Informed Search

George Konidaris
gdk@cs.duke.edu

Spring 2015
Recall: Search

Basic to problem solving:
 • How to take action to reach a goal?
Informed Search

What if we know something about the search?
Formal Definition

Set of states S

Start state $s \in S$

Set of actions A and action rules $a(s) \rightarrow s'$

Goal test $g(s) \rightarrow \{0, 1\}$

Cost function $C(s, a, s') \rightarrow \mathbb{R}^+$

So a search problem is specified by a tuple, (S, s, A, g, C).
Problem Statement

Find a sequence of actions a_1, \ldots, a_n and corresponding states s_1, \ldots, s_n

... such that:

$$s_0 = s$$
$$s_i = a_i(s_{i-1}), \ i = 1, \ldots, n$$
$$g(s_n) = 1$$

while minimizing:

$$\sum_{i=1}^{n} C(s_{i-1}, a, s_i)$$

minimize sum of costs - rational agent

start state
legal moves
end at the goal
The Frontier

Key thing in search is managing the frontier.
Uninformed Searches

Simple strategy for choosing next node:

- Choose the shallowest one (**breadth-first**)
- Choose the deepest one (**depth-first**)

Neither guaranteed to find the least-cost path.

What if we chose the one with lowest cost?
Uniform-Cost

Order the nodes in the frontier by *cost-so-far*
 - Cost from the start state to that node.

Open the next node with the smallest cost-so-far
 - Optimal solution
 - Complete (provided no negative costs)
Uniform-Cost

Expand cheapest node
Use whole path cost
Uniform-Cost

Expand cheapest node
Use *whole* path cost
Uniform-Cost

Expand cheapest node
Use *whole path* cost
Uniform-Cost

Expand cheapest node
Use *whole path* cost
What’s the Insight?

The *cost-so-far* tells us how much it cost to get to a node.

- Go to cheapest nodes first.

What remains?

Total cost = *cost-so-far* + *cost-to-go*

Cost-so-far: cost from start to node.

Cost-to-go: cost from node to goal.
Informed Search

Key idea: heuristic function.

- $h(s)$ - estimates cost-to-go
- Cost to go from state to solution.
- Problem specific (hence informed)
Greed

What if we expand the node with lowest $h(s)$?
A* algorithm:

- $g(s)$ - cost so far (start to s).
- Expand s that minimizes $g(s) + h(s)$ both
- Manage frontier as priority queue.

- Admissible heuristic: never overestimates cost.

\[h(s) \leq h^*(s) \]

- $h(s) = 0$ if s is a goal state, so $g(s) + h(s) = c(s)$

- If h is admissible, A* is optimal.
- If $h(s)$ is exact, runs in $O(bd)$ time.
Admissible Heuristics

Optimal solution
Proof by contradiction
Example Heuristic
Example Heuristics
More on Heuristics

Heuristic $h1$ dominates $h2$ if $h1(s) \geq h2(s)$ for all s.

- Is $h1$ or $h2$ better? (If they’re both admissible.)

How might you combine two heuristics?

What is $h(s) = k$ (constant) for all s?
More on Heuristics

A* is optimally efficient: any algorithm using h must expand the nodes A* expands.

Why?
More on Heuristics

Ideal heuristics:

• Fast to compute.
• Close to real costs.
• Some programs *automatically generate* heuristics.