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ABSTRACT

Protein design algorithms that model continuous sidechain flexibility and conformational en-
sembles better approximate the in vitro and in vivo behavior of proteins. The previous state of the
art, iMinDEE-A*-K*, computes provable e-approximations to partition functions of protein
states (e.g., bound vs. unbound) by computing provable, admissible pairwise-minimized energy
lower bounds on protein conformations, and using the A* enumeration algorithm to return a
gap-free list of lowest-energy conformations. iMinDEE-A*-K* runs in time sublinear in the
number of conformations, but can be trapped in loosely-bounded, low-energy conformational
wells containing many conformations with highly similar energies. That is, iMinDEE-A*-K* is
unable to exploit the correlation between protein conformation and energy: similar conforma-
tions often have similar energy. We introduce two new concepts that exploit this correlation:
Minimization-Aware Enumeration and Recursive K*. We combine these two insights into a
novel algorithm, Minimization-Aware Recursive K* (MARK*), which tightens bounds not on
single conformations, but instead on distinct regions of the conformation space. We compare the
performance of iMinDEE-A*-K* versus MARK* by running the Branch and Bound over K*
(BBK*) algorithm, which provably returns sequences in order of decreasing K* score, using
either iMinDEE-A*-K* or MARK* to approximate partition functions. We show on 200 design
problems that MARK* not only enumerates and minimizes vastly fewer conformations than the
previous state of the art, but also runs up to 2 orders of magnitude faster. Finally, we show that
MARK* not only efficiently approximates the partition function, but also provably approximates
the energy landscape. To our knowledge, MARK* is the first algorithm to do so. We use MARK* to
analyze the change in energy landscape of the bound and unbound states of an HIV-1 capsid
protein C-terminal domain in complex with a camelid VHH, and measure the change in con-
formational entropy induced by binding. Thus, MARK* both accelerates existing designs and
offers new capabilities not possible with previous algorithms.
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1. INTRODUCTION

The objectives of computational structure-based protein design algorithms are (1) to accurately

calculate properties of a protein or protein complex (e.g., stability, binding affinity, etc.) and (2) to

efficiently search for optimal sequences given an objective function defined on these properties. These

algorithms search over a space defined by a user-specified input model (i.e., a structural model, allowed

sidechain and backbone flexibility, allowed mutations, energy function, etc.). Designs for ensemble-average,

macromolecular properties such as binding affinity and stability are more biophysically accurate when

modeling thermodynamic, conformational ensembles (Gilson et al., 1997; Lilien et al., 2005; Georgiev et al.,

2008a,b; Chen et al., 2009; Sciretti et al., 2009; Roberts et al., 2012; Tzeng and Kalodimos, 2012; Silver et al.,

2013). However, accurately modeling these ensembles can be challenging: the space of possible confor-

mations available in vitro and in vivo to a protein can be massive, and furthermore grows exponentially with

the number of residues.

Various simplifications to the input model and the search methodology have been used to reduce the

complexity of this problem, of which we discuss three: (1) discretized, rigid sidechain and backbone

flexibility; (2) design to a single, static global minimum energy conformation (GMEC); and (3) non-

provable search over possible conformations and sequences.

(1) Although amino acid sidechains are continuously flexible, sidechains are often modeled as discrete,

frequently observed low-energy states called rotational isomers, or rotamers (Lovell et al., 2000). Fur-

thermore, protein backbone flexibility is frequently modeled as fixed, or restricted to a small set of discrete

alternate conformations (Leaver-Fay et al., 2011; Traoré et al., 2013; Simoncini et al., 2015; Viricel et al.,

2016). Designs made with these simplifications do not model small, commonly observed sidechain and

backbone movements, much less larger structural rearrangements. Even under these simplifications, cal-

culating the partition function for a protein remains #P-hard (Valiant, 1979; Nisonoff, 2015; Viricel et al.,

2016). Moreover, the conformation space grows exponentially with the number of residues.

(2) As a result, many design algorithms optimize the energy of a single static GMEC structure (Dahiyat

and Mayo, 1997; Leach and Lemon, 1998; Chazelle et al., 2004; Georgiev et al., 2006; Traoré et al., 2013;

Hallen et al., 2015, 2017). GMEC-based algorithms do not model conformational entropy, which can

contribute significantly to protein structure and function (Frederick et al., 2007; Fleishman et al., 2011), and

as a result can overlook thermodynamically favorable sequences (Roberts et al., 2012).

(3) Finally, some algorithms attempt to estimate the partition function by stochastically sampling the

conformation space for low-energy microstates (Lee and Subbiah, 1991; Kuhlman and Baker, 2000;

Leaver-Fay et al., 2011). These algorithms provide no guarantees on the quality of the lowest energy

conformation returned, much less on the quality of the approximation of the overall partition function.

