Shading

- Shading models
- Approximate light reflection on illuminated surfaces
Shading model

- Compute light reflected toward camera / eye
 - v - view direction
 - l - light direction
 - n - surface normal
 - surface parameters
 - color, shininess, etc.

v, l, n must be normalized!!
Diffuse

- Light scattered uniformly in all directions
- surface color same for all viewing directions

Diffuse

- Lambertian shading model
- energy from light source depends on angle to light source
 - max illumination - surface directly toward light source
 - min illumination - surface tangent to light source
Diffuse

- Lambert’s cosine law

 Top face of cube receives a certain amount of light
 Top face of 60° rotated cube intercepts half the light
 In general, light per unit area is proportional to \(\cos \theta = L \cdot n \)

Diffuse

- Lambertian shading
- Shading independent of view direction

\[
L_d = k_d I \max(0, n \cdot l)
\]

- \(L_d \) - diffusely reflected light
- \(k_d \) - diffuse coefficient
- \(I \) - illumination from source
Diffuse

- Lambertian shading
 - matte appearance

\[k_d \]

Diffuse

- Light scattered uniformly in all directions
 - surface color same for all viewing directions
Specular

- Blinn-Phong
 - Intensity depends on view direction
 - Highlights

Specular

- Blinn-Phong
 - reflection brightest when \(\mathbf{v} \) and \(\mathbf{i} \) are symmetric across surface normal
Specular

- Blinn-Phong
 - L_s - specularly reflected light
 - k_s - specular coefficient
 - p - Phong exponent > 1

$$h = \text{bisector}(v, l) \quad L_s = k_s I \max(0, \cos \alpha)^p$$

$$= \frac{v + l}{\|v + l\|} \quad = k_s I \max(0, n \cdot h)^p$$

Fig. 16.9 Different values of $\cos^p \alpha$ used in the Phong illumination model.
Specular

$\mathbf{L} = k_d \mathbf{I}_{max}(0, \mathbf{n} \cdot \mathbf{l}) + k_s \mathbf{I}_{max}(0, \mathbf{n} \cdot \mathbf{h})^p$

Diffuse + Specular
Specular

- Lambertian
 - view independent
- Blinn-Phong
 - view dependent

Ambient

- Independent of everything
 - add constant color
 - fill in black shadows

\[L_a = k_a I_a \]

- \(L_a \) - reflected ambient light
- \(k_a \) - ambient coefficient
• Ambient + diffuse + specular

\[L = L_a + L_d + L_s \]
\[= k_a I_a + k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^p \]

Demo

• Your task
 - Create a 5x5x5 array of spheres
 - Modify specular, diffuse, and ambient properties along each axis
 - In DropBox create a folder named “ClassWork” and submit a screenshot of your spheres