Query Processing

CPS 216
Advanced Database Systems

Overview

- Many different ways of implementing the same logical query operator
 - Scan, sort, hash, index
 - All with different performance characteristics
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time

Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|, |S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M
- Cost metric
 - Number of I/O’s
 - Memory requirement

Table scan

- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O’s: $B(R)$
 - Trick for selection: stop early if it is a lookup by key
- Memory requirement: 2 (double buffering)
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator

Nested-loop join

- $R \bowtie_p S$
- For each block of R, and for each r in the block:
 - For each block of S, and for each s in the block:
 - Output rs if p evaluates to true over r and s
 - R is called the outer table; S is called the inner table
- I/O’s: $B(R) + |R| \cdot B(S)$
- Memory requirement: 3 (double buffering)

Tricks for nested-loop join

- Stop early
 - If the key of the inner table is being matched
 - May reduce half of the I/O’s
- Block-based nested-loop join
 - Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
 - I/O’s: $B(R) + \lceil B(R) / (M - 2) \rceil \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S) / M$
 - Memory requirement: M (as much as possible)
Example of external merge sort

- **Input:** 1, 7, 4, 5, 2, 8, 3, 6, 9
- **Pass 0**
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- **Pass 1**
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
- **Pass 2 (final)**
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

Performance of external merge sort

- **Number of passes:** \(\lceil \log_{M-1} \left(\frac{B(R)}{M} \right) \rceil + 1 \)
- **I/O’s**
 - Multiply by 2 \(\cdot B(R) \): each pass reads the entire relation once and writes it once
 - Subtract \(B(R) \) for the final pass
 - Roughly, this is \(O(B(R) \cdot \log B(R)) \)
- **Memory requirement:** \(M \) (as much as possible)

Tricks for sorting

- **Double buffering**
 - Allocate an additional block for each run
 - Trade-off: smaller fan-in (more passes)
- **Blocked I/O**
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 - More sequential I/O’s
 - Trade-off: larger cluster ↔ smaller fan-in (more passes)
- **Replacement sort**
 - On average produces level-0 runs that are twice as big
 - Use a priority heap: keep outputting as much as possible and making space for input

Sort-merge join

- **R \bowtie_{R.A = S.B} S**
- **Sort** \(R \) and \(S \) by their join attributes, and then merge \(r, s \) = the first tuples in sorted \(R \) and \(S \)
 - Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 - else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 - else output all matching tuples, and \(r, s = \) next in \(R \) and \(S \)
- **I/O’s:** sorting + \(B(R) + B(S) \)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is \(B(R) \cdot B(S) \): everything joins

Example

- **R:**
 - \(r_1.A = 1 \) \(s_1.B = 1 \) \(r_1.s_1 \)
 - \(r_2.A = 3 \) \(s_1.B = 2 \) \(r_2.s_3 \)
 - \(r_3.A = 5 \) \(s_2.B = 3 \) \(r_3.s_4 \)
 - \(r_4.A = 7 \) \(s_2.B = 8 \) \(r_3.s_5 \)
 - \(r_5.A = 7 \) \(r_5.s_5 \)
- **S:**
 - \(r_2.A = 8 \)
Optimization of SMJ

- Idea: combine join with the merge phase of merge sort
- Sort: produce sorted runs of size M for R and S
- Merge and join: merge the runs of R, merge the runs of S, and merge the result streams as they are generated!

Other sort-based algorithms

- Union, difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- GROUP BY and aggregation
 - External merge sort
 - Produce partial aggregate values in each run
 - Combine partial aggregate values during merge
 - Partial aggregate values don’t always work though
 - Examples: SUM(DISTINCT ...), MEDIAN(…)

Hash join

- $R \bowtie_{r.A = s.B} S$
- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If $r.A$ and $s.B$ get hashed to different partitions, they don’t join

Partitioning phase

- Partition R and S according to the same hash function on their join attributes

Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

Performance of two-pass SMJ

- I/O’s: $3 \cdot (B(R) + B(S))$
- Memory requirement
 - To be able to merge in one pass, we should have enough memory to accommodate one block from each run: $M > B(R)/M + B(S)/M$
 - $M > \sqrt{B(R) + B(S)}$
Performance of hash join
• I/O’s: $3 \cdot B(R) + B(S)$
• Memory requirement:
 – In the probing phase, we should have enough memory to fit one partition of R: $M - 1 \geq B(R) / (M - 1)$
 – $M > \sqrt{B(R)}$
 – We can always pick R to be the smaller relation, so: $M > \sqrt{\text{min}(B(R), B(S))}$

Hash join tricks
• What if a partition is too large for memory?
 – Read it back in and partition it again!
 • See the duality in multi-pass merge sort here?

Hybrid hash join
• What if there is extra memory available?
 – Use it to avoid writing/re-reading partitions
 • Of both R and S!

Hash join versus SMJ
(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower
 – $\sqrt{\text{min}(B(R), B(S))} < \sqrt{B(R) + B(S)}$
 – Hash join wins when two relations have very different sizes
• Other factors
 – Hash join performance depends on the quality of the hash
 • Might not get evenly sized buckets
 – SMJ can be adapted for inequality join predicates
 – SMJ wins if R and/or S are already sorted
 – SMJ wins if the result needs to be in sorted order

What about nested-loop join?
• May be best if many tuples join
 – Example: non-equality joins that are not very selective
• Necessary for black-box predicates
 – Example: … WHERE user_defined_pred(R.A, S.B)

Other hash-based algorithms
• Union, difference, intersection
 – More or less like hash join
• Duplicate elimination
 – Check for duplicates within each partition/bucket
• GROUP BY and aggregation
 – Apply the hash functions to GROUP-BY attributes
 – Tuples in the same group must end up in the same partition/bucket
 – Keep a running aggregate value for each group
Duality of sort and hash

• Divide-and-conquer paradigm
 – Sorting: physical division, logical combination
 – Hashing: logical division, physical combination

• Handling very large inputs
 – Sorting: multi-level merge
 – Hashing: recursive partitioning

• I/O patterns
 – Sorting: sequential write, random read (merge)
 – Hashing: random write, sequential read (partition)