1 Introduction

In this set of notes, we study the union-find data structure (which is needed to implement Kruskal’s algorithm efficiently).

2 Revisiting Kruskal’s Algorithm: Union-Find Data Structure

Recall that in the last set of notes we studied Kruskal’s Algorithm. In this section, we will study the Union-Find data structure for efficient implementation of Kruskal’s algorithm.

2.1 Storing Components for Kruskal’s Algorithm

For a weighted graph \(G = (V, E) \) where \(w_e \) denotes the weight of edge \(e \in E \), recall Kruskal’s algorithm for computing a minimum spanning tree (MST) of \(G \) (if you are having trouble remembering the MST problem or Kruskal’s algorithm, you should go back and review the notes for Lecture 13). At a high level, we begin Kruskal’s algorithm by initializing each vertex to be in its own component and the set of selected edges to be empty set. Then in order of increasing edge weight, we repeatedly add edges to the set of selected edges if they merge two of the current components together. That is, if \(e = (u, v) \) is the edge we are considering, we add edge \(e \) to the selected edges if \(u \) is currently in a different component than \(v \). We argued that, once all vertices lie in the same component, all the edges indeed form an MST.

However, in the previous pseudocode for the Kruskal’s, we glossed over how to represent these collection of components. Moreover, for each iteration where we consider edge \(e = (u, v) \), we need to find out if \(u \) and \(v \) belong to the same component. If they do, adding the edge will create a cycle; otherwise, we select the edge and merge the two components connected by this edge.

To perform such queries and operations, we will implement a union-find data structure. A union-find data structure \(D \) is defined over a set of \(n \) elements \(U = \{x_1, \ldots, x_n\} \) and maintains a collection of disjoint subsets \(S_1, \ldots, S_h \) to which these elements belong, where \(1 \leq h \leq n \). As in our scenario above, every element is in its own subset when \(D \) is initialized. The data structure \(D \) then supports the following two operations:

- **FIND(\(x \))**: return \(S_i \) such that \(x \in S_i \) (in an actual implementation, we would likely just return the representative element for set \(S_i \)).

- **UNION(\(S_i, S_j \))**: Replace \(S_i \) and \(S_j \) with \(S_i \cup S_j \) in the set system.

So for Kruskal’s algorithm, we initialize a union-find data structure over the vertices. For each edge \(e = (u, v) \), if \(\text{FIND}(u) \neq \text{FIND}(v) \), then we call \(\text{UNION} (\text{FIND}(u), \text{FIND}(v)) \) to merge \(u \) and \(v \)’s components (otherwise, we move on to the next edge). In total we will issue at most \(2m \) FIND queries and always perform \(n \) UNION operations.

1 Most materials are from a previous note by Nat Kell and Ang Li for this class in Fall 2014.
2.2 Implementing Union-Find

We now turn to the details of implementing FIND(x) and UNION(S_i, S_j) efficiently. Our first implementation decision is to how to represent the “labels” for each set. Here, we will use elements as representatives: At any given time, there will be a unique $x \in S_i$ which we will return as the label of S_i whenever we call FIND(y) for any $y \in S_i$ (in the following implementations, we will make it clear how each representative is determined/maintained).

2.2.1 Union-Find with Linked Lists

The most obvious way to represent the set system is just to use a collection of linked lists. For each set S_i, we have a corresponding linked list L_i which contains the elements in S_i. The representative of L_i will just be element at the head of the list, which is then preceded by the rest elements in S_i through a sequence of pointers. To execute FIND(x), we start at x and follow the path of pointers leading to the head and then return it as the label of the set. Note that since there can be $\Omega(n)$ elements in a set, we might have to traverse $\Omega(n)$ links to reach a set’s label; therefore when using linked list, FIND(x) runs in $\Theta(n)$ time in the worst case.

UNION operations, however, are quite simple. To implement UNION(S_i, S_j), we just make the head of L_i point to the tail of L_j (or vice versa). Since we can store head/tail metadata along with the head of a list, UNION is an $O(1)$ time operation.

As noted above, a given run of Kruskal’s may do $2m$ FIND(e) queries, which gives us a $\Theta(mn)$ time algorithm in the worst case. When we first presented Kruskal’s algorithm, we claimed a running time of $O(m \log n)$; therefore, using this linked list implementation will not suffice.

2.2.2 Union-Find with Trees

If we want to maintain the property that UNION operations still take $O(1)$ time, a natural improvement to this linked list scheme is to instead maintain a set of trees. Now, a set S_i corresponds to a tree T_i, where the representative of the set is at the root. To implement UNION(S_i, S_j), we make T_i a subtree of T_j by making the root of T_j the parent of the root of T_i. Note that this implies that each tree is not necessarily binary since a fixed root r can participate in several UNION operations (it is possible that each UNION results in another subtree rooted at r).

