Machine Learning

Subfield of AI concerned with \textit{learning from data}.

Broadly, using:

- \textit{Experience}
- To Improve \textit{Performance}
- On Some \textit{Task}

\textit{(Tom Mitchell, 1997)}
ML
vs
Statistics
vs
Data Mining
Why?

Developing effective learning methods has proved difficult. Why bother?

Autonomous discovery
- We don’t know something, want to find out.

Hard to program
- Easier to specify task, collect data.

Adaptive behavior
- Our agents should adapt to new data, unforeseen circumstances.
Types

Depends on feedback available:

Labeled data:
• Supervised learning

No feedback, just data:
• Unsupervised learning.

Sequential data, weak labels:
• Reinforcement learning
Supervised Learning

Input:
\[
\begin{align*}
X &= \{x_1, \ldots, x_n\} & \text{inputs} \\
Y &= \{y_1, \ldots, y_n\} & \text{labels}
\end{align*}
\]

Learn to predict new labels.
Given \(x \): \(y \)?
Unsupervised Learning

Input:
\[X = \{x_1, \ldots, x_n\} \] inputs

Try to understand the structure of the data.

E.g., how many types of cars? How can they vary?
Reinforcement Learning

Learning counterpart of planning.

\[\max_{\pi} R = \sum_{t=0}^{\infty} \gamma^t r_t \]
Today: Supervised Learning

Formal definition:

Given training data:

\[X = \{x_1, \ldots, x_n\} \quad \text{inputs} \]
\[Y = \{y_1, \ldots, y_n\} \quad \text{labels} \]

Produce:

Decision function \(f : X \rightarrow Y \)

That minimizes error:

\[\sum_i \text{err}(f(x_i), y_i) \]
Classification vs. Regression

If the set of labels Y is discrete:
- Classification
- Minimize number of errors

If Y is real-valued:
- Regression
- Minimize sum squared error

Today we focus on classification.
Key Ideas

Class of functions F, from which to find f.

 • F is known as the hypothesis space.

E.g., if-then rules:

\[
\text{if condition then class } 1 \\
\text{else class } 2
\]

Learning:

• Search over F to find f that minimizes error.
Test/Train Split

Minimize error measured on what?
 • Don’t get to see future data.
 • Could use test data … but! may not generalize.

General principle:
Do not measure error on the data you train on!

Methodology:
 • Split data into training set and test set.
 • Fit f using training set.
 • Measure error on test set.

Always do this.
Decision Trees

Let’s assume:

• Discrete inputs.
• Two classes (true and false).
• Input X is a vector of values.

Relatively simple classifier:

• Tree of tests.
• Evaluate test for for each x_i, follow branch.
• Leaves are class labels.
Decision Trees

$x_i = [a, b, c]$
each boolean

- **a?**
 - true
 - **b?**
 - true
 - $y=1$
 - false
 - $y=2$
 - false
 - **c?**
 - true
 - **b?**
 - true
 - $y=2$
 - false
 - $y=1$
 - false
 - $y=1$
Decision Trees

How to make one?

Given
\[X = \{ x_1, \ldots, x_n \} \]
\[Y = \{ y_1, \ldots, y_n \} \]

repeat:
- if all the labels are the same, we have a leaf node.
- pick an attribute and split data on it.
- recurse on each half.

If we run out of splits, and data not perfectly in one class, then take a max.
Decision Trees

\[a? \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>
Decision Trees

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>
```

a?

true

\(y = 1 \)
Decision Trees

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>
```

y=1
Decision Trees

- **a?**
 - True: $y=1$
 - False: **b?**
 - True: $y=2$
 - False: $y=1$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>
Decision Trees

- **a?**
 - true: y=1
 - false: b?
 - true: y=2
 - false: y=1

- **Table**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>
Attribute Picking

Key question:
 • Which attribute to split over?

Information contained in a data set:

\[I(A) = -f_1 \log_2 f_1 - f_2 \log_2 f_2 \]

How many “bits” of information do we need to determine the label in a dataset?

Pick the attribute with the max information gain:

\[Gain(B) = I(A) - \sum_i f_i I(B_i) \]
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>
Decision Trees

What if the inputs are real-valued?
 • Have inequalities rather than equalities.

![Decision Tree Diagram]

- **a > 3.1**
 - True: $y = 1$
 - False: $b < 0.6$?
 - True: $y = 2$
 - False: $y = 1$
Hypothesis Class

What is the hypothesis class for a decision tree?

- Discrete inputs?
- Real-valued inputs?