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Abstract.  Our ability to simultaneously measure the expression levels of thou-
sands of genes in biological samples is providing important new opportunities 
for improving the diagnosis, prevention, and treatment of common diseases. 
However, new technologies such as DNA microarrays are generating new chal-
lenges for variable selection and statistical modeling.  In response to these chal-
lenges, a genetic programming-based strategy called symbolic discriminant 
analysis (SDA) for the automatic selection of gene expression variables and 
mathematical functions for statistical modeling of clinical endpoints has been 
developed.  The initial development and evaluation of SDA has focused on a 
function set consisting of only the four basic arithmetic operators.  The goal of 
the present study is to evaluate whether adding more complex operators such as 
square root to the function set improves SDA modeling of microarray data.  
The results presented in this paper demonstrate that adding complex functions 
to the terminal set significantly improves SDA modeling by reducing model 
size and, in some cases, reducing classification error and runtime.  We antici-
pate SDA will be an important new evolutionary computation tool to be added 
to the repertoire of methods for the analysis of microarray data.  

1   Introduction 

Biomedicine is at a critical inflection point in the relationship between the amount of 
data it is possible to collect and our understanding of that data.  For the first time in 
history, we are undergoing an information explosion and an understanding implosion.  
That is, new technologies are making it possible to collect data at a much faster rate 
than we can understand it.  For example, DNA microarray technology facilitates the 
simultaneous measurement of the expression levels of tens of thousands of genes in 
biological samples [1].  As a result of this explosion of genetic information, bioin-
formatics and computational biology are faced with two important challenges.  First, 
what are the most appropriate statistical and computational modeling approaches for 
relating gene expression data with clinical endpoints?  Second, what are the most 
appropriate computational search strategies for identifying combinations of gene 
expression variables from an effectively infinite search space? 

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



2278         D.M. Reif et al. 
 

 

In response to these challenges, Moore et al. [2,3] have developed a machine 
learning strategy called symbolic discriminant analysis (SDA) for the automatic selec-
tion of gene expression variables and mathematical functions for statistical modeling 
of clinical endpoints.  One advantage of this approach is that it uses the parallel 
search features of genetic programming [4], or GP, that are desirable for microarray 
data analysis [5].  Another important advantage is that no a priori assumptions are 
made about the functional form of the statistical model.  This is important if the rela-
tionships between gene expression variables and clinical endpoints are complex and 
nonlinear, with interactions playing a more important role than the independent main 
effects of each gene.  It is anticipated that such complex interactions among genes are 
common and play an important role in susceptibility to multifactorial diseases [6,7].  
Indeed, applications of SDA to identifying patterns of gene expression that are asso-
ciated with human leukemia and autoimmune diseases has revealed nonadditive rela-
tionships between gene expression variables that would not have been identified us-
ing a parametric statistical approach such as linear discriminant analysis [2,3,8]. 

The initial development of SDA has focused on a function set consisting of only 
four arithmetic functions.  The goal of the present study is to evaluate whether adding 
complex functions such as square root to the terminal set improves SDA modeling.  
Adding complex functions will be considered an improvement if 1) they significantly 
decrease classification error of SDA models, 2) they significantly reduce the size of 
SDA models in terms of the overall number of nodes and the node depth, and/or 3) 
they significantly reduce the computational time required to complete a certain num-
ber of GP generations.  For this study, we evaluate the addition of complex functions 
using real microarray data from human autoimmune disease that has been previously 
analyzed using SDA with just arithmetic functions [3]. We begin in Section 2 with an 
overview of the SDA approach.  In Section 3, we provide an overview of the microar-
ray data.  In Section 4, we describe the details of the GP.  In Section 5, we describe 
the experimental design and statistical analysis.  A summary and discussion of the 
results are presented in Sections 6 and 7 respectively.  The results presented in this 
paper demonstrate that adding complex functions to the terminal set significantly 
reduces the size of SDA models and, in some cases, reduces the GP runtime and clas-
sification error. 

