-connectivity for a general k is less well
understood. Consequently the partial reflection problem is more difficult in spaces
of dimension greater than three. There are randomized algorithms for general k-
connectivity that run in time proportional to n®/2 [4], [29]. Recently, Cheriyan and
Thurimella have described an algorithm with a time complexity of O(k3n?), which
reduces to O(n?) for a fixed k [7]. There are also NC algorithms that run in time
O(k?logn) [26].

4. Redundant rigidity. Rigidity and (d+ 1)-connectivity are necessary but not
sufficient to ensure that a graph has a unique realization. A two-dimensional example
of a rigid, triconnected graph with two satisfving realizations is given in Fig. 6.

Fic. 6. Two realizations of a rigid triconnected graph in the plane.

—

To understand this nonuniqueness, consider Fig. 7. Edge (a, f) has been removed
from the original graph. This resultant graph is now composed of a quadrilateral bede
with two attached triangles abe and cdf. The quadrilateral is not rigid, so this new
graph can flex. The flexing will lift vertex d up until it crosses the line between ¢ and
e as depicted in the center picture of Fig. 7. Eventually vertex ¢ can swing all the
way around to the right. As the graph moves, the distance between vertices a and f
varies. When vertex ¢ swings far enough around, this distance becomes the same as
it was originally, as shown in the rightmost picture of Fig. 7. Now the missing edge
can be replaced to yield a new satisfying realization.

The fundamental problem with the graph in Fig. 6 is that the removal of a single
edge makes it flexible. We will define an edge of a framework to be nfinitesimally
redundant if the framework remaining after its removal is infinitesimally rigid. A
framework is infinitesimally redundantly rigid if all its edges are infinitesimally re-
dundant. Redundant bracing is a familiar concept to engineers who wish to build
frameworks with additional strength and failure tolerance properties, but this precise
formulation and its significance with regards to the unique realization problem are
entirely new.

Infinitesimal redundant rigidity is clearly a more restrictive property than in-
finitesimal rigidity, but the two properties have many similarities. For generic real-
izations infinitesimal motions always correspond to finite flexings. So as with rigidity,
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d

FiG. 7. Intermediate stages in the construction of Fig. 6.

since we are only interested in generic realizations we can drop the prefix and refer
to frameworks as redundantly rigid. The following theorem is a trivial consequence
of Theorem 2.1.

THEOREM 4.1. If a graph has a single infinitesimally redundantly rigid realiza-
tion, then all its generic realizations are redundantly rigid. "

As with Theorem 2.1 for rigid graphs, Theorem 4.1 says that either none of a
graph’s realizations are redundantly rigid, or almost all of them are. Almost all again
means that the set of counterexamples has measure zero. This blurs the distinc-
tion between a redundantly rigid framework and its underlying graph. Graphs with
redundantly rigid realizations will be referred to as redundantly rigid graphs.

In Fig. 6 the lack of redundant rigidity led to multiple realizations. This is usually
true, and the proof will be the main result of this section. Intuitively, a flexible
framework can move around, but it must always end up back where it started. That
is, the path it traces in nd-space will be a loop. If the removal of an edge allows the
graph to flex, then the distance corresponding to that edge must be a multivalued
function as the flexing completes its loop. However, there are some graphs for which
this argument fails. Consider the triangle graph K3. It has only one realization, but
if an edge is removed it becomes flexible. To understand which graphs need to be
redundantly rigid to have unique realizations, we will need to carefully investigate the
space of satisfying realizations for flexible graphs. This will require an incursion into
differential topology, and is the subject of the next section.

5. The necessity of redundant rigidity. The proof that flexible graphs typ-
ically move in closed loops will rely upon some special properties of the graph re-
alization problem. Given a framework p(G) there is a pairwise distance function
g : R"™ — R™™"D/2 that maps vertex locations to squares of all the pairwise vertex
distances. That is,

a(p(v1), -+, p(va)) = (-, Ip(v:) = p(v;)I?, - ).
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For the molecule problem, we are only interested in a specific set of pairwise distances,
namely. those corresponding to the edges of G. These can be obtained from R"(n-1)/2
by a simple projection . We will define an edge function f to be the composition
of these two operations, f = 7o g¢. These functions are described by the following
commutative diagram.

= ]1:{'1‘?!

Rﬂ(l’!—l)_f?

The functions f and ¢ have many nice properties. We will say a function is smooth
at a point z if it has continuous partial derivatives of all orders at z. The functions
[ and g are everywhere smooth. Also, the Jacobian of f is twice the rigidity matrix
introduced in §2.1.

