Systems of Linear Equations
Duke COMPSCI 309s

Siyang Chen

Spring 2014
A system of linear equations is the following:

\[Ax = b \]

Where \(A \) is an \(n \times m \) matrix, \(x \) is a \(m \)-dimensional vector, and \(b \) is an \(n \)-dimensional vector.
Brief Linear Algebra Review

The standard way of solving such a system is via a process called Gaussian elimination:

- $r \leftarrow 0$
- For $j \in \{1, \ldots, m\}$:
 - $r' \leftarrow \arg\max_{r'>r} \{A_{r',j}\}$
 - If $A_{r',j} = 0$:
 - Continue
 - Swap $A_{r'}$ and A_r
 - $A_r \leftarrow (1/A_{r,j}) \times A_r$
 - For $i \in \{1, \ldots, r - 1, r + 1, \ldots, n\}$:
 - $A_i \leftarrow A_i - (A_{i,j}/A_{r,j}) \times A_r$
- $r \leftarrow r + 1$

What is r when the algorithm terminates?

The rank of the matrix.

Complexity? $O(n^3)$
Brief Linear Algebra Review

The standard way of solving such a system is via a process called Gaussian elimination:

- $r \leftarrow 0$
- For $j \in \{1, \ldots, m\}$:
 - $r' \leftarrow \arg \max_{r' > r} \{A_{r', j}\}$
 - If $A_{r', j} = 0$:
 - Continue
 - Swap $A_{r'}$ and A_r
 - $A_r \leftarrow (1/A_{r,j}) \times A_r$
- For $i \in \{1, \ldots, r - 1, r + 1, \ldots, n\}$:
 - $A_i \leftarrow A_i - (A_{i,j}/A_{r,j}) \times A_r$
- $r \leftarrow r + 1$

What is r when the algorithm terminates?
Brief Linear Algebra Review

The standard way of solving such a system is via a process called *Gaussian elimination*:

- \(r \leftarrow 0 \)
- For \(j \in \{1, \ldots, m\} \):
 - \(r' \leftarrow \arg \max_{r', r} \{A_{r', j}\} \)
 - If \(A_{r', j} = 0 \):
 - Continue
 - Swap \(A_{r'} \) and \(A_r \)
 - \(A_r \leftarrow (1/A_{r, j}) \times A_r \)
 - For \(i \in \{1, \ldots, r - 1, r + 1, \ldots, n\} \):
 - \(A_i \leftarrow A_i - (A_{i, j}/A_{r, j}) \times A_r \)
 - \(r \leftarrow r + 1 \)

What is \(r \) when the algorithm terminates? The *rank* of the matrix.
Brief Linear Algebra Review

The standard way of solving such a system is via a process called Gaussian elimination:

- $r \leftarrow 0$
- For $j \in \{1, \ldots, m\}$:
 - $r' \leftarrow \arg\max_{r', > r} \{A_{r', j}\}$
 - If $A_{r', j} = 0$:
 - Continue
 - Swap $A_{r'}$ and A_r
 - $A_r \leftarrow (1/A_{r, j}) \times A_r$
 - For $i \in \{1, \ldots, r - 1, r + 1, \ldots, n\}$:
 - $A_i \leftarrow A_i - (A_{i, j}/A_{r, j}) \times A_r$
 - $r \leftarrow r + 1$

What is r when the algorithm terminates? The rank of the matrix. Complexity?
Brief Linear Algebra Review

The standard way of solving such a system is via a process called **Gaussian elimination**:

1. \(r \leftarrow 0 \)
2. For \(j \in \{1, \ldots, m\} \):
 1. \(r' \leftarrow \arg \max_{r' > r} \{ A_{r', j} \} \)
 2. If \(A_{r', j} = 0 \):
 1. Continue
 3. Swap \(A_{r'} \) and \(A_r \)
 4. \(A_r \leftarrow (1/A_{r, j}) \times A_r \)
 5. For \(i \in \{1, \ldots, r - 1, r + 1, \ldots, n\} \):
 1. \(A_i \leftarrow A_i - (A_{i, j}/A_{r, j}) \times A_r \)
 6. \(r \leftarrow r + 1 \)

What is \(r \) when the algorithm terminates? The **rank** of the matrix.

Complexity? \(O(nm^2) \)
In case you forgot:

- The *rank* of a matrix is the dimension of its *row space* (the subspace generated by its rows) or its *column space*.

- The *nullity* of a matrix is the dimension of its *null space*, the set of vectors x such that $Ax = 0$.

Theorem (Rank-Nullity)

Let A be an $n \times m$ matrix. Then

$$\text{rank}(A) + \text{nullity}(A) = m$$

(For a proof, consult your nearest linear algebra textbook.)
Brief Linear Algebra Review

In case you forgot:

- The *rank* of a matrix is the dimension of its *row space* (the subspace generated by its rows) or its *column space*.

