Kinematics -- the study of motion without regard to the forces that cause it.

Forward: \(A = f(\alpha, \beta) \)

Inverse: \(\alpha, \beta = f^{-1}(A) \)

draw graphics
specify fewer degrees of freedom
more intuitive control of dof
contact with the environment
calculate desired joint angles for control
User Control of Kinematic Characters

Joint Space
position all joints--fine level of control

Cartesian Space
specify environmental interactions easily
most dof computed automatically
Forward Kinematics

\[x = L_1 \cos \theta_1 + L_2 \cos (\theta_1 + \theta_2) \]
\[y = L_1 \sin \theta_1 + L_2 \sin (\theta_1 + \theta_2) \]

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0 \\
 0 \\
 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \theta_1 \\
 \theta_2
\end{bmatrix} =
\begin{bmatrix}
 \text{rot } \theta_1 \\
 \text{trans } L_1 \\
 \text{rot } \theta_2 \\
 \text{trans } L_2
\end{bmatrix}
\]
Inverse Kinematics

balance -- keep center-of-mass over support polygon

control -- position vaulter’s hands on line between shoulder and vault

control -- compute knee angles that will give the runner the right leg length
Inverse Kinematics

\[\theta_2 = \cos \left(\frac{x^2 + y^2 - L_1^2 - L_2^2}{2L_1L_2} \right) \]

\[\theta_1 = -\left(L_2 \sin \theta_2 \right)x + \left(L_1 + L_2 \cos \theta_2 \right)y \]

\[\frac{(L_2 \sin \theta_2)y + (L_1 + L_2 \cos \theta_2)x}{(L_2 \sin \theta_2)y + (L_1 + L_2 \cos \theta_2)x} \]

\[\theta = f^{-1}(x) \]
What makes IK hard? -- many dof

\[
\begin{bmatrix}
x_x & y_x & z_x & p_x \\
x_y & y_y & z_y & p_y \\
x_z & y_z & z_z & p_z \\
0 & 0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
a_x & b_x & c_x & d_x \\
a_y & b_y & c_y & d_y \\
a_z & b_z & c_z & d_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

a, b, c, d are functions of (θ₁,...θ₆)

x, y, z, p are desired orientation, position of end effector

12 equations, 6 unknowns (θ₁,...θ₆)

only 3 of the 9 rotation terms are independent non-linear, transcendental equations
What makes IK hard? -- Redundancy

Choose solution that is "closest" to current configuration

move outermost links the most

energy minimization

minimum time
What makes IK hard? -- singularities

ill-conditioned near singularities

high state space velocities for low cartesian velocities
What makes IK hard?

goal of "natural looking" motion

minimum jerk

equilibrium point trajectories
The Jacobian

\[f(\theta) = x \]

\(x \) is of dimension \(n \) (generally 6)

\(\theta \) is of dimension \(m \) (# of dof)

Jacobian is the \(n \times m \) matrix relating differential changes of \(\theta \) (\(d\theta \)) to differential changes of \(x \) (\(dx \))

\[J(\theta) \, d\theta = dx \]

where the \(ij \)th element of \(J \) is

\[J_{ij} = \frac{\delta f_i}{\delta x_j} \]

Jacobian maps velocities in state space to velocities in cartesian space
Solutions
no solution (outside workspace, too few dof)
multiple solutions (redundancy)
single solution

Methods
closed form
iterative
IK and the Jacobian

\[\theta = f^{-1}(x) \]
\[dx = J \, d\theta \]
\[d\theta = J^{-1} \, dx \]

\[\theta_{k+1} = \theta_k + \Delta t \, J^{-1} \, dx \]

linearize about \(\theta_k \)
Inverting the Jacobian

J is $n \times m$— not square in general
compute pseudo-inverse

Singularities cause the rank of the Jacobian to change

Damped Least Squares:
find solution that minimizes

$$||J - dx||^2 + \lambda^2 ||d\theta||^2$$

tracking error + joint velocities
Non–linear Optimization

Zhao and Badler, TOG 1994

solution is a (local) minima of some non–linear function

objective function

constraints

non–linear optimization routine
Objective Function

position and orientation of end effector

\[P(x) = (p - x)^2 \]
\[\nabla_x P(r) = 2(x - p) \]

or just position, or just orientation, or aiming at
Formulation

\[
\begin{align*}
\text{minimize } & \ G(\theta) \\
\text{subject to } & \ a_i \theta = b_i \\
& \ a_i \theta < b_i
\end{align*}
\]

Solution

\(G(\theta) \) and \(\nabla G(\theta) \)

use a standard numerical technique to solve