The realization problem is really that of finding the inverse of the edge func-
tion. Of course, this inverse is multivalued because edge lengths are invariant under
translations, rotations, and reflections of the entire space. Two realizations will be
considered equivalent if all pairwise distances between vertices are the same under the
two realizations. That is, two realizations are equivalent if they map to the same point
under g. We will be interested only in the inverse of f modulo equivalences. More
formally, define the realization set of p(G) to be 7= f(p(G)), the set of nonequivalent,
satisfying realizations for the graph realization problem generated. by p(G). For p(G)
to be a unique solution to the realization problem it is necessary and sufficient that
this realization set consist of a single point. Our goal in this section is to investigate
the structure of the realization set. Qur first result is the following theorem.

THEOREM 5.1. If a graph G is connected, then the realization set of p(G) is
compact.

Proof. The realization set is a subset of IR™"™~ /2 It is bounded since the graph
is connected, and it is trivially closed. ]

Although every point in IR™ corresponds to a realization, the image of R™ under
q does not cover R"™"V/2_ Define this image to be a space W c R™™1)/2 The
space W' has a natural topology and measure inherited from the larger Euclidean
space. For technical reasons we will restrict our consideration of realizations to those
in which not all the vertices lie in a hyperplane. Call this subset of realizations 7.
The space T' is a dense, open subset of IR™. Define X to be the subset of points in
W that are images of points in T under . If the graph has d or fewer vertices, then
X is empty. Otherwise, X is a dense, open subset of W, with a nice structure, as we
will see shortly. Define Z to be the image of X under x. This gives us the following
structure.
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We will need the following notation from differential topology. Say the largest
rank the Jacobian of a function g : A — B attains in its domain is k. A point z € A is
called a regular point if the Jacobian of g at x has rank k. A point y € B is a regular
value if every point in the preimage of y under g is a regular point. If a point or value
is not regular, it is singular. Note that for the edge function singular points are not
generic. A j-dimensional manifold is a subset of some large Euclidean space that is
everywhere locally diffeomorphic to IR7.

Consider the following procedure for identifying equivalent realizations, which is
defined for any realization in T'. Select a set of d + 1 vertices from p(G) whose affine
span is all of RY. Translate the realization so that the first of these vertices is at the
origin. Next rotate about the origin to move the second of these vertices onto the
positive r, axis. Now rotate, keeping the first two vertices fixed, to move the third to
the (zy, z3) plane so that the z, coordinate is positive. Continuing this process in the
obvious way gives a smooth mapping that makes d(d+ 1)/2 of the vertex coordinates
zero. Finally, if the d + 1st vertex has its d + 1st coordinate less than zero, reflect the
vertices through the hyperplane defined by the z;,---,z4_; axes.

This procedure maps all equivalent realizations to a single one. This single re-
alization can be described by its remaining variable coordinates, of which there are
nd — d(d + 1)/2. Since each of these remaining coordinates can vary continuously,
the realization can be considered to be a point in R™~#4+1)/2 This defines a coor-
dinate chart for X. Note that the sequence of operations performed on the original
realization is smooth and invertible. If a different set of d + 1 initial vertices was
selected, a different coordinate chart would have been generated. Since these coor-
dinate transformations are smooth and invertible, on regions of intersection the two
charts are diffeomorphic. The union of all such charts gives a differentiable structure
to our space X. This construction provides a diffeomorphism between each open set
of a collection that covers X and R™~#4+1/2 giving us the following theorem.

THEOREM 5.2. If the graph has at least d + 1 vertices, then X is a smooth
manifold of dimension nd — d(d+ 1) /2.

The dimension of this manifold is a quantity that will come up frequently, so it
will be convenient to reintroduce the following notation: S(n,d) = nd — d(d +1)/2.
This function was first defined in §2.1 as the maximal rank of the rigidity matrix of
a graph with n vertices positioned in d-space.

The procedure described above gives us an alternate way in which to view the
space X. The sequence of translations, rotations, and reflections constitute a function
g that maps an entire set of equivalent realizations to a single one. The remaining
variable coordinates uniquely define a point in X. Considering these to be the inde-
pendent variables, the mapping from X to Z becomes more complicated than a simple
projection. We will define this function to be f, giving us the following commutative
diagram.