Indeed, Simoncini et al. (2015) demonstrated that as the size of the search space increases, the probability

that stochastic methods find even the GMEC falls rapidly to zero. Furthermore, because these methods are

nondeterministic, it is profoundly difficult to deconvolve methodological error (i.e., undersampling) from

input model error (Donald, 2011; Gainza et al., 2016).

Algorithms distributed in the osprey (Hallen et al., 2018) package efficiently solve protein design problems

without the mentioned simplifications, provably returning the optimal sequences and conformations without

sacrificing accuracy. osprey models not only continuous sidechain flexibility (Georgiev et al., 2008b; Gainza

et al., 2012; Hallen et al., 2015, 2017), but also discrete and continuous backbone flexibility (Georgiev and

Donald, 2007; Georgiev et al., 2008a; Hallen et al., 2013; Hallen and Donald, 2017).

Additionally, the branch and bound over K* (BBK*) algorithm (Ojewole et al., 2018) provably returns

protein sequences in order of decreasing binding affinity and runs in time sublinear in the number of

sequences. These algorithms have been used to prospectively predict drug resistance (Frey et al., 2010;

Reeve et al., 2015; Ojewole et al., 2017) and design enzymes (Lilien et al., 2005; Stevens et al., 2006;

Georgiev and Donald, 2007; Georgiev et al., 2008b; Chen et al., 2009), new drugs (Gorczynski et al., 2007),

peptide inhibitors of protein–protein interactions (Roberts et al., 2012), epitope-specific antibody probes

(Georgiev et al., 2012), and broadly neutralizing antibodies (Georgiev et al., 2014; Rudicell et al., 2014).
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These designs have been experimentally validated in vitro, some in vivo, and one designed anti-HIV

broadly neutralizing antibody, VRC07-523LS, is currently in nine clinical trials (ClinicalTrials.gov, 2018).

The K* algorithm in osprey estimates binding affinity with the K* score (Lilien et al., 2005), a ratio of e-
approximate Boltzmann-weighted partition functions for bound and unbound states. These partition

functions are computed by combining an admissible lower bound on conformational energy with the A*

search algorithm to quickly and provably enumerate a gap-free list of the lowest energy conformations

(Hart et al., 1968; Leach and Lemon, 1998; Roberts et al., 2015). We will refer to algorithms that compute

K* scores using A* as A*-K* algorithms.

Although significantly more efficient than exhaustive enumeration, A*-K* algorithms are guaranteed to

return the GMEC first and, therefore, focus on efficiently finding low-energy conformations. However, a

GMEC-first enumeration strategy may not efficiently approximate the full partition function. Modeling

continuous flexibility further compounds the difficulties of partition function approximation. Previous A*-

K* algorithms (Georgiev et al., 2008b; Gainza et al., 2012) that incorporate continuous flexibility, such as

iMinDEE-A*-K* (Gainza et al., 2012), enumerate conformations in order of energy lower bounds on the

minimized energy. However, when these bounds are loose, iMinDEE-A*-K* must perform many com-

putationally expensive full minimizations (wherein all mutable and flexible residues minimize simulta-

neously) to provably approximate the partition function. In the worst case, A*-K* algorithms must

minimize a combinatorial number of conformations that are loosely bounded at the same residues.

To overcome the limitations of A*-K*, we present a novel algorithm that combines two new concepts:

Recursive K* (RK*) and Minimization-Aware Enumeration (MAE). RK* prioritizes low-entropy regions of

the energy landscape, instead of prioritizing low-energy conformations (Fig. 2D vs. 2C), and MAE tightens

bounds on a combinatorial number of conformationally similar, loosely bounded conformations (Fig. 2E).

This combination, Minimization-Aware Recursive K* (MARK*), achieves significant efficiency and run-

time improvements for large protein design problems that confound previous A*-K* algorithms, as well as

algorithms that call A*-K* algorithms as a subroutine, such as BBK* (Ojewole et al., 2018; Fig. 1). Where

BBK* would previously call iMinDEE-A*-K* to tightly approximate the partition function of a sequence,

MARK* can be directly substituted. As such, we were able to combine the multisequence search cap-

abilities of BBK* with the novel algorithmic improvements of MARK* to not only efficiently approximate

partition functions, but also efficiently search over sequences by K* score (detailed explanation is available

in Section B.5 of the Supplementary Information in Jou et al., 2019). Because MARK* replaces iMinDEE-

A*-K*, we ran BBK* with iMinDEE-A*-K* as a control, and compared it with the performance of BBK*

with MARK* on 200 protein design problems. We found that MARK* accelerates BBK* by up to 2 orders of

magnitude, efficiently completing designs an order of magnitude larger than was possible using BBK* with

iMinDEE-A*-K*.