FIND(x) still works in the exact same way—we simply start at x and follow a path up the corresponding tree via parent pointers until we reach the root. Our hope is that if each tree structure remains balanced, then we can bound the longest path from node to root when doing a FIND query. However, our current specifications do not ensure balance. For example, consider the sequence of n unions

\[
\{x_1\} \cup \{x_2\} \\
\{x_3\} \cup \{x_1,x_2\} \\
\{x_4\} \cup \{x_1,x_2,x_3\} \\
\vdots \\
\{x_n\} \cup \{x_1,\ldots,x_{n-1}\}.
\]

Informally, we grow one particular set in the set system, and then with each UNION we add one of the remaining singleton sets to this growing set. When we perform UNION(S_i, S_j) in this scheme, note that we are arbitrarily picking which root (the root of T_i or the root T_j) becomes the new root when we combine T_i and T_j. Thus in the above example, it is possible that when we merge $S = \{x_i\}$ with $S' = \{x_1,\ldots,x_{i-1}\}$,
we use x_i as the new root each time. If we are unfortunate enough to have this sequence of events happen for each union, then the resulting tree structure will just be an n element linked list (and therefore it is still possible for FIND(x) to take $\Omega(n)$ time).

A straightforward way to fix this pitfall is to do what is called union-by-depth. For each tree T_i, we keep track of its depth d_i, or the longest path from the root to any node in the tree. Now when we perform a UNION, we check to see which tree has the larger depth and then use the root of this tree as the new root. Note that this extra information can be easily stored and updated with the root of each tree: If we call UNION(i, j), we check to see which tree has the larger depth and then use the root of this tree as the new root, or the root of i if they are equal.

What does “union-by-depth” buy us? The following theorem establishes that this feature does indeed balance the trees in the set system.

Theorem 1. For a tree implementation of the union-find data structure that uses union-by-depth, any tree T (representing set S_i in the set system) with depth d contains at least 2^d elements.

Proof. We do a proof by induction on the tree depth d. Since a tree T with depth 0 has $2^0 = 1$ elements, the base case is trivial. For the inductive step, assume that the hypothesis holds for all trees with depth $k - 1$, i.e., any tree with depth $k - 1$ contains at least 2^{k-1} nodes. Observe that in order to build a tree T with depth k, we must merge together two trees T_i and T_j that both have depth $k - 1$; otherwise, we would either have:

1. Both T_i and T_j have depth strictly less than $k - 1$. Since the depth of $T_i \cup T_j$ can be no more max(d_i, d_j) + 1, the combined tree $T_i \cup T_j$ can have depth at most $k - 1$ (note this is true regardless of whether we use union-by-depth).

2. Exactly one tree has depth $k - 1$; without loss of generality, suppose $d_j = k - 1$ and $d_i < k - 1$. Since we are using union-by-depth, we will make the root of $T_i \cup T_j$ the root of T_j. Since $d_i < k - 1$, the length of any path from this new root of to any node in T_i can be at most $k - 1$. Since T_j has depth $k - 1$ and no node in within this subtree changes depth in $T_i \cup T_j$, the depth of the combined tree is exactly $k - 1$.

Therefore, assume $d_i = d_j = k - 1$; we can then apply our inductive hypothesis to both T_i and T_j to obtain:

$$|T| = |T_i \cup T_j| = |T_i| + |T_j| \geq 2^{k-1} + 2^{k-1} = 2^k,$$

as desired.

It follows that any tree with n elements can have depth at most $\log n$ (the theorem implies $n \geq 2^d$ where d is the depth of the largest tree/subset, implying $\log n \geq d$). Therefore, FIND(x) runs in $O(\log n)$ when using union-by-depth. From Kruskal’s perspective, this gives us the desired running time. The initial sort we do on the edge weights takes $O(m \log m) = O(m \log n^2) = O(m \log n)$ time. We then do n UNIONS that each take $O(1)$ time and $2m$ FINDs that each take $O(\log n)$ time. Therefore, the overall running time of Kruskal’s using this implementation is $O(m \log n) + O(n) + O(m \log n) = O(m \log n)$.
2.2.3 Union-Find with Stars

Although doing a tree implementation that uses union-by-depth gave us the desired asymptotic running time of \(O(m \log n) \), it is a bit unsettling that \(\text{UNIONS} \) take constant time and \(\text{FINDs} \) could take \(\Omega(\log n) \) time. Since \(n = O(m) \) for any graph where we want to find a spanning tree, it seems a bit wasteful that our implementation gives us a faster running time for the function we call fewer times (recall we perform \(n \ \text{UNIONS} \) and at most \(2m \ \text{FINDs} \)). Therefore in this section, we will look at an implementation where we force each \(\text{FIND} \) to take \(O(1) \) time, but as a result make \(\text{UNIONS} \) operations more expensive (but hopefully by not too much).

