This is C++, but I bet you can still read it!

Announcements

- **Hangman** – due today

- **Apt Set 2** – due Sept 16
 - Make ONE APT project
 - Add new class for each APT
 - Submit to Apt2
 - ALL APTs (even those from APT set 1)
Feedback
- Anonymous feedback
- UTA feedback
 - If someone is missing in the Link, let us know
 - If someone is GREAT, let us know

From last time
- Array – ordered, indexed, fixed length
- List – ordered, indexed, adjustable length
- Set – unordered, adjustable length, no doubles
- Map – unordered, pairs (key, value)
Map

• Unordered collection of values mapped to keys
 • dictionary
 • key – word
 • value - definition

Map

• Map<Double, Integer> map =
 new HashMap<Double, Integer>();

 for(double d: map.keySet()){
 System.out.println(d + ": " + map.get(d));
 }

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
public class References {
 public static void randomFunction2() {
 String a = "Hello";
 String b = "Goodbye";
 a = b;
 a = a.concat(" CS201");
 System.out.println(a);
 System.out.println(b);
 }
 public static void main(String[] args){
 randomFunction2();
 }
}

References

• http://www.youtube.com/watch?v=vm5MNP7pn5
Big-Oh

• Big-Oh
 • Estimate time required for a program
 • No units of time!!!!!!!
 • Count operations

Assign costs to operations

• Declarations cost 0 units
 • double aDouble;

• Operations cost 1 unit
 • aDouble = 4.56 //assignment
 • aDouble * 5 //mathematical operation
 • return aDouble; //returns
```java
public double getArea(double r) {
    double pi;
    pi = 3.14;
    double area;
    area = pi * r * r;
    return area;
}
```

Big-Oh

- Assign costs to operations
 - Declarations cost 0 units
 - Operations cost 1 unit
- Write in Big-Oh notation
Big-Oh

1 public double getArea(double r) {
2 double pi; 0
3 pi = 3.14; 1
4 double area; 0
5 area = pi * r * r; 3
6 return area; 1
7 } Total: 5

O(5)

Big-Oh

- Assign costs to operations
 - Declarations cost 0 units
 - Operations cost 1 unit
- Write in Big-Oh notation
- Simplify
 - Remove constants
 - O(6) = O(1)
 - O(4N) = O(N)
 - O(3N^2 + 5) = O(N^2)
 - Remove lower order terms
 - O(N^2 + N) = O(N^2)
1 public double getArea(double r) {
2 double pi;
3 pi = 3.14;
4 double area;
5 area = pi * r * r;
6 return area;
7 }

Total: 5

$O(1)$ $O(5)$

Big-Oh

- Assign costs to operations
 - Declarations cost 0 units
 - Operations cost 1 unit
- Write in Big-Oh notation
- Simplify
 - Remove constants
 - $O(6) = O(1)$
 - $O(4N) = O(N)$
 - $O(3N^2 + 5) = O(N^2)$
 - Remove lower order terms
 - $O(N^2 + N) = O(N^2)$
Your turn

```java
public static int sum( int n)
{
    int partialSum;
    partialSum = 0;
    for(int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;
}
```

O(1+N*4 + 1) = O(4N+2)
• Rules
 • for-loops
 • (statements in for-loop) * iterations
 • Nested for-loops (inside-out)
 • (statements in innermost for-loop) * iterations * iterations
 • Consecutive statements
 • Add them
 • If/else
 • Test + max(if, else)

<table>
<thead>
<tr>
<th>Function</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Constant</td>
</tr>
<tr>
<td>$\log N$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>$\log^2 N$</td>
<td>Log-squared</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>$N \log N$</td>
<td></td>
</tr>
<tr>
<td>N^2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>N^3</td>
<td>Cubic</td>
</tr>
<tr>
<td>2^N</td>
<td>Exponential</td>
</tr>
</tbody>
</table>
The traveling salesperson

- **Brute-Force Solution:** $O(n!)$
- **Dynamic Programming Algorithms:** $O(n^2 2^n)$
- **Selling on eBay:** $O(1)$

Practice

go.gl/dGwqAL
numberOne

1 public int numberOne(int n) {
2 return n;
3 }

numberTwo

1 public int numberTwo(int n) {
2 int answer = 1;
3 for(int i = 0; i < n; i++)
4 answer *= n;
5 return answer;
6 }
public int numberThree(int n){
 int answer = 1;
 for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j++)
 answer *= n;
 return answer;
}

public int numberFour(int n){
 int answer = 1;
 for(int i = 0; i < n; i++)
 answer *= n;
 for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j++)
 answer *= n;
 return answer;
}
public int numberFive(int n) {
 int answer = 1;
 for (int i = 1; i <= n; i = i*2) {
 answer *= n;
 }
 return answer;
}

public int numberSix(int n) {
 int answer = 1;
 for (int i = 1; i <= n; i = i*2) {
 for (int j = 0; j < n; j++) {
 answer *= n;
 }
 }
 return answer;
}
```java
public int numberSeven(int n) {
    if (numberTwo(n) > 10000) {
        return n;
    } else {
        return numberFive(n);
    }
}
```

```java
public int numberTwo(int n) {
    int answer = 1;
    for (int i = 0; i < n; i++) {
        answer *= n;
    }
    return answer;
}
```

```java
public int numberFive(int n) {
    int answer = 1;
    for (int i = 1; i <= n; i = i * 2) {
        answer *= n;
    }
    return answer;
}
```

Announcements

- Hangman – due today
- Apt Set 2 – due Sept 16
 - Make ONE APT project
 - Add new class for each APT
 - Submit to Apt2
 - ALL APTs (even those from APT set 1)