Finally, we show that MARK* not only outperforms the previous state of the art in speed, but also offers

new design capabilities. Because MARK* tightly bounds low-entropy regions of the conformation space

FIG. 1. Provably computing the best binding sequences with respect to the input model. When designing for

macromolecular, ensemble-average properties such as binding affinity Ka, provable algorithms such as K* (Lilien et al.,

2005; Georgiev et al., 2008b; Roberts et al., 2012) and BBK* (Ojewole et al., 2018) take as input an input structure,

energy function, allowed backbone and sidechain flexibility, and allowed mutations that define the sequence space.

Both algorithms used the previous state of the art, iMinDEE-A*-K*, to provably approximate partition functions (with

respect to the input model) and combined these partition function approximations into a K* score (Lilien et al., 2005),

which approximates Ka. By approximating Ka, designers can rank candidate sequences in order of binding affinity, and

identify the best binding sequence (green) with respect to the input model. In this design protocol, MARK* replaces

iMinDEE-A*-K* as a provable partition function approximation module.
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instead of low-energy conformations, it computes a provable approximation of the energy landscape, which

bounds the energy of every conformation in the conformation space. MARK* is, to our knowledge, the first

provable algorithm to do so. In contrast, previous algorithms (provably or nonprovably) return only low-

energy conformations, and do not tightly and provably approximate the energy landscape. This energy

landscape approximation provides additional insight into the higher energy regions between tightly-

bounded low-energy conformational wells (Fig. 2D). Using MARK* to compute the partition function and

energy landscape for the design problem of an HIV-related protein–protein interface, we demonstrate the

ability of MARK* to reveal components of binding thermodynamics. That is, we show that MARK* not only

approximates the partition function more efficiently, but also computes an entire energy landscape that

enables insight into thermodynamics.

By presenting this algorithm, our article makes the following contributions:

1. A novel algorithm that more quickly and efficiently predicts binding affinity using partition functions

over molecular ensembles.

2. Proofs of correctness and admissibility of the bounds used in the branch and bound strategy by

MARK*, as well as the optimality of MARK* for a given energy bounding function.

3. 200 designs showing that BBK* with MARK* returned the five best sequences up to 2 orders of

magnitude faster, minimized 685-fold fewer conformations, and completed designs up to an order of

magnitude larger than was possible using BBK* with iMinDEE-A*-K*.

4. An application of MARK* to compute a provable approximation of the energy landscape for an HIV-

related protein–protein interface, revealing components of binding thermodynamics.

5. An implementation of MARK* in our laboratory’s open-source protein design software, osprey

(Hallen et al., 2018).

FIG. 2. RK* and MAE exploit positive correlation between conformation and energy to efficiently bound the

partition function. (A) Structurally similar conformations within the same energy well often have similar energies,

shown as two points in the black energy landscape. (B) When the conformation space is represented as a conformation

tree, some conformations (white leaf nodes) may be tightly bounded by computing bounds on their parent nodes

(colored internal nodes). (C) Previous provable partition function approximation algorithms tightly bounded all con-

formations within some energy window of the GMEC. To decrease the error bound e (colored by the scale beside D),

these algorithms incrementally increased the energy window, computing exact energies for more and more confor-

mations (colored curves). (D) RK* instead exploits the correspondence between conformation and energy to more

efficiently bound similar conformations with bounds on regions of the energy landscape. As the error bound e decreases

and the approximation becomes more accurate (colored step curves), RK* iteratively tightens bounds on loosely

bounded (and often low-entropy) regions of the landscape, rather than tightly bounding low-energy conformations. (E)

Loosely-bounded pairwise-minimized bounds can affect a combinatorial number of conformations, shown as an en-

semble of conformations that share the same sidechain assignments at the blue residues. Although the blue residues

have favorable pairwise-minimized lower bounds, when all three are minimized in concert, their post-minimized energy

is higher. (F) By computing a tighter bound on the three blue residues, MAE tightens the bounds on the combinatorial

number of conformations containing the sidechain assignments at the blue residues. Thus, a loosely bounded energy

well (black curve vs. dotted blue curve) may be bounded more tightly (solid blue curve) without minimizing all

conformations in the well.
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2. BACKGROUND

To accurately model macroscopic properties such as binding affinity, design algorithms must approxi-

mate the Boltzmann-weighted partition function over bound and unbound states. For a protein design with

n residues, let the sequence s be a set of n ordered pairs (i, a), each containing the residue index i and an

amino acid a. For a sequence s, we can define the conformation space Q(s) to be the set of conformations

defined by s. In addition, we denote the maximum number of rotamers (at any one residue) to be q. Let

EX(c) be the minimized energy of a conformation c in state X (e.g., bound or unbound). Under this

formulation, the partition function ZX (s) for a protein with sequence s in state X can be defined as

Z
X
(s) =

X
c2Q(s)

exp( - E
X
(c)=RT): (1)

Notably, the set of all conformations Q(s) grows exponentially with the number of residues n and,

therefore, the exact value of the partition function becomes intractable to compute as n increases. As a

result, many protein design algorithms instead approximate ZX with stochastic (Hastings, 1970; Lee, 1993;

Nosé 2006; Lou et al., 2017b) or provable (Lilien et al., 2005; Georgiev et al., 2008b; Roberts et al., 2012;

Silver et al., 2013; Viricel et al., 2016; Lou et al., 2017a; Ojewole et al., 2017) methods. Provable

algorithms have mathematical guarantees on their computed approximation of ZX, and thus obviate any

need for deconvolution of error in the output.

