Overview

- Many different ways of implementing the same logical query operator
 - Scan, sort, hash, index
 - All with different performance characteristics
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time

Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|, |S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M
- Cost metric
 - Number of I/O’s
 - Memory requirement
Table scan
- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O’s: $B(R)$
 - Trick for selection:
- Memory requirement: 2 (double buffering)
 - Not counting the cost of writing the result out

Nested-loop join
- $R \bowtie \sigma_p S$
 - For each block of R, and for each r in the block:
 - For each block of S, and for each s in the block:
 - Output rs if p evaluates to true over r and s
 - R is called the outer table; S is called the inner table
- I/O’s: $B(R) + |R| \cdot B(S)$
- Memory requirement: 3 (double buffering)

Tricks for nested-loop join
- Stop early
 - If the key of the inner table is being matched
 - May reduce half of the I/O’s
- Block-based nested-loop join
 - Stuff memory with as much of R as possible, stream S
 by, and join every S tuple with all R tuples in memory
 - I/O’s: $B(R) + \left\lceil \frac{B(R)}{M - 2} \right\rceil \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S) / M$
 - Memory requirement: M (as much as possible)
External merge sort

• Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 – There are $\lceil \frac{B(R)}{M} \rceil$ level-0 sorted runs
• Pass i: merge $(M - 1)$ level-$(i-1)$ runs at a time, and write out a level-i run
 – $(M - 1)$ memory blocks for input, 1 to buffer output
 – # of level-i runs = $\lceil \# \text{ of level-}(i-1) \text{ runs} / (M - 1) \rceil$
• Final pass produces 1 sorted run

Example of external merge sort

• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Pass 0
 – 1, 7, 4 \rightarrow 1, 4, 7
 – 5, 2, 8 \rightarrow 2, 5, 8
 – 9, 6, 3 \rightarrow 3, 6, 9
• Pass 1
 – 1, 4, 7 + 2, 5, 8 \rightarrow 1, 2, 4, 5, 7, 8
 – 3, 6, 9
• Pass 2 (final)
 – 1, 2, 4, 5, 7, 8 + 3, 6, 9 \rightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9

Performance of external merge sort

• Number of passes: $\lceil \log_{M - 1} \lceil \frac{B(R)}{M} \rceil \rceil + 1$
• I/O’s
 – Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 – Subtract $B(R)$ for the final pass
 – Roughly, this is $O(B(R) \cdot \log_{B(R)} B(R))$
• Memory requirement: M (as much as possible)
Tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Trade-off: smaller fan-in (more passed)
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 - More sequential I/O’s
 - Trade-off: larger cluster ↔ smaller fan-in (more passes)
- Replacement sort
 - On average produces level-0 runs that are twice as big
 - Use a priority heap: keep outputting as much as possible and making space for input

Sort-merge join

- \(R \bowtie_{R.A=S.B} S \)
- Sort \(R \) and \(S \) by their join attributes, and then merge
 - \(r, s = \) the first tuples in sorted \(R \) and \(S \)
 - Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 - else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 - else output all matching tuples, and \(r, s = \) next in \(R \) and \(S \)
- I/O’s: sorting + \(B(R) + B(S) \)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is \(B(R) \cdot B(S) \): everything joins

Example

\[
\begin{array}{c|c|c}
R & S & R \bowtie_{R.A=S.B} S \\
\hline
r_1.A = 1 & s_1.B = 1 & r_1.s_1 \\
r_2.A = 3 & s_2.B = 2 & r_2.s_3 \\
r_3.A = 3 & s_3.B = 3 & r_2.s_4 \\
r_4.A = 5 & s_4.B = 3 & r_3.s_3 \\
r_5.A = 7 & s_5.B = 8 & r_3.s_4 \\
r_6.A = 7 & r_7.s_5 \\
r_7.A = 8 & \\
\end{array}
\]
Optimization of SMJ

- Idea: combine join with the merge phase of merge sort
- Sort: produce sorted runs of size M for R and S
- Merge and join: merge the runs of R, merge the runs of S, and merge the result streams as they are generated!

Performance of two-pass SMJ

- I/O’s: $3 \cdot (B(R) + B(S))$
- Memory requirement
 - To be able to merge in one pass, we should have enough memory to accommodate one block from each run: $M > B(R) / M + B(S) / M$
 - $M > \sqrt{B(R) + B(S)}$

Other sort-based algorithms

- Union, difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- GROUP BY and aggregation
 - External merge sort
 - Produce partial aggregate values in each run
 - Combine partial aggregate values during merge
 - Partial aggregate values don’t always work though
Hash join

- \(R \bowtie_{A=S.B} S \)
- Main idea
 - Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 - If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

Partitioning phase

- Partition \(R \) and \(S \) according to the same hash function on their join attributes

Probing phase

- Read in each partition of \(R \), stream in the corresponding partition of \(S \), join
 - Typically build a hash table for the partition of \(R \)
 - Not the same hash function used for partition, of course!
Performance of hash join

- I/O’s: $3 \cdot (B(R) + B(S))$
- Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M - 1 \geq \frac{B(R)}{(M - 1)}$
 - $M > \sqrt{B(R)}$
 - We can always pick R to be the smaller relation, so: $M > \sqrt{\min(B(R), B(S))}$

Hash join tricks

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - See the duality in multi-pass merge sort here?

Hybrid hash join

- What if there is extra memory available?
 - Use it to avoid writing/re-reading partitions
 - Of both R and S!

A generalization of the idea is described in the survey paper by Graefe
Hash join versus SMJ

(Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower
 - $\sqrt{\text{min}(B(R), B(S))} < \sqrt{B(R) + B(S)}$
 - Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - SMJ wins if the result needs to be in sorted order

What about nested-loop join?

Other hash-based algorithms

- Union, difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- GROUP BY and aggregation
 - Apply the hash functions to GROUP-BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group
Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)