CATS (Coordinates of Atoms by Taylor Series): Protein design with backbone flexibility in all locally feasible directions,

by M. Hallen, and B. R. Donald.

ISMB 2017, and
Bioinformatics (2017) 33 (14): i5-i12.
DOI: https://doi.org/10.1093/bioinformatics/btx277

Abstract:

Motivation: When proteins mutate or bind to ligands, their backbones often move significantly, especially in loop regions. Computational protein design algorithms must model these motions in order to accurately optimize protein stability and binding affinity. However, methods for backbone conformational search in design have been much more limited than for sidechain conformational search. This is especially true for combinatorial protein design algorithms, which aim to search a large sequence space efficiently and thus cannot rely on temporal simulation of each candidate sequence.

Results: We alleviate this difficulty with a new parameterization of backbone conformational space, which represents all degrees of freedom of a specified segment of protein chain that maintain valid bonding geometry (by maintaining the original bond lengths and angles and ω dihedrals). In order to search this space, we present an efficient algorithm, CATS, for computing atomic coordinates as a function of our new continuous backbone internal coordinates. CATS generalizes the iMinDEE and EPIC protein design algorithms, which model continuous flexibility in sidechain dihedrals, to model continuous, appropriately localized flexibility in the backbone dihedrals φ and ψ as well. We show using 81 test cases based on 29 different protein structures that CATS finds sequences and conformations that are significantly lower in energy than methods with less or no backbone flexibility do. In particular, we show that CATS can model the viability of an antibody mutation known experimentally to increase affinity, but that appears sterically infeasible when modeled with less or no backbone flexibility.

Supplementary information:Supplementary data are available at Bioinformatics online.