One class of provable algorithms computes an e-approximation of the partition function by using the A*

search algorithm to enumerate a gap-free list of conformations in order of increasing energy (Lilien et al.,

2005; Georgiev et al., 2008b; Gainza et al., 2012; Roberts et al., 2012; Ojewole et al., 2018). By enu-

merating a gap-free list of low-energy conformations, A*-K* algorithms compute both upper and lower

bounds on the overall partition function, and return a partition function approximation that is guaranteed to

be within a (1 - e) factor of the true partition function. When incorporating continuous flexibility, A*-K*-

based enumeration proceeds in order of a provable lower bound E� on the full-minimized energy of a

conformation. By minimizing the enumerated conformations, A*-K* algorithms tighten the upper and

lower bounds on the partition function.

In practice, A*-K* algorithms have been shown to run in time sublinear in the number of conformations

(Lilien et al., 2005). However, in their focus on returning the lowest energy conformations, these algo-

rithms can tightly bound the energy of a large number of low-energy conformations while still achieving

only a loose energy lower bound on the unenumerated conformations, and thus the overall partition

function upper bound. In the worst case, A*-K* algorithms must enumerate a large number of confor-

mations to compute an e-approximate partition function. This issue is especially common when a design

problem contains many low-energy conformations with similar energies. Furthermore, when the energy

lower bounds are loose, the difference between the partition function upper and lower bounds can remain

large, even after enumerating and minimizing a large number of conformations. As a result, A*-K*

algorithms can be trapped in loosely bounded low-energy wells, enumerating and minimizing a combi-

natorial number of low-energy conformations without efficiently tightening the partition function bounds.

To overcome the limitations of A*-K*-based methods, we introduce two concepts: MAE and RK*, both of

which exploit the correlation between protein structure and energy to efficiently bound a combinatorial

number of conformations

3. ALGORITHM

3.1. Recursive K*: enumerating in order of Z-uncertainty

It may at first seem counter-intuitive to tightly bound the partition function of a protein conformation

space without computing the energies of any one conformation. Indeed, previous provable algorithms have

efficiently approximated the partition function by computing a gap-free list of the lowest energy confor-

mations (Lilien et al., 2005; Georgiev et al., 2008b; Roberts et al., 2012; Ojewole et al., 2018). The key

insight is that structurally similar conformations are often energetically similar: although a set of low-

energy conformations may constitute the vast majority of the partition function, these conformations may in

fact be both structurally and energetically similar (Fig. 2A). Therefore, computing one upper and one lower
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bound on a set of similar conformations can efficiently bound the partition function contribution of the entire

set. More formally, when the energy upper and lower bounds on a set C of structurally similar conformations

are very close, the statistical weight of the set may be tightly approximated by simply scaling the upper and

lower bounds by jCj. The following definitions of these new bounds are sufficient for the theorems provided

in the main article—the precise definitions involve some subtleties, which are deferred to Section A of the

Supplementary Information in Jou et al. (2019). For a set of conformations C that all share the partial

conformation c0, we can define partition function upper and lower bounds as follows:

U(c0) = exp ( - E�(c0)=RT)s(c0)‚ (2)

L(c0) = exp ( - E�(c0)=RT)s(c0)‚ (3)

where E� and E� are lower and upper energy bounds on the best and worst energies of any conformation in

C, respectively, and s(c0) = jCj.
Fundamentally, computing K* scores for a sequence can be formulated as computing energy upper and

lower bounds on the conformation spaces (one for each state, e.g., bound and unbound) to reduce the

difference between partition function upper and lower bounds. We refer to this difference as Z-uncertainty.

To directly explore the conformation space in order of Z-uncertainty, RK* calculates the Z-uncertainty of a

full or partial conformation c by computing the difference between the upper and lower bounds on its

partition function contribution:

c (c) = U(c) - L(c): (4)

In effect, RK* divides the conformation space into smaller subspaces along the allowed rotamers at a

residue, and bounds regions of the conformation space rather than tightly bounding the next best un-

enumerated conformation. By using c(c) to explore the conformation space in order of Z-uncertainty, RK*

approximates the partition function by branching and bounding the most loosely bounded regions first,

rather than enumerating the next-lowest energy conformation A*-K* does.

We now give a theorem that shows c(c) never underestimates the Z-uncertainty.

Theorem 1. Given a set C of all conformations containing a partial conformation c0, c(c0) � c(c) for all

c 2 C.

