Introduction to Parallel Computing with Apache Spark
Why Parallel Processing?

Divide and Conquer

Problem Single machine cannot complete the computation at hand

Solution Parallelize the job and distribute work among a network of machines
Issues Arise in Parallel Processing

View the world from the eyes of a single worker

• How do I parallelize an algorithm?
• How do I partition my dataset?
• How do I maintain a single consistent view of a shared state?
• How do I recover from machine failures?
• How do I allocate cluster resources?
•
Finding majority element in a single machine

Think distributed

List(20, 18, 20, 18, 20)
Finding majority element in a distributed dataset

Think distributed

List(1, 18, 1, 18, 1)
List(2, 18, 2, 18, 2)
List(3, 18, 3, 18, 3)
List(4, 18, 4, 18, 4)
List(5, 18, 5, 18, 5)
Finding majority element in a distributed dataset

Think distributed

List(1, 18, 1, 18, 1)
List(2, 18, 2, 18, 2)
List(3, 18, 3, 18, 3)
List(4, 18, 4, 18, 4)
List(5, 18, 5, 18, 5)
Spark Background

Arose from an academic setting

- Amplab UC Berkeley
- Project Lead: Dr. Matei Zaharia
- First paper published on RDD’s was in 2012
- Open sourced from day one, growing number of contributors
- Released its 1.0 version May 2014. Currently in 1.4.1
- Databricks company established to support Spark and all its related technologies. Matei currently sits as its CTO
- Amazon, Alibaba, Baidu, eBay, Groupon, Ooyala, OpenTable, Box, Shopify, TechBase, Yahoo!
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split("\t")(2))
messages.persist()

messages.filter(_.contains("foo")).count
messages.filter(_.contains("bar")).count
...

Result: scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)
```

Slide courtesy of Matei Zaharia, Introduction to Spark
Resilient Distributed Datasets (RDDs)

• Main object in Spark’s universe

• Think of it as representing the data at that stage in the operation

• Allows for *coarse-grained* transformations (e.g. map, group-by, join)

• Allows for efficient fault recovery using *lineage*
 – Log *one* operation to apply to many elements
 – Recompute lost partitions of dataset on failure
 – No cost if nothing fails
RDD Actions and Transformations

Transformations are realized when an action is called

• Transformations
 – Lazy operations applied on an RDD
 – Creates a new RDD from an existing RDD
 – Allows Spark to perform optimizations
 – e.g. map, filter, flatMap, union, intersection, distinct, reduceByKey, groupByKey

• Actions
 – Returns a value to the driver program after computation
 – e.g. reduce, collect, count, first, take, saveAsFile
RDD Representation

• Simple common interface:
 – Set of partitions
 – Preferred locations for each partition
 – List of parent RDDs
 – Function to compute a partition given parents
 – Optional partitioning info

• Allows capturing wide range of transformations
Spark Cluster

Driver
• Entry point of Spark application
• Main Spark application is ran here
• Results of “reduce” operations are aggregated here
Spark Cluster

Master
• Distributed coordination of Spark workers including:
 ▪ Health checking workers
 ▪ Reassignment of failed tasks
 ▪ Entry point for job and cluster metrics
Spark Cluster

Worker
• Spawns executors to perform tasks on partitions of data
The Spark Family
Cheaper by the dozen

• Aside from its performance and API, the diverse tool set available in Spark is the reason for its wide adoption
 1. Spark SQL
 2. Spark Streaming
 3. MLlib
 4. GraphX
Disk Based vs Memory Based Frameworks

Acyclic data flow

- Disk Based Frameworks
 - Persists intermediate results to disk
 - Data is reloaded from disk with every query
 - Easy failure recovery
 - Best for ETL like work-loads
 - Examples: Hadoop, Dryad

Image courtesy of Matei Zaharia, Introduction to Spark
Disk Based vs Memory Based Frameworks

Reuse working data set in memory

• Memory Based Frameworks
 – Circumvents heavy cost of I/O by keeping intermediate results in memory
 – Sensitive to availability of memory
 – Remembers operations applied to dataset
 – Best for iterative workloads
 – Examples: Spark, Flink

Image courtesy of Matei Zaharia, Introduction to Spark
Spark versus Scalding (Hadoop)

Clear win for iterative applications

Benchmarks Runtime

<table>
<thead>
<tr>
<th></th>
<th>Spark</th>
<th>Scalding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating Datapoints</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Kmeans (per iteration)</td>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>Twitter</td>
<td>87</td>
<td>980</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Jaccard</td>
<td>246</td>
<td>590</td>
</tr>
</tbody>
</table>
Ad-hoc batch queries

SELECT pageURL, pageRank FROM rankings WHERE pageRank > X

Query 1A
32,888 results

Query 1B
3,331,851 results

Query 1C
89,974,976 results
Lambda Architecture

- **ALL DATA (HDFS)**
 - Batch Recompute

- **PRECOMPUTE VIEWS (MAP REDUCE)**
 - Partial aggregate
 - Partial aggregate
 - Partial aggregate

- **REAL-TIME VIEWS**
 - REAL-TIME DATA

- **NEW DATA STREAM**

- **PROCESS STREAM**
 - REAL-TIME INCREMENT

- **INCREMENT VIEWS**

- **MERGED VIEW (HBASE)**
 - Merge

- **BATCH LAYER**
 - Hadoop

- **SERVING LAYER**
 - Storm

- **SPEED LAYER**
Lambda Architecture
Unified Framework

Lambda Architecture

ALL DATA (HDFS)
PRECOMPUTE VIEWS (MAP REDUCE)
REAL-TIME VIEWS
REAL-TIME DATA
INCREMENT VIEWS
PROCESS STREAM
NEW DATA STREAM
MERGED VIEW (HBASE)
MERGE
BATCH Layer
Serving Layer
Speed Layer

Spark Core
Spark SQL
Spark Streaming