This function f is closely related to the edge function f. In fact, fis everywhere
smooth in X, and the rank of the Jacobian of f(x) is the same as that of f(g(z)). So
the singular values of f are the same as the singular values of f(g). If we designate the

”1

number of inder
always k. The f¢
THEOREM £
LEMMA 5.4
realizations p, f
Proof. The
mension less th:
number of open
maximal within
its image under
a submersion fr
projection from
submersion mus
(nd)-measure ze
These last 1
THEOREM
All this has
THEOREM
stricted to X is
Proof. Alm
preimage of a 1
from differentia
If the grap.
point in the m
of f. To show
diffeomorphic t
X. This can b
more than can
demonstrates.
THEOREM
all realizations
Proof. Ass
realization set
hyperplane. W
within the hyg
constraints, so
can be no larg
edges, this imj
be the case for
We can fir
THEOREM
vertices, then
submanifold tt
Proof. Ge
until G’ has £
subset of the
number of ind
5.1 we know t
manifold of di




v the largest
oint ¢ € A is
B is a reqular
Joint or value
oints are not
space that is

ions, which is
)} whose affine
tices is at the
ices onto the
e the third to
process in the
x coordinates
ro, reflect the

‘his single re-
1ich there are
continuously,
efines a coor-
n the original

vertices was
:e these coor-
ction the two
ible structure
each open set
theorem.

is a smooth

«quently, so it
—d(d+1)/2.
lity matrix of

h to view the
ute a function
'he remaining
) be the inde-
than a simple
commutative

is everywhere
>f f(g(z)). So
designate the
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number of independent edges of G by k. then the rank of these Jacobians is almost
always k. The following is a special case of a well-known theorem due to Sard [34].

THEOREM 5.3 (Sard). The set of singular values of f has k-measure zero.

LemMa 5.4, If Z' is a subset of Z with k-measure zero. then for almost all
realizations p, f(p) & Z'.

Proof. The singular points of f constitute an algebraic variety in R™ with di-
mension less than nd. Hence, the regular points of f can be covered by a countable
number of open neighborhoods in such a way that the rank of the Jacobian of f is
maximal within each neighborhood. Consider one of these neighborhoods R, and let
its image under f be Z. By the implicit function theorem from analysis, there is
a submersion from R to Z. That is, on this neighborhood f is diffeomorphic to a
projection from R™ to R*. Since Z' has k-measure zero its inverse image under this
submersion must have (nd)-measure zero in R. The countable union of these sets of
(nd)-measure zero yields a preimage for Z’ with (nd)-measure zero. O

These last two results imply the following theorem.

THEOREM 5.5. For almost every realization p, f(p) is a regular value.

All this has been leading up to the following crucial result.

THEOREM 5.6. For almost every realization p, the realization set of p(G) re-
stricted to X is a manifold.

Proof. Almost all realizations map to regular values of f and hence of f(g). The
preimage of a regular value is a submanifold of X by the implicit function theorem
from differential topology [20]. 0

If the graph is flexible, then this manifold describes the allowed flexings. At any
point in the manifold, the tangent space is exactly the null space of the Jacobian
of f. To show that flexings typically move in closed loops (actually, one-manifolds
diffeomorphic to the circle), we will need the flexings to remain entitely in our manifold
X. This can be ensured if the graph has enough independent edges. Enough means
more than can be independent in a lower-dimensional space, as the following theorem
demonstrates.

THEOREM 5.7. If G has more than S(n,d—1) independent edges, then for almost
all realizations p(G), the realization set of p(G) stays within X.

Proof. Assume the theorem is false. By the definition of X this means that the
realization set must include a point at which all the vertices lie in a (d—1)-dimensional
hyperplane. When this happens the edges can only constrain infinitesimal motions
within the hyperplane. The rows of the rigidity matrix describe these infinitesimal
constraints, so when the vertices lie in a hyperplane the rank of the rigidity matrix
can be no larger than S(n,d — 1). Since there are more than S(n,d — 1) independent
edges, this implies that f(p(G)) is a singular value, but by Theorem 5.5 this cannot
be the case for almost all realizations. O

We can finally prove that flexings typically move in closed loops.

THEOREM 5.8. If a graph G is connected, flerible, and has more than d + 1
vertices, then for almost all realizations p(G) the realization set of p(G) contains a
submanifold that is diffeomorphic to the circle.

Proof. Generate a new graph G’ from G by arbitrarily adding additional edges
until G' has S(n,d) — 1 independent edges. The realization set of p(G’) must be a
subset of the realization set of p(G). Since n > d + 1, it is easy to show that the
number of independent edges is now greater than S(n,d — 1). By Theorems 5.6 and
9.1 we know that for almost all realizations the realization set of p(G’) is a compact
manifold of dimension one. It is a well-known result from differential topology that
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such manifolds are diffeomorphic to the circle. 0

This finally leads us to the main result of this section.