We can further show that, when the energy lower and upper bounds on all conformations are tight (e.g.,

when using a pairwise-decomposable energy function for a rigid-rotamer, rigid-backbone design), the

number of nodes expanded by RK* is optimal.

Theorem 2. Let T be a conformation tree where each conformation in the conformation space corre-

sponds to a leaf node in T. For any given upper bounding function U(c0) and lower bounding function L(c0)
over T, RK* expands the minimum number of nodes required to compute a provable e-approximation of the

partition function Z using those bounding functions.

For details on these bounds and the full proofs of Theorems 1 and 2, see Section A of the Supplementary

Information in Jou et al. (2019).

Figure 2C and D illustrate this strategy, showing how RK* can use lower bounds on partial conformations

(shown as colored step curves) to efficiently and incrementally bound regions of the energy landscape (black

curve). For clarity, the figure omits upper bounds, but the same strategy can be applied. MARK* computes

one upper bound and one lower bound on a combinatorial number of energetically similar conformations

that contain the same partial conformation c0, whereas in the worst case A*-K* must enumerate all qn - jc0j

conformations, where jc0j is the number of residues whose sidechain conformations are assigned by c0.

3.2. Minimization-Aware Enumeration: tightening loose bounds during enumeration

MAE exploits the conformational similarity between loosely-bounded conformations to tighten loosely-

bounded pairwise-minimized lower bounds as they are encountered during conformation enumeration. Upon

encountering a loosely-bounded pair, a tighter bound is computed by minimizing the pair in the presence of a

third witness residue (Fig. 2E). For a pairwise-decomposable energy function, a loosely-bounded residue pair

is only overly optimistic when the presence of the other flexible residues changes the postminimization
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conformation and energy of that pair. As has been shown previously, these higher-order interactions are often

represented with high accuracy by simply modeling three-residue interactions as well, as is done by the local

unpruned tuple expansion (LUTE; Hallen et al., 2017) algorithm. Indeed, the HOT/PartCR (Roberts and

Donald, 2015) algorithm has identified both overly flexible residues whose pairwise-minimized conforma-

tion varies widely depending on the conformation of nearby residues, and higher-order clashing tuples

whose pairwise-minimized conformation is clash free, but cannot be achieved when all residues in the tuple

are minimized together. Although these algorithms both successfully tighten pairwise-minimized lower

bounds, both are effectively preprocessing algorithms. HOT/PartCR changes the conformation space each

iteration, repeatedly restarting A* search, whereas LUTE is run before A*-K* enumeration.

In effect, both HOT/PartCR and LUTE must be run to satisfactory energy bound tightness before any

approximation of the partition function can be computed. MAE instead computes LUTE-like energy

corrections when a conformation with a loose lower bound is encountered, and applies all computed

corrections to unexplored regions of the conformation space. Notably, MAE combines LUTE-like cor-

rections with HOT/PartCR-like lowest lower bound-first tightening, thus correcting only loosely bounded

conformations that also share rotamer assignments with other conformations with low lower bounds.

Unlike either algorithm, MAE can then incorporate these corrections into its partition function computation

without restarting A* search: that is, it corrects the energy of a combinatorial number of conformations

online. Thus, MAE provides an efficient way to tighten conformational lower bounds during partition

function approximation, further reducing computational cost.

3.3. Minimization-Aware Recursive K*

In combination, the improvements of MAE and RK* are further enhanced. RK* not only prioritizes low-

entropy regions of the conformation space, it is able to also weigh the potential benefits of full minimi-

zation versus branching and bounding. MAE converts the tighter bounds on each full minimization into

tighter bounds on a region of the conformation space (i.e., a combinatorial number of conformations). Thus,

MARK* chooses the most effective of both possible bound-tightening strategies: recursively bounding one

region of the conformation space or minimizing another. In doing so, MARK* distinguishes itself from the

GMEC-first, A*-K*-based previous state of the art: rather than enumerating or minimizing one confor-

mation at a time, it bounds and minimizes regions of the conformation space. For a full description of the

algorithm, see Section A of the Supplementary Information in Jou et al. (2019).

4. COMPUTATIONAL EXPERIMENTS

We implemented MARK* in our laboratory’s open source osprey (Hallen et al., 2018) protein design

package and compared our algorithm with the previous state of the art, iMinDEE-A*-K*. To do so, we first

measured performance of the BBK* (Ojewole et al., 2018) algorithm with either iMinDEE-A*-K* (A*-BBK*)

or MARK* (MARK*-BBK*) as its partition function approximation subroutine. Using A*-BBK* and MARK*-

BBK*, we computed the five best binding sequences for 200 different protein design problems from 38

different protein–ligand complexes used in Ojewole et al. (2018). This was a head-to-head comparison: for

both A*-BBK* and MARK*-BBK*, we measured performance using the BBK* implementation from Hallen

et al. (2018). The size of the resulting design problems ranged from 18 to 400 sequences, and the number of

conformations over all sequences (which is the total size of a design problem searched by BBK*) ranged from

1.62 · 103 to 3.26 · 1017 conformations.