The most naive way to achieve \(O(1) \)-time \(\text{FINDs} \) is to represent sets as \textit{star graphs}. A star graph is simply a tree with a designated a center node such that every other node in the graph is a leaf that is only adjacent (or points) to this center node. Thus, we will maintain that each tree is simply a tree with a designated a center node such that every other node in the graph is a leaf that is only adjacent (or points) to this center node. Therefore if we do \(n \ \text{UNION} \) operations, our running time for Kruskal’s is now \(\Theta(n^2) \) (which could be worse than \(O(m \log n) \)).

To avoid this problem, we will use a rule that is similar to union-by-depth. Namely, we will use \textit{union-by-size}. Namely, if we are given two star graphs \(T_j \) and \(T_i \), we will dissemble the smaller of the two sets and make these elements point to the center of the larger set (and leave the star graph in the larger graph untouched).

To analyze the speedup obtained from doing union-by-size, we use a charging argument to do an amortized analysis over the \(n \ \text{UNIONS} \) performed by Kruskal’s. We use the following charging scheme: Any time we merge two trees \(T_i \) and \(T_s \) such that \(|T_s| \leq |T_i| \), we will simply put a unit of charge on each element in \(T_s \) (remember that we are taking the elements of \(T_s \) and changing their pointers to the center of \(T_i \)). Note that for all \(x \in T_s \), \(x \) now belongs to a set that is twice as large. We also know that for \(x \in U \), the set to which \(x \) belongs can double at most \(\log n \) times (the size of final merged set is \(n \)); therefore, the charge on a given element \(x \) can be at most \(\log n \) after \(n \) unions. Since the total time needed over all \(n \) unions is equal to the total charge distributed over the elements, the time it takes to make \(n \ \text{UNION} \) calls is \(O(n \log n) \). Note that even though Kruskal’s algorithm still runs in \(O(m \log n) \) time since we must initially sort the edges, we have reduced the time it takes to execute Kruskal’s merging procedure to \(O(n \log n + m) \).

2.2.4 Optimal Union-Finds: Path Compression and Union-by-Rank

We will now outline the best scheme for implementing a union-find data structure. This implementation will be more akin to what we saw in Section 2.2.2 when we used balanced trees to represent our set system. The main feature we will add to this implementation is what is known as \textit{path compression}, which will attempt to make our trees more “star-graph-like” whenever we make a \(\text{FIND} \) call (so in some sense, we are combining the strategies in sections 2.2.2 and 2.2.3).

More specifically, whenever we call \(\text{FIND}(x) \) where \(x \in S_i \), we will follow some path \(P \) from \(x \) to the root \(r_i \) of \(S_i \). For each element \(y \in P \), we now know that \(y \) belongs to set \(S_j \); therefore at this point, it makes sense to make each of these elements point directly to \(r_i \). \(\text{FIND}(x) \) with path compression does exactly this.
modification, and therefore after the procedure completes, r_i and all the elements along P now form a star graph in T_i. Note that it is not too hard to implement $\text{FIND}(x)$ such that it returns r_i, makes every element in P point directly to r_i, and runs in $O(|P|)$ time.

To implement UNION, we essentially still use union-by-depth. We still merge components using the same rule (we make the tree with the smaller depth a subtree of the tree with the larger depth). Note, however, that because we might have path compressing FIND calls in-between UNION calls, we might compress a path that defined the depth a given tree T_i. In such a case, d_i no longer accurately stores the depth of d_i.

How does one fix this issue? The answer is that we do not. Instead, we just call this d_i the rank of T_i and use it in the same way we would in our union-by-depth scheme. It turns out that using these two features in combination gives us an extremely good bound. We define

$$\log^* n = 1 + \log^*(\log n) \quad (n \geq 2), \quad \text{and} \quad \log^* 1 = 0$$

We categorize the ranks into groups by the value of $\log^* n$:

<table>
<thead>
<tr>
<th>ranks</th>
<th>$\log^* n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${1}$</td>
<td>0</td>
</tr>
<tr>
<td>${2}$</td>
<td>1</td>
</tr>
<tr>
<td>${3,4}$</td>
<td>2</td>
</tr>
<tr>
<td>${5,6,...,16}$</td>
<td>3</td>
</tr>
<tr>
<td>${17,18,...,2^{16}}$</td>
<td>4</td>
</tr>
<tr>
<td>${65537, 65538,...,2^{65536}}$</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

We give 2^k dollars to a node whose rank is in $\{k+1,k+2,...,2^k\}$ and there are at most $\frac{n}{2^k}$ nodes whose rank is in that group, therefore we give at most $O(n)$ dollars totally to a group. There are $O(\log^* n)$ groups and we totally give $O(n \log^* n)$ dollars.