THEOREM 5.9. If G is not redundantly rigid and G has more than d + 1 vertices,
then almost all realizations of G are not unique.

Proof. Assume the only interesting case, that G is rigid. Then the graph G must
have S(n, d) independent edges, and there is some edge e;; ; of G whose removal gener-
ates a flexible graph G’. By Theorem 5.8, for almost all realizations p the realization
set of p(G’) contains a submanifold diffeomorphic to the circle. The distance between
vertices ¢ and j will be a multivalued function for almost every point on this cir-
cle. The only distances that might not be multivalued are the extremal ones. When
a flexing reaches a realization that induces an extremal value between i and J, the
derivative of dzj is zero in the direction of the flex. In this case the realization is not
generic [32]. So almost all realizations do not induce extremal edge lengths. 0

Theorem 5.9 means that the example in Fig. 6 was not a fluke. Redundant rigidity
is a necessary condition for unique realizability.

5.1. Algorithms for redundant rigidity. How difficult is it to test for redun-
dant rigidity? A simplistic approach would use the algorithm for rigidity repeatedly,
removing one edge at a time. This approach parallelizes easily by simply running the
m different problems on independent sets of processors. Since rigidity testing was
shown to be in deterministic or random NC for all dimensions, redundant rigidity is
as well.

In one dimension redundant rigidity is equivalent to edge two-connectivity. This
property can be determined by looking for cut points of the graph, requiring O(m)
time [1].

For the two-dimensional case a simple modification of the rigidity testing algo-
rithm described in §2.2 can be employed. The rigidity algorithm grows a basis set of
independent edges one at a time by checking them against the existing independent
set. If a new edge is found to be independent of the existing set, then it is added.
Independence is determined by the success of a particular bipartite matching. If the
matching fails, then there must be some dependence among the edges. Identifying
and utilizing these dependencies will lead to an efficient redundant rigidity algorithm.

As in §2.2, we will denote by B(G) the bipartite graph constructed from G =
(V E). The current set of independent, basis edges is E, generating a subgraph

= (V, E }. When a new edge e is to be tested for independence, four copies of it
are added to G, generating G with its corresponding bipartite graph B(G). As we
saw in §2.2, if a complete bipartite matching exists in B(G), then e is independent
of E. For our current purposes we are interested in dependent edges and how they
contribute to redundant rigidity. Dependent edges fail to have complete matchings
in B(G). However, if we triple e instead of quadrupling it, generating G and B(G),
then Lemma 2.12 guarantees that B(G) always has a complete matching. So only a
single vertex in B(G) can go unmatched. This is important because of the following
general property of bipartite matching.

THEOREM 5.10. Let B = (V1,V5,&) be a bipartite graph with a matching from
Vi to V, involving all but one vertex from Vi, denoted by v. Also let V; be the subset
of Vi that 1s in the Hungarian tree built from v. Then if any vertex from V; is deleted
from B, the resulting graph will have a complete matching.

Proof. The removal of a vertex w from V; creates an unmatched vertex in Vs that
is reachable from v along an alternating path. o

Theorem 5.10 identifies which vertices of a bipartite graph can be removed to
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result in a perfect matching. For our purposes, these are vertices in B(G). which
correspond to edges of G. If any of these edges of G is removed, then the new edge e
will be independent of the remaining basis edges. That is, e can replace any of these
edges identified by the Hungarian tree, leaving the number of basis edges unchanged.
More formally, we have the following theorem.

THEOREM 5.11. In the rigidity algorithm, assume a new edge e is found to be not
independent of the current set of k independent edges. Let V| be the subset of vertices
of V1 that are in the Hungarian tree of the failed matching. Then if e replaces any of
the edges in Vi the resulting set of k edges is still independent.

Theorem 5.11 gives an efficient algorithm for redundant rigidity testing. An edge
is not independent of the current basis set if the bipartite matching fails. When this
happens the Hungarian tree identifies precisely which edges are dependent. Ali these
edges are redundant because any of them could be replaced by the new edge. In
the O(n?) algorithm from §2.2 a Laman subgraph is identified by this Hungarian tree.
Hence, any edge in the Laman subgraph is redundant. When the algorithm is finished,
if there is a basis edge that has not been merged into a larger Laman subgraph, then
it is not redundant and the graph is not redundantly rigid. Note that if the full graph
is not redundantly rigid, then the Laman subgraphs identified by this procedure are
redundantly rigid components. This takes essentially no more effort than testing for
rigidity, so two-dimensional redundant rigidity can be decided in O(n?) time.