In all cases, we modeled continuous sidechain flexibility using continuous rotamers (Gainza et al., 2012;

Roberts and Donald, 2015). As in Georgiev et al. (2008b), Gainza et al. (2012), and Ojewole et al. (2018),

rotamers from the Penultimate Rotamer Library (Lovell et al., 2000) were allowed to minimize to any

conformation –9� of their modal v-angles (18� of dihedral angle flexibility). Next, to investigate the

comparative advantage of RK* over A*-K*, we performed additional computational experiments designed

to deconvolve the challenge of minimizing conformations from the challenge of exploring the confor-

mation space. We computed the wildtype K* scores for 344 rigid rotamers, rigid backbone design prob-

lems, created from 38 protein structures used in Ojewole et al. (2018). For each rigid design problem we

selected up to 29 residues at a protein–protein interface to be flexible. The size of the resulting design

problems ranged from 3.46 · 103 to 6.76 · 1025 conformations.
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For all design problems, each algorithm computed e-approximate bounds to an accuracy of e < 0.683 (as

was derived in Ojewole et al., 2018) or was terminated after 7 days for the continuous design problems and

6 days for the rigid design problems. All continuous designs were run on 40–48 core Intel Xeon nodes with

up to 200 GB of memory, and rigid designs were run on the same machines with 60 GB of memory. A

detailed description of the 544 total protein design problems, the 38 protein–ligand systems they are based

on, and our continuous and rigid sidechain flexibility experimental protocols is given in Section B of the

Supplementary Information in Jou et al. (2019).

5. RESULTS

We first compared overall runtime and demonstrated that, for large designs, MARK*-BBK* completed

designs faster than A*-BBK* (Fig. 3A). Notably, MARK*-BBK* completes designs that were previously too

large or memory intensive for the previous state of the art. Out of 200 total designs, iMinDEE-A*-K*

computed an e-approximation to the partition function within 7 days for only 185. For 10 design problems,

iMinDEE-A*-K* ran for more than 7 days and was terminated, and for 5 other cases iMinDEE-A*-K* ran

out of 200 GB of memory. In particular, iMinDEE-A*-K* was unable to complete any of the largest designs

that contained more than 1017 conformations. In contrast, MARK* provably returned the 5 best sequences

for all 200 in under 6 days, including the 15 for which iMinDEE-A*-K* could not (Fig. 3A). The largest

design, a 17-residue design of a llama antibody in complex with the C. botulinum neurotoxin serotype A

catalytic domain (PDB id: 3k3q), contained 3.26 · 1017 conformations, which is an order of magnitude

larger than the largest design completed by iMinDEE-A*-K*. Whereas iMinDEE-A*-K* ran out of memory

after 5 days, MARK* returned the five best binding sequences in 55 hours.

Furthermore, the advantage of MARK* over iMinDEE-A*-K* grew as designs became more complex. As

shown in Figure 3A, although the performance of iMinDEE-A*-K* varied as conformation space size

increased, the design problems for which iMinDEE-A*-K* performed slowly are the very designs where

MARK* demonstrated the largest improvements (Fig. 3B). For design problems for which iMinDEE-A*-K*

required longer than 146 minutes, MARK* required less time (completing up to 2 orders of magnitude

faster) to calculate an e-approximation to the K* score for the best five sequences. In one design at the

binding interface between an HIV-1 capsid protein C-terminal domain in complex with a camelid VHH

(PDB id: 2xxm), the conformation space was 1.14 · 1012 conformations, and iMinDEE-A*-K* computed

provable, e-approximate K* scores for the five best sequences in 4.5 · 103 minutes. In contrast, MARK*

completed in 33 minutes, 135 times faster than iMinDEE-A*-K*.

FIG. 3. Speed: MARK* is up to 135 times faster than iMinDEE-A*-K*, and its speedups increase as iMinDEE-

A*-K* takes longer. (A, B) Times to return the five best sequences for MARK* (blue, red) and iMinDEE-A*-K* (green)

are shown. (A) Times for all 200 continuous design problems are shown, plotted against conformation space size.

MARK* completes 15 challenging design problems (size larger than 1010 conformations, red triangles) that iMinDEE-

A*-K* cannot. (B) Runtimes for the 185 designs completed by iMinDEE-A*-K*, sorted along the x-axis by iMinDEE-

A*-K* runtime (ranks for designs given in Table 1 of the Supplementary Information in Jou et al., 2019), are shown. For

all designs that required longer than 146 minutes, MARK* required less time (up to 135 times faster).
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To further elucidate the improvements of MARK*, we measure the effects of RK* and MAE separately.

