Problem 1.

How many possible plans are there for an \(n \)-way join query \(R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n \), if we use only one type of asymmetric binary join operator in our plans? Your answer should be a closed-form or recurrence formula. Also, compute your answer for \(n = 7 \).

Remember to consider all bushy plans—not just left-deep ones. For example, three possible plans for \(n = 3 \) are shown below. There are a total of 12 plans for \(n = 3 \).

![Possible plans for n=3](image)

Problem 2.

Consider relations \(R(A, B, C) \), \(S(C, D) \), \(T(D, E) \) with the following statistics:

- \(|R| = 100; |\pi_A R| = 100; |\pi_B R| = 10; |\pi_C R| = 50; \)
- \(|S| = 500; |\pi_C S| = 30; |\pi_D S| = 100; \)
- \(|T| = 400; |\pi_D T| = 400; |\pi_E T| = 150. \)

Estimate the number of the tuples returned by the following queries:

(a) \(\sigma_{A = 10} R \)
(b) \(\sigma_{A = 10 \text{ AND } B = \text{\'Bart\'}} R \)
(c) \(\sigma_{A = 10 \text{ OR } B = \text{\'Bart\'}} R \)
(d) \(R \bowtie S \)
(e) \(R \bowtie S \bowtie T \)

Problem 3.

Consider relations \(\text{Employee(eno, ename, pno, salary)} \) and \(\text{Project(pno, pname, location, budget)} \), where the key attributes are underlined. Furthermore, \(\text{Employee.pno} \) references \(\text{Project.pno} \). The most common queries on \(\text{Project} \) use the set of simple predicates \{location = 'RTP', location = 'NYC', budget < 1000, budget \geq 3000\}.

(a) Compute the primary horizontal fragments of \(\text{Project} \) based on the given set of simple predicates.
(b) Suppose that the horizontal partitioning of Employee is derived from Project. Transform the following SQL query into a relational algebra plan over the fragments, pull up union and join, push down selection and projection, and simplify the plan as much as possible.

```sql
SELECT ename, pname
FROM Employee, Project
WHERE Employee.pno = Project.pno
AND location = 'RTP' AND budget < 2000;
```

Problem 4.

Consider the general fragment and replication join algorithm discussed in lecture. Suppose that \(P \) sites are available to process \(R \bowtie S \). The algorithm partitions \(R \) into \(m \) fragments \(R_1, R_2, \ldots, R_m \) of size \(|R|/m \) each, and \(S \) into \(n \) fragments \(S_1, S_2, \ldots, S_n \), of size \(|S|/n \) each, where \(m \cdot n = P \). Each site receives a copy of \(R_i \), a copy of \(S_j \), and computes \(R_i \bowtie S_j \) locally. This problem explores the optimal choice of \(m \) and \(n \).

(a) If the cost of sending \(t \) tuples from one site to another is \(c \cdot t \), what is the total communication cost of the algorithm (assuming that the site storing \(R \) and \(S \) does not participate in join)?

(b) If the cost of computing \(R_i \bowtie S_j \) locally at a site is \(k \cdot (|R_i| + |S_j|) \) (e.g., if we use sort-merge join), what is the optimal choice of \(m \) and \(n \)?

(c) If the cost of computing \(R_i \bowtie S_j \) locally at a site is \(k \cdot |R_i| \cdot |S_j| \) (e.g., if we use nested-loop join), what is the optimal choice of \(m \) and \(n \)?

Problem 5.

This problem explores why semijoin reducers do not work with cyclic joins. Consider an \(n \)-way join \(R_1(A_1, A_2) \bowtie R_2(A_2, A_3) \bowtie \ldots \bowtie R_n(A_n, A_1) \). Note that \(R_1 \) joins with \(R_1 \) on \(A_1 \), making this \(n \)-way join cyclic. Your job is to construct a database instance in which:

- \(R_i \neq \emptyset \) for any \(i \).
- \(R_i \bowtie R_j = R_i \) for any \(i \) and \(j \); that is, pair-wise semijoins cannot reduce anything.
- \(\bowtie_{1 \neq j} R_i \neq \emptyset \) for any \(j \); that is, any \((n - 1) \)-way join is non-empty. Here \(\bowtie_{1 \neq j} R_i \) is a short hand for \(R_1 \bowtie \ldots \bowtie R_{j-1} \bowtie R_{j+1} \bowtie \ldots \bowtie R_n \).
- \(\bowtie_i R_i = \emptyset \); that is, the final \(n \)-way join is empty. Here \(\bowtie_i R_i \) is a short hand for \(R_1 \bowtie \ldots \bowtie R_i \bowtie \ldots \bowtie R_n \).