1 Overview

This lecture introduces two algorithms for minimum spanning tree (MST): Prim’s algorithm and Kruskal’s algorithm. Throughout the notes, we use MST for minimal spanning tree, \(w(e) \) for weight of the edge \(e \), and \(w(T) \) for weight of the tree \(T \). In addition, we assume all the underlying graphs are undirected, connected and weighted.

1.1 Prim’s Algorithm

The pseudocode is:

Algorithm 1 Prim’s Algorithm

```plaintext
1: function PR(G = (V, E))
2:   c[s] = 0
3:   ∀v \neq s \in V, c[v] = +\infty, prev[v] = NIL
4:   E' = \emptyset
5:   H = V
6:   while H \neq \emptyset do
7:     u = deletemin(H)
8:     E' = E' \cup (prev[u], u), if u \neq s
9:     for all (u, v) \in E, where v \in H do
10:        if c[v] > l(u, v) then
11:           c[v] = l(u, v)
12:           prev[v] = u
```

1.1.1 Running Time

Prim’s algorithm has the same running time as Dijkstra’s algorithm, \(O(|E| \log |V|) \), by binary heap. It can be improved to \(O(|E| + |V|\log |V|) \) by Fibonacci heap.

1.1.2 Correctness Proof

We prove that, after each selection of an edge by Prim’s algorithm, there exists a minimum spanning tree \(T = (V, E_t) \) such that \(E' \subseteq E_t \). We prove it by induction. For the base case when \(E' = \emptyset \), it is true. Assume that there exists a minimum spanning tree \(T_n = (V, E_n) \) such that \(E' \subseteq E_n \) when \(E' \) has \(n \) edges. For the \((n+1)th\) selection \(e_{n+1} \), we add \(e_{n+1} \) to \(T_n \). If there is no cycle, \(T_n \) is the tree that we want. If there is a cycle, there exists an edge \(e \neq e_{n+1} \) in the cycle such that \(e \) only has one endpoint in \(V \setminus H_n \), where \(H_n \) denotes \(H \)

\footnote{Some of the material is from a previous note by Yilun Zhou for this course in Fall 2014.}
after n selections, because e_{n+1} only has one endpoint in $V \setminus H_n$. The weight of e must be not smaller than the weight of e_{n+1}, otherwise, e should be selected by the algorithm instead of e_{n+1}. Therefore, the tree constructed by adding e_{n+1} to T_n and deleting e from T_n is also a minimum spanning tree.

1.2 Kruskal’s Algorithm

The pseudocode is:

Algorithm 2 Kruskal’s Algorithm

1: function KR($G = (V, E)$)
2: $E' = \emptyset$
3: $\forall v \in V$, make $V_i = \{v\}$
4: Sort edges in nondecreasing order
5: for each edge $(u, v) \in E$, taken in nondecreasing order do
6: if adding (u, v) does not form a cycle then
7: $E' = E' \cup (u, v)$
8: Return E'

Lemma 1. $G' = (V, E')$ is a spanning tree.

Proof. If G' is not connected, there exist edges that should be selected by the algorithm but not in E', contradiction. Line 6 guarantees that G' is acyclic.

Theorem 2. $G' = (V, E')$ is a minimum spanning tree.

Proof. Let T be the spanning tree generated by Kruskal’s algorithm, and let T^* be a minimal spanning tree. We will prove that $w(T) = w(T^*)$.

If $T = T^*$, then $w(T) = w(T^*)$. If $T \neq T^*$, let e be the edge with minimal weight that is in T^* but not in T. Then $T \cup \{e\}$ contains a cycle C such that, by the greedy nature of the construction process of T, $w(e) \leq w(f)$ for all f in the cycle C. In addition, there exists f^* in C such that f^* is in not T^*. Otherwise, T^* will contain a cycle. Let $T_2 = T \setminus \{f^*\} \cup \{e\}$. Then $w(T_2) \geq w(T)$ and T_2 has more common edges with T^* than T. We can repeat this process and until $T_k = T^*$ for some k. Now we have

$$w(T) \leq w(T_2) \leq \cdots \leq w(T_k) = w(T^*).$$

Since T^* is an MST, we must have

$$w(T) = w(T_2) = \cdots = w(T_k) = w(T^*).$$

Therefore T is also an MST.

1.2.1 Running Time

The running time of Kruskal’s algorithm depends on the implementation of “Union” and “Find”. We will discuss it in the next set of notes.