Although, for reasons of accuracy, we recommend always using continuous flexibility, we show that the

speed improvements for rigid rotamer, rigid backbone wildtype K* score computation are even more

dramatic. Results from these simplified design problems suggest that design with continuous flexibility

considerably increases the challenge of the design problem. In particular, MARK*, with its RK* bounding

strategy, is able to efficiently bound the conformation space when the conformational energy upper and

lower bounds are tight, but cannot avoid minimizing conformations with loose energy bounds.

5.1. RK* is orders of magnitude more efficient and faster than A*-K*

For the 344 rigid rotamer, wildtype-only design problems, we compared overall runtime and the number

of conformations enumerated, shown in Figure 4. Notably, RK* computed the K* score for all 344 design

problems, whereas A*-K* was only able to do so for 321. Of the 30 largest design problems (conformation

space size of 4.5 · 1022 or more conformations), A*-K* completed only 8. In fact, A*-K* was unable to

compute any K* scores for design problems containing more than 1025 conformations, showing that RK* is

able to complete designs larger than was possible with the previous state of the art.

For the largest design problem, a 24-residue design of the Llama VHH-02 binder of ORF49 (PDB id: 4hem),

the conformation space was 6.76 · 1025 conformations, and A*-K* timed out after 6 days, whereas RK* finished

in merely 4.7 minutes. Furthermore, RK* finishes up to 3 orders of magnitude faster than A*-K*. In the case of

the 24-residue design of an HIV-1 capsid protein bound to a camelid VHH (PDB id: 2xxm), A*-K* enumerated

more than 162 million conformations, taking 5.4 days, whereas RK* enumerated merely 11,699 conformations

in under 75 seconds, finishing 6230 times faster than the previous state of the art. RK* also enumerated far fewer

conformations than A*-K*. In the case of a 29-residue design of the TRF2 TRFH domain bound to an Apollo

peptide (PDB id: 3bua), A*-K* took 2.2 days to enumerate over 52 million conformations. In contrast, RK*

enumerated merely 576 conformations in 2.2 minutes, and was over 90,800 times more efficient.

5.2. MAE is more efficient and effective than full minimization alone

Using MAE, MARK* tightens bounds on a potentially exponential number (up to O(qn - 3)) of confor-

mations by performing a merely polynomial number (up to O n

3

� �
q3

� �
) of minimizations. In contrast,

iMinDEE-A*-K* must, in the worst case, minimize the same (potentially exponential) number of loosely

bounded conformations. In our experiments, the energy bounds were often very loose. The median energy

difference between pairwise-minimized lower bounds and full-minimized energy was 4.9 kcal/mol, leading

to overestimation of statistical weight by orders of magnitude for many conformations. To measure the

efficiency of MAE, first we compared the number of full conformations minimized by MARK* and by

iMinDEE-A*-K*. Then, to analyze the benefits of the partial minimizations performed by MAE, we

measured the reduction of Z-uncertainty (Z-uncertainty reduction) from full minimizations and MAE

corrections for each of the 200 continuous design problems.

Figure 4 illustrates the improvement in efficiency of MARK* over iMinDEE-A*-K*: MARK* minimizes up

to 685-fold fewer full conformations. As shown in Figure 4D, MARK* minimizes fewer conformations than

iMinDEE-A*-K* for all designs in which iMinDEE-A*-K* minimizes more than 1344 conformations. In

addition, the bound-correcting effect of MAE increases as the conformation space grows larger and more

complex. For one design of a Scribble PDZ34 domain complexed with its target peptide (PDB id: 4wyu), total

Z-uncertainty reduction from full minimizations was 4.12 · 1097, and total Z-uncertainty reduction from partial

minimizations was 8.36 · 10100. Thus, for every full minimization computed by MARK*, MAE achieved

Z-uncertainty reduction equivalent to 2030 additional minimizations. The trend shown in Figure 4E emphasizes

the increasing number of loosely bounded conformations as the conformation space grows, showing that for

every conformation MARK* minimizes, it also tightens the bound on a combinatorial number of conformations.

6. DISCUSSION

6.1. MARK* reveals components of binding thermodynamics

Previously, provable algorithms have been applied to analyze the landscape of low-energy sequences,

and this analysis revealed insights into the energy function, flexibility model, and computational challenges

of protein design (Simoncini et al., 2018). MARK* is able to not only bound the low-energy conformations,
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but also provably approximate the entire energy landscape. To test the ability of MARK* to approximate the

energy landscape, we ran MARK* on a 10-residue design problem at the protein–protein interface an HIV-1

capsid protein C-terminal domain bound to a camelid VHH and compared the partition functions of the

wildtype sequence for both proteins in the bound (PDB id: 2xxm), unbound camelid VHH (PDB id: 2xxc),

and unbound HIV-1 capsid protein C-terminal domain (PDB id: 3ds2) states with continuous sidechain

flexibility, in a manner similar as was done in Qi et al. (2018; Fig. 5). For these three states, we modeled

bound and unbound backbones using the three separate bound and unbound structures described above. We

computed a provable e-approximation of e< 0:01 for the partition functions of the bound and unbound

states for both proteins, and computed the corresponding energy landscapes, where the energies of all

conformations within 5 kcal/mol of the GMEC were computed exactly. Next, for each protein we computed

bounds on its binding-competent ensemble, which is the ensemble consisting of all conformations that exist

in the bound state, modeled with the energies of the unbound state.