- The *nullity* of a matrix is the dimension of its *null space*, the set of vectors x such that $Ax = 0$.

Theorem (Rank-Nullity)

Let A be an $n \times m$ matrix. Then

$$\text{rank}(A) + \text{nullity}(A) = m$$

(For a proof, consult your nearest linear algebra textbook.)
Lastly, Gaussian elimination, determinant computation, and lots of other linear-algebraic algorithms can be extended from \mathbb{R} to arbitrary fields, most commonly $\mathbb{Z}/p\mathbb{Z}$ for some prime p.
Let's look at this problem first:

▶ http://community.topcoder.com/stat?c=problem_statement&pm=11193
Let’s look at this problem first:

Solution?
Let’s look at this problem first:

▶ http://community.topcoder.com/stat?c=problem_statement&pm=11193

Solution?

▶ Consider a graph of states \((n, m)\) (where \(n\) and \(m\) represent the number of bored and not bored people, respectively) and transitions between them. This graph can be represented acyclically, so a standard dynamic programming approach will work.
TopCoder: MazeWandering

But what if the transitions can form cycles?

▶ http://community.topcoder.com/stat?c=problem_statement&pm=10005
TopCoder: MazeWandering

But what if the transitions can form cycles?

▶ http://community.topcoder.com/stat?c=problem_statement&pm=10005

Here’s where Gaussian elimination comes in handy:
But what if the transitions can form cycles?

Here’s where Gaussian elimination comes in handy:

Let $t_{i,j}$ be the expected time to reach the goal, given that our current state is (i,j).
TopCoder: MazeWandering

But what if the transitions can form cycles?

Here's where Gaussian elimination comes in handy:

- Let $t_{i,j}$ be the expected time to reach the goal, given that our current state is (i,j).
- By definition, $t_{i^*,j^*} = 0$, where (i^*,j^*) is the location of the goal.
TopCoder: MazeWandering

But what if the transitions can form cycles?

Here’s where Gaussian elimination comes in handy:

- Let $t_{i,j}$ be the expected time to reach the goal, given that our current state is (i,j).
- By definition, $t_{i^*,j^*} = 0$, where (i^*,j^*) is the location of the goal.
- For all other (i,j), $t_{i,j}$ can be expressed as a linear combination of its neighbours.
TopCoder: MazeWandering

But what if the transitions can form cycles?

▶ http://community.topcoder.com/stat?c=problem_statement&pm=10005

Here’s where Gaussian elimination comes in handy:

▶ Let $t_{i,j}$ be the expected time to reach the goal, given that our current state is (i,j).

▶ By definition, $t_{i^*,j^*} = 0$, where (i^*,j^*) is the location of the goal.

▶ For all other (i,j), $t_{i,j}$ can be expressed as a linear combination of its neighbours.

▶ Naively, Gaussian elimination can time out, using $\approx 2500^3$ operations. However, the matrix is sparse, so the runtime is instead $\approx 4 \times 2500^2$.
Now let’s look at this problem:

But how is this related at all to systems of linear equations?

Observe that we can represent each configuration of `on' lights or `on' switches as a vector in \((\mathbb{Z}/2\mathbb{Z})^n\).

It suffices, then, to find the dimension \(D\) of the space spanned by the rows. The answer is then \(2^D\).

But \(D\) is just the rank of the matrix, which we can compute via Gaussian elimination.
Now let’s look at this problem:

▶ http://community.topcoder.com/stat?c=problem_statement&pm=6407

But how is this related at all to systems of linear equations?
Now let’s look at this problem:

But how is this related at all to systems of linear equations?

- Observe that we can represent each configuration of ‘on’ lights or ‘on’ switches as a vector in $(\mathbb{Z}/2\mathbb{Z})^n$.
Now let’s look at this problem:

But how is this related at all to systems of linear equations?

- Observe that we can represent each configuration of ‘on’ lights or ‘on’ switches as a vector in $(\mathbb{Z}/2\mathbb{Z})^n$.
- It suffices, then, to find the dimension D of the space spanned by the rows. The answer is then 2^D.
TopCoder: LightSwitches

Now let's look at this problem:

But how is this related at all to systems of linear equations?

- Observe that we can represent each configuration of ‘on’ lights or ‘on’ switches as a vector in \((\mathbb{Z}/2\mathbb{Z})^n\).
- It suffices, then, to find the dimension \(D\) of the space spanned by the rows. The answer is then \(2^D\).
- But \(D\) is just the rank of the matrix, which we can compute via Gaussian elimination.