2  An Overview of Symbolic Discriminant Analysis 

2.1  Introduction to Symbolic Discriminant Analysis 

An important limitation of parametric statistical approaches such as linear discrimi-
nant analysis and logistic regression is the need to pre-specify the functional form of 
the model.  To address this limitation, Moore et al. [2,3] developed SDA for auto-
matically identifying the optimal functional form and coefficients of discriminant 
functions that may be linear or nonlinear.  This is accomplished by providing a list of 
mathematical functions and a list of explanatory variables that can be used to build 
discriminant scores.  Similar to symbolic regression [4], GP is utilized to perform a 
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parallel search for a combination of functions and variables that optimally discrimi-
nate between two endpoint groups.  GP permits the automatic discovery of symbolic 
discriminant functions that can take any form defined by the mathematical operators 
provided.  GP builds symbolic discriminant functions using expression trees.  Each 
expression tree has a mathematical function at the root node and all other nodes.  
Terminals in the expression tree are comprised of gene expression variables and con-
stants.  The primary advantage of this approach is that the functional form of the 
statistical model does not need to be pre-specified.  This is important for the identifi-
cation of combinations of expressed genes whose relationship with the endpoint of 
interest may be non-additive or nonlinear [6,7]. 

In its first implementation, SDA used leave one out cross-validation (LOOCV) to 
estimate the classification and prediction error of SDA models [2].  With LOOCV, 
each subject is systematically left out of the SDA analysis as an independent data 
point (i.e. the testing set) used to assess the predictive accuracy of the SDA model.  
Thus, SDA is run on a subset of the data (i.e. the training set) comprised of n-1 sub-
jects.  The model that classifies subjects in the training set with minimum error is 
selected and then used to predict the group membership of the single independent 
testing subject.  This is repeated for each of the possible training sets yielding n SDA 
models.  Moore et al. [2] selected LOOCV because it is an unbiased estimator of 
model error [9].  However, it should be noted that LOOCV may have a large variance 
due to similarity of the training datasets [9,10] and the relatively small sample sizes 
that are common with microarray experiments.  It is possible to reduce the variance 
using perhaps 5-fold or 10-fold cross-validation.  However, these procedures may 
lead to biased estimates and may not be practical when the sample size is small [9]. 

In this first implementation of SDA, models were selected that had low classifi-
cation and prediction errors as evaluated using LOOCV.  The end result of this initial 
implementation of SDA is an ensemble of models from separate cross validation 
divisions of the data.  In fact, over k runs of n-fold cross validation, there are a maxi-
mum of kn possible models generated assuming a ‘best’ model for each interval is 
identifiable.  This is a common result when GP is used with cross-validation methods 
because of its stochastic elements.  In response to this, Moore et al. [3] and Moore [8] 
developed a strategy for SDA modeling that involves evaluating the consistency with 
which each gene was identified across each of the LOOCV trials.  This new statistic is 
referred to as cross validation consistency (CVC) and is similar to the approach taken 
by Ritchie et al. [11] for the identification of gene-gene interactions in epidemiologi-
cal study designs.  The idea here is that genes that are important for discriminating 
between biological or clinical endpoint groups should consistently be identified 
regardless of the LOOCV dataset.  The number of times each gene is identified is 
counted and this value compared to the value expected 5% of the time by chance 
were the null hypothesis of no association true.  This empirical decision rule is estab-
lished by permuting the data 1,000 or more times and repeating SDA analysis on each 
permuted dataset as described above.  In this manner, a list of statistically significant 
genes derived from SDA can be compiled. 

Once a list of statistically significant genes or variables is compiled, a symbolic 
discriminant function that maximally describes the entire dataset can then be derived.  
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This is accomplished by rerunning SDA multiple times on the entire dataset using 
only the list of statistically significant candidate genes identified in the CVC analysis.  
A symbolic discriminant function that maximizes the distance between distributions 
of symbolic discriminant scores between the two endpoint groups is selected.  In this 
manner, a single 'best' symbolic discriminant function can be identified and used for 
prediction in independent datasets.  This modeling process is designed to limit false-
positive results and provide an objective way of dealing with different GP results in 
different cross validation divisions of the data.  Moore [8] has suggested this ap-
proach may be useful for other GP-based modeling strategies. 

2.2   Advantages of Symbolic Discriminant Analysis 

As discussed by Moore et al. [3], there are two important advantages of SDA over 
traditional multivariate methods such as linear discriminant analysis [12-14].  First, 
SDA does not pre-specify the functional form of the model.  For example, with linear 
discriminant analysis, the discriminant function must take the form of an additive 
linear equation.  This limits the models to linear additive functions of the explanatory 
variables.  With SDA, the basic mathematical building blocks are defined and then 
flexibly combined with explanatory variables to derive the best discriminant function. 