As has been observed in Reeve et al. (2015) and Hallen et al., (2018), the correlation between K* scores

and Ka is not yet quantitative, although it is good enough for ranking. In particular, for current K*

computations, only a subset of biologically available structural flexibility is allowed and waters are not

explicitly modeled, both of which lead to underestimated entropy. In addition, most physical effective

energy functions are based on small-molecule energetics, which can overestimate van der Waals terms and

thereby overestimate internal energy. Despite these input model limitations, in Hallen et al. (2018) and

Reeve et al. (2015) significant changes in energy corresponded to large changes in K* score, and correlated

well with experimental measurements. Therefore, in our comparisons, we expect K* scores to (1) correctly

predict if one state is more favorable than another and (2) compute free energy terms that are comparable

within an order of magnitude. For our analysis, scaling entropy up by a factor of 2 and internal energy down

by a factor of 8 resulted in energies within the range of typical experimental measurements for 10 residues

at a protein–protein interface. We report all computed energies after scaling.

Using the results from MARK*, we computed the ensemble-weighted internal energy and entropy for both

binding partners in their bound and unbound states. At the computed temperature of *298 K, HIV-1 capsid

protein undergoes a change in its conformational distribution upon binding. This entails a decrease in entropy,

lowering TDS by 3.06 kcal/mol. TDS decreases by 1.74 kcal/mol for camelid VHH as well. To compensate,

the complex internal energy decreases upon binding. Whereas the unbound protein and the ligand have a

combined ensemble-weighted internal energy of -8.69 kcal/mol, the internal energy of the complex is

-14.0 kcal/mol, which is 5.31 kcal/mol lower than the combined internal energy of unbound HIV capsid

protein and camelid VHH. The change in Helmholtz free energy DF is, therefore, -0.51 kcal/mol. Im-

portantly, the internal energy of the binding-competent HIV-1 capsid protein ensemble is only 0.044 kcal/mol

less than the internal energy of its free ensemble, which agrees with the unfavorable overall increase in

Helmholtz free energy of 3.01 kcal/mol between the free ensemble and the binding-competent ensemble.

Similarly, the internal energy of the binding-competent camelid VHH ensemble is 0.939 kcal/mol higher than

the energy of the free ensemble, for a total increase in Helmholtz free energy of 2.68 kcal/mol. As these data

show, both binding partners incur an energy penalty when assuming the binding-competent ensemble, which

is overcome by favorable interactions gained upon binding.

Thus, MARK* reveals the loss of entropy, and its commensurate increase in internal energy upon

binding. Figure 5 shows the change in the conformational ensemble between the free and binding-

competent ensemble, followed by internal energy change upon binding. As shown in Figure 5, there are

many low-energy states in the free ensemble of camelid VHH, shown as numerous blue and purple arcs, and

by the comparatively small green arc for the GMEC of the free ensemble. In contrast, both the binding-

competent ensemble and the bound ensemble show significantly fewer low-energy states, and in both

ensembles the GMEC comprises a much larger fraction of the corresponding partition function. Accord-

ingly, our novel ring charts for the energy landscapes of the free, binding-competent, and bound states show

visually how the bound and unbound states differ, emphasizing the novel capabilities of MARK*, and the

significance of modeling more than just the lowest energy conformations when designing for affinity.

7. CONCLUSION

We presented a novel algorithm that not only efficiently bounds the partition function, but also computes

a provably good approximation of the energy landscape, which bounds the energy of every conformation in
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the conformation space. MARK* is, to our knowledge, the first algorithm to do so. Previously, designers

were limited to optimizing for the lowest-energy conformations for a limited number of predefined states,

and could only approximate aggregate values such as internal energy or Ka. With MARK*, we showed that

designers can directly compute changes to the entire energy landscape, such as conformational re-

arrangement upon binding. MARK* was also used in a recent analysis (Holt et al., 2019) of energy

landscapes for inhibitors of cystic fibrosis (CF) transmembrane conductance regulator trafficking. Therein,

MARK* not only enabled approximation of binding thermodynamics for protein–peptide interactions that

are important in CF, but also revealed important structural and dynamic features of inhibitor binding. With

this capability, MARK* empowers designers to evaluate sequences not by low-energy conformations, but

instead by energy landscape. Thus, MARK* enables not only faster design, but also a new potential strategy

to design for conformational dynamics (Reardon et al., 2014; Davey et al., 2017). We believe that MARK*

will accelerate existing designs, enhance future designs, and enable a novel, dynamics-based strategy for

computational structure-based protein design.
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