While you wait
read the Final Project description on the webpage

Today

- Quiz review
- Semester overview
- Final Project discussion
- Texture mapping
Class topics

- Before the midterm
 - Texture mapping
 - Image processing and convolution
 - Graphics pipeline
 - Ray tracing

Final Project

- Ray tracer
- Shader
- Particle system
- Game
- NPR
- Image processing
- 3DUI Contest
- Anything else
Texture mapping

- Objects have properties that vary across the surface

Texture Mapping

- So we make the shading parameters vary across the surface
Texture mapping

- Adds visual complexity; makes appealing images

Texture mapping

- Color is not the same everywhere on a surface
 - one solution: multiple primitives
- Want a function that assigns a color to each point
 - the surface is a 2D domain - that’s an image
 - can represent using any image representation
A definition

Texture mapping: a technique of defining surface properties (especially shading parameters) in such a way that they vary as a function of position on the surface.

- This is very simple!
- but it produces complex-looking effects

Examples

- Wood floor with smooth finish
- diffuse color k_D varies with position
- specular properties k_s, n are constant
Examples

- Glazed pot with finger prints
 - diffuse and specular colors k_d, k_s are constant
 - specular exponent n varies with position

Mapping textures to surfaces

- Usually texture is an image (function of u, v)
- the BIG question: where on surface does the image go?
- obvious only for a flat rectangle the same shape as the image
Mapping textures to surfaces

- Usually texture is an image (function of u, v)
- the BIG question: where on surface does the image go?
- obvious only for a flat rectangle the same shape as the image

Note that 3D textures also exist

- texture is a function of (u, v, w)
- can just evaluate texture at 3D surface point
- good for solid materials
Texture coordinate functions

- "Putting the image on the surface"
 - need a function f that tells where each point on the image goes
 - this looks a lot like a parametric surface function

Texture coordinate functions

- Non-parametrically defined surfaces
 - need to have the inverse of the function f
- Texture coordinate fn.
 \[
 \phi : S \rightarrow \mathbb{R}^2
 \]
 - for a vtx. at p get texture at $\phi(p)$
Texture coordinate functions

- Mapping from S to D can be many-to-one
 - that is, every surface point gets only one color assigned
- but it is OK (and in fact useful) for multiple surface points to be mapped to the same texture point

ϕ can be many-to-one, e.g. for a tiled texture.

Texture coordinate functions

- Define texture image as a function
 $$T : D \rightarrow C$$
 - where C is the set of colors for the diffuse component
- Diffuse color (for example) at point p is then
 $$k_D(p) = T(\phi(p))$$
Examples of coordinate functions

- A rectangle
 - image can be mapped directly, unchanged

Examples of coordinate functions

- For a sphere: latitude-longitude coordinates
 - ϕ maps point to its latitude and longitude
Examples of coordinate functions

- A parametric surface (e.g. spline patch)
 - surface parameterization gives mapping function directly

Examples of coordinate functions

- For non-parametric surfaces it is trickier
 - directly use world coordinates
Examples of coordinate functions

- Non-parametric surfaces: project to parametric surface

- Triangles
 - specify \((u, v)\) for each vertex
 - define \((u, v)\) for interior by linear interpolation
Texture coordinates on meshes

- Texture coordinates become per-vertex data like vertex positions
- Can think of them as a second position: each vertex has a position in 3D space and in 2D texture space

Texture coordinates on meshes

- How to come up with vertex \((u,v)\)s?
- Use any or all of the methods just discussed
Reflection mapping

- Early non-decal use of textures
- Appearance of shiny objects
 - Phong highlights produce blurry highlights for glossy surfaces.
 - A polished (shiny) object reflects a sharp image of its environment.

![Image of a shiny sphere](image1)

Figure 2. (a) A shiny sphere rendered under photographically acquired real-world illumination. (b) The same sphere rendered under illumination by a point light source.

Environment map

- Precomputed image of scene lighting from given point

![Image of a teapot](image2)
Spherical environment map

Hand with Reflecting Sphere. M. C. Escher, 1935. Lithograph

Environment Maps

[Paul Debevec]
Sphere Mapping Example

Cube environment map
Normal mapping

original mesh
4M triangles

simplified mesh
500 triangles

simplified mesh
and normal mapping
500 triangles

[Paolo Cignoni]

base subdivision surface

hand-painted displacement map (detail)

displaced surface
Bump mapping
Displacement mapping

Geometry Bump mapping Displacement mapping

Another definition

Texture mapping: a general technique for storing and evaluating functions.

- They’re not just for shading parameters any more!