The second advantage of SDA is the automatic selection of variables from a list 
of thousands.  Traditional model fitting involves stepwise procedures that enter a 
variable into the model and then keep it in the model if it has statistically significant 
marginal or independent main effect [15].  Interaction terms are only evaluated for 
those variables that are already in the model.  This deals with the combinatorial prob-
lem of selecting variables, however, variables whose effects are primarily through 
interactions with other variables will be missed.  This may be an unreasonable as-
sumption for most complex biological systems.  The SDA approach employs a paral-
lel machine learning approach to selecting variables that permits interactions to be 
modeled in the absence of marginal effects.  For example, both of the SDA models of 
human autoimmune disease identified by Moore et al. [3] involve multiplicative rela-
tionships among the gene expression variables (see Figure 1 below).  No one variable 
contributes to the discriminant function independently of the others.  For comparison, 
Moore et al. [3] analyzed the data using stepwise LDA [14].  Only one of the genes 
was identified by both SDA and LDA, and this was one of the genes that had a statis-
tically significant main effect in a univariate analysis.  Thus, SDA identified a set of 
genes that was not identified by LDA. 

2.3   Disadvantages of Symbolic Discriminant Analysis 

Although SDA has several important advantages over traditional multivariate statisti-
cal methods, there are several disadvantages [3].  First, there is no guarantee that GP 
will find the optimal solution.  Heuristic searches tend to sacrifice finding an optimal 
solution in favor of tractability [16].  Implementing an evolutionary algorithm in 
parallel certainly improves the chances of finding an optimal solution [17], but it is 
not a certainty.  This is due to the stochastic nature of GP.  The initial populations of 
solutions are randomly generated and the recombination and mutation occurs at ran- 
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Fig. 1.  Symbolic discriminant functions of gene expression variables in the form of expression 
trees and mathematical equations for discriminating rheumatoid arthritis from normal (A) and 
systemic lupus erythematosus from normal (B) [3]. 
 
 
dom positions in the binary expression trees.  Further, there may be a stochastic com-
ponent to how the highest fit individuals are selected.  For these reasons, evolutionary 
algorithms should be run multiple times with multiple parallel populations. 

A second disadvantage of this approach is the computational requirement.  LDA 
can be performed on a standard desktop workstation while SDA requires a parallel 
computer cluster for optimal performance.  When the number of genes to be evalu-
ated is large, the power of a parallel computer is required.  Although such systems are 
fairly inexpensive to build, the time investment to establish and manage a parallel 
computing farm may be prohibitive to some. 

A third disadvantage is the complexity of the symbolic discriminant functions 
obtained.  An attractive feature of LDA is the simplicity of the models, which facili-
tates interpretation.  SDA has the potential to generate rather large models. 

The goal of the present study is to evaluate whether adding more complex func-
tions to the terminal set overcomes some of the disadvantages of SDA described by 
Moore et al. [3].  Specifically, does SDA with complex functions find better models 
faster?  Also, are the SDA models identified smaller? 
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3    An Overview of the Microarray Data Used 

A detailed description of the data is provided by Maas et al. [20].  Briefly, gene ex-
pression was measured in peripheral blood mononuclear cells (PBMC) from normal 
individuals (n=12) and patients with rheumatoid arthritis (RA) (n=7) or systemic 
lupus erythematosus (SLE) (n=9) using cDNA microarrays.  Normal individuals (i.e. 
controls) were examined before and after routine immunization with flu vaccine to 
allow comparison of normal immune response genes to those that are differentially 
regulated in autoimmune disease.  Reproducibility of the experimental method was 
first established by performing four hybridizations to separate microarrays using the 
same RNA sample.  Data were normalized against a common control and linear re-
gression analysis was utilized to estimate reproducibility.  All hybridizations were 
highly reproducible with R2 values ranging from 0.87 to 0.99.  In the present study, 
we used SDA to identify symbolic discriminant functions that differentiate RA from 
normal and SLE from normal. 

4    Details of the Genetic Programming (GP) Strategy 

We used genetic programming or GP [4] in the present study to optimize the selection 
of gene expression variables and mathematical operators for building symbolic dis-
criminant functions.  We implemented the GP optimization of SDA using the lil-gp 
software package [18] modified to operate in parallel using the parallel virtual ma-
chine (PVM) message-passing library.  The parallel GP was run on two processors of 
a 110-processor Beowulf-style parallel computer system running the Linux operating 
system.  Each node has two Pentium III 600Mhz processors, 256 Mb RAM, a net-
work card, and a 10 Gb hard drive.  A total of two demes were used each consisting 
of 100 individuals for total population size of 200.  We allowed the GP to run a total 
of 100 iterations with migration between each population every 25 iterations.  A re-
combination frequency of 0.9 was used along with a reproduction rate of 0.1.  Table 1 
summarizes the GP parameters. 