In dimensions greater than two there is no graph theoretic characterization of
redundant rigidity. As in §2.2 an algorithm will have to randomly position the vertices
and then examine the rigidity matrix. Like the two-dimensional case, the basic idea
will be to build a set of independent edges one at a time, and then determine which
of them are redundant. Every time a new edge fails to be independent it supplies
information about the redundancy of some of the independent edges. If a full set of
redundant, independent edges are found, then the graph is redundantly rigid.

Begin by positioning the vertices randomly and constructing the rigidity matrix
M. The rigidity of the framework can be determined by performing a QR factorization
on MT to find its rank. This procedure will form an independent set of edges one
at a time. A new column is added if it is linearly independent of the current set of
k columns; otherwise it is discarded. A discarded column, corresponding to an edge
€, can be expressed as a linear combination of some set of the independent columns.
The discarded column could replace any of the columns in the linear combination that
forms it, without altering the span of the independent set.

How difficult is it to determine which of the current columns contribute to the
linear combination? Assume the algorithm has identified & independent columns of
M™ . Place these columns together to form an nd x k matrix Ag. The QR factorization
has been proceeding on these columns as they are identified, so there is a k x k
orthogonal matrix Q; and an ndx k upper triangular matrix Ry, satisfying Qx Ri = Ax.
If a new column b of M7 is linearly dependent upon the columns of A, then there
must be a vector ¢ satisfying Axc = QxRic = b, or alternately, Ryc = QFb. In the
course of the QR factorization the column b has been overwritten with Q1 b, so it is
easy to solve the upper triangular system for ¢. The nonzero elements of ¢ identify
which columns of A contribute to the linear combination composing b, that is, which
columns are redundant.

How much work does this take? There are O(m) triangular systems to solve, each
of which requires O(k?) operations, where k is always O(n). So the total additional
time is of the same order as the QR factorization itself, O(mn?). As in the two-
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dimensional case, the redundant rigidity of a graph can be determined by modifying
the rigidity algorithm without incurring substantial increased cost.

As was noted in §2.2, the rigidity matrix consists mostly of zeros. For large
problems this property should be exploited by using sparse matrix techniques. The
only real modification to the rigidity algorithm required to verify redundant rigidity
is a sequence of triangular solves. These can be done sparsely, so the entire algorithm

can be implemented in a sparse setting. An algorithm very similar to this has been
described by Coleman and Pothen [9].

6. Conclusion. Three necessary conditions for almost all realizations of a graph
to be unique in d dimensions have been derived. They are, in order of appearance,
rigidity, (d + 1)-connectivity, and redundant rigidity. The first condition is a trivial
consequence of the third so there are really only two independent criteria. However,
flexibility leads to a very different kind of nonuniqueness than lack of redundant
rigidity, so it is useful to think of them independently. Efficient algorithms for testing
each of these three conditions have been presented that deal solely with the underlying
graph, ignoring the edge lengths. The price for this convenience is that there are
combinations of edge lengths for which these conditions are not necessary. But these
counterexamples are very rare. For almost all realizations, a graph that violates one
of these conditions will have multiple satisfying realizations.

Establishing necessary conditions for a graph to have a unique realization makes
it possible to prune the initial graph before attempting the difficult task of finding
coordinates for the vertices. If the entire graph does not have a unique realization,
then it would be impossible to assign coordinates unambiguously. Instead, portions of
the graph that do satisfy the necessary criteria can be identified and positioned. Not
only does this alleviate the confusion of a poorly posed problem, but since the cost
of finding the realization can grow exponentially with the size of the graph, it should
be possible to save time by positioning a sequence of smaller subgraphs instead of the
original full one.

Following this idea to its logical conclusion, even if the original graph has a
unique realization it might be possible to position subgraphs first and then piece
them together. Since the running time grows rapidly with problem size, this could
lead to a substantial reduction of computational effort. In fact, an approach to the
molecule problem using precisely this approach has recently been proposed [21]. For
this approach to be infallible we would need to develop sufficiency conditions for a
graph to have a unique realization. Unfortunately, the necessary conditions developed
in this paper are not sufficient. Connelly has identified a class of bipartite graphs that

satisfy the conditions presented here, while still allowing multiple realizations in high-
dimensional spaces [10]. There are no graphs in this class in one or two dimensions,
and Kj; 5 is the only example in three-space. A complete characterization of uniquely
realizable graphs remains an open problem. In fact, it is also unknown whether
uniqueness itself is a generic property. That is, if a single generic realization of a
graph is unique, are almost all realizations unique?

Acknowledgments. The ideas in this paper have been developed and refined in
innumerable discussions with Tom Coleman and Bob Connelly.
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