Table 1. The GP parameter settings for the SDA analyses. 

Objective Identify optimal SDA models 

Fitness function Classification error 

Number of runs 100 per dataset 

Stopping criteria Classification error = 0 

Population size 200 

Number of demes 2 

Generations 100 

Selection Fitness proportionate 

Crossover probability 0.9 

Reproduction probability 0.1 
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5    Experimental Design and Data Analysis 

SDA was run with and without complex functions in two study designs.  In the first 
study design, we compared normal samples and rheumatoid arthritis (RA) samples.   
In the second study design, we compared normal samples and systemic lupus erythe-
matosus (SLE) samples.  For each of the two study designs, we ran SDA a total of 
100 times with just the basic arithmetic operators in the terminal set (+, -, *, /).  Next, 
we ran SDA a total of 100 times for each comparison with a set of complex functions 
in addition to the basic arithmetic operators in the terminal set.  The complex function 
set included square, square root, logarithm, exponential, absolute value, sine, and 
cosine.  The goal of the statistical analysis was to determine whether the addition of 
more complex functions to the terminal set 1) significantly decreases the classifica-
tion error of SDA models as assessed by leave one out cross validation (LOOCV), 2) 
significantly reduces the size of SDA models in terms of the overall number of nodes 
and the node depth, and/or 3) significantly reduces the computational time required to 
complete a certain number of GP generations.  Across the 100 runs in each study 
design, we specifically compared the average classification error as assessed by 
LOOCV, the average runtime of the GP, the average node count, and the average 
node depth.  In addition, we compared the average number of gene expression vari-
ables, constants, and mathematical functions in the best SDA models.  A one-tailed 
Student’s t-test was used to test the null hypothesis that complex functions do not 
decrease classification error, reduce SDA model size, or reduce computation time.  
When the assumptions of normality or equal variance were violated, a nonparametric 
Wilcoxon rank-sum test was carried out.  All results were considered statistically 
significant at the 0.05 level. 

6    Results 

Table 2 summarizes the average classification error, GP runtime, node count, node 
depth, number of gene expression variables, number of constants, and number of 
mathematical functions in SDA models with and without complex functions for the 
RA vs. normal comparison.  Table 3 summarizes the same information for the SLE 
vs. normal comparison.  For both comparisons, the majority of measures were signifi-
cantly improved with the addition of complex functions to the terminal set.  For the 
RA vs. normal comparison, only classification error was not improved.  For the SLE 
vs. normal comparison, only GP runtime was not improved.  The most striking differ-
ence is that the SDA models are significantly smaller when complex functions are 
used. 
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Table 2.  Comparison of mean SDA performance measures for modeling with and without 
complex functions in the terminal set (RA vs. normal). 

Arithmetic Functions Complex Functions 
Performance Measure n mean n mean 

p-
value 

Classification error 100 <.01 100 <.01 .5656 
GP runtime (sec.) 100 67.04 100 66.80 <.0001 
Node count 100 37.79 100 17.31 <.0001 
Node depth 100 6.71 100 7.64 <.0001 
Number of variables 100 4.83 100 2.37 <.0001 
Number of constants 100 17.21 100 4.65 <.0001 
Number of functions 100 16.21 100 10.17 <.0001 

 

Table 3.  Comparison of mean SDA performance measures for modeling with and without 
complex functions in the terminal set (SLE vs. normal). 

Arithmetic Functions Complex Functions 
Performance Measure n mean n mean 

p-
value 

Classification error 100 .06 100 .03 <.0001 
GP runtime (sec.) 100 73.05 100 73.09 .5372 
Node count 100 40.46 100 24.51 <.0001 
Node depth 100 6.95 100 9.72 <.0001 
Number of variables 100 5.51 100 4.10 <.0001 
Number of constants 100 18.21 100 6.28 <.0001 
Number of functions 100 17.21 100 14.07 <.0001 

 

7    Discussion 

Symbolic discriminant analysis (SDA) was developed as an attempt to deal with the 
challenges of selecting subsets of gene expression variables and features that facilitate 
the classification and prediction of biological and clinical endpoints [2,3,8].  Motiva-
tion for the development of SDA came from the limitations of traditional parametric 
approaches such as linear discriminant analysis and logistic regression.  Application 
of SDA to high-dimensional microarray data from several human diseases has dem-
onstrated that this approach is capable of identifying biologically relevant genes from 
among thousands of candidates.  Further, because SDA makes no assumptions about 
the functional form of the model, it is capable of modeling complex nonlinear rela-
tionships between gene expression variables and clinical endpoints [2,3,8]. The initial 
studies using SDA used only the four basic arithmetic functions in the terminal set.  
The goal of the present study is to determine whether adding more complex functions 
such as logarithm and square root improve SDA modeling of microarray data.  Add-
ing complex function was considered an improvement if 1) they significantly de-
crease the classification error of SDA models as assessed by leave one out cross vali-
dation, 2) they significantly reduce the size of SDA models in terms of the overall 
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number of nodes and the node depth, and/or 3) they significantly reduce the computa-
tional time required to complete a certain number of GP generations.  The results 
presented in this paper demonstrate that adding complex functions to the terminal set 
significantly improves SDA modeling by reducing model size and, in some cases, 
reducing classification error and runtime.  Thus, the primary conclusion of this study 
is that a richer set of functions should be included in the terminal set. 

The results of this study address several of the primary disadvantages of the SDA 
approach outlined in Section 2.3 and by Moore et al. [3].  First, the finding that add-
ing complex functions reduces model size and runtime is important since a primary 
concern is that the search space is rugged and effectively infinite [5].  Further, there is 
no guarantee that GP will identify an optimal solution.  Thus, anything that can be 
done to reduce the size of the search space without compromising the flexibility and 
power of the modeling approach is desirable.  The availability of complex functions 
in the terminal set reduces the search space that would have been necessary to con-
struct the same complex functions from the basic arithmetic operators.  In both com-
parisons, the average number of nodes in the expression trees of the best SDA models 
was reduced by approximately 50%. 

The results of this study also address the disadvantage of increased computational 
time associated with SDA modeling.  It is certainly true that SDA is more computa-
tionally intensive than methods such as LDA.  In the RA versus normal comparison, 
the GP runtime was significantly less when complex functions were used.  A time 
saving of even seconds for a single run can be very important when computational 
methods such as permutation testing are used.  Indeed, Moore et al. [3] propose per-
mutation testing as a strategy for carrying our formal hypothesis testing with the SDA 
approach.  This entails running SDA 1000 or more times on randomized datasets to 
create an empirical distribution of the test statistic being used under the null hypothe-
sis of no association.  Thus, a time savings of even one second per run would save 
1000 seconds or approximately 16.7 minutes.  A time savings of one minute would 
save 16.7 hours.  These time savings could be very important, especially if computa-
tional resources are at a minimum or if many such runs need to performed on many 
different datasets. 

The final disadvantage addressed by this study is model complexity.  As with any 
GP-based modeling procedure, SDA models can be quite large and complicated.  We 
demonstrated that adding complex functions significantly reduced model size in both 
comparisons.  Smaller models, even with more complex functions, are easier to inter-
pret because there are fewer variable interrelationships that need to be interpreted.  
Indeed, in both comparisons, the average number of variables included in the optimal 
SDA models was reduced by approximately 25-50% with the addition of complex 
functions.  Further, the average number of constants and functions was also signifi-
cantly reduced. 

In the present study, we only carried out the very first few steps in the SDA mod-
eling process outlined in Section 2 and by Moore et al. [3] in order to compare the 
features of the models during cross validation.  In future studies, we will carry out the 
full SDA analysis of this dataset and others using the more complex functions.  This 
will allow us to compare the final model obtained with those found previously (see 
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Figure 1 for example).  Additionally, it will be very important to assess the prediction 
error of models with complex functions.  This will be possible when multiple, inde-
pendently collected datasets are available from the same study.  We anticipate SDA 
models with complex functions will have a lower prediction error because the overall 
models are likely to be smaller and simpler.  However, this is a working hypothesis 
that still needs to be tested. 

As suggested by Moore and Parker [5], GP-based modeling strategies are ex-
pected to have a large impact on the statistical and computational analysis of high-
dimensional datasets derived from high-throughput technologies such as DNA mi-
croarrays.  The inherent parallel or beam search strategy used by GP may be neces-
sary for traversing effectively infinite rugged search spaces.  Indeed, GP is finding its 
way into a number of bioinformatics and computational biology studies [19].  This 
study significantly improves SDA modeling through the addition of complex func-
tions to the terminal set.  We anticipate SDA will continue to be an important meth-
odology for the analysis of microarray data. 
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