Query Processing
(And Even More Indexing!)

CPS 216
Advanced Database Systems

Review

• Many different ways of implementing the same logical query operator
 – Scan
 • Nested-loop join
 – Sort
 • External merge sort
 • Sort-merge join
 – Hash
 • Hash join
 » Index (today)

Selection using index

• Equality predicate: $\sigma_{A = v}(R)$
 – Use an ISAM, B$^+$-tree, or hash index on $R(A)$

• Range predicate: $\sigma_{A > v}(R)$
 – Use an ordered index (e.g., ISAM or B$^+$-tree) on $R(A)$
 – Hash index is not applicable

• Indexes other than those on $R(A)$ may be useful
 – Example: B$^+$-tree index on $R(A, B)$
Index versus table scan (slide 1)

Situations where index clearly wins:
- Index-only queries which do not require retrieving actual tuples
 - Example: \(\pi_A (\sigma_{A>v}(R)) \)
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (slide 2)

BUT(!):
- Consider \(\sigma_{A>v}(R) \) and a secondary, non-clustered index on \(R(A) \)
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of \(R \) satisfies \(A>v \)
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% |\(R \)|
 - I/O’s for scan-based selection: \(B(R) \)
 - Table scan wins if a block contains more than 5 tuples

Sorting using an ordered index

Use an index on the sort key
- Go through the index and output tuples in order
- Very efficient for a primary index clustered according to sort key
- Terrible for a secondary, non-clustered index
 - I/O’s: |\(R \)|
 - I/O’s required by two-pass external merge sort: \(3 \cdot B(R) \)
 - Yes, it makes sense to sort even though the index already does it!
Index nested-loop join

- $R \bowtie_{R.A = S.B} S$
- Idea: use the value of $R.A$ to probe the index on $S(B)$
- For each block of R, and for each r in the block:
 - Use the index on $S(B)$ to retrieve s with $s.B = r.A$
 - Output rs
- I/O’s: $B(R) + |R| \cdot \text{(index lookup)}$
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if $|R|$ isn’t too big
 - Better pick R to be the smaller relation
- Memory requirement: 2

Tricks for index nested-loop join

Goal: reduce $|R| \cdot \text{(index lookup)}$

- For tree-based indexes, keep the upper part of the tree in memory
- For extensible hash index, keep the directory in memory
- Sorting or partitioning R according to the join attribute

Zig-zag join using ordered indexes

- $R \bowtie_{R.A = S.B} S$
- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
 - Possibly skipping many keys that don’t match
More indexes ahead!

- Bitmap index
 - Generalized value-list index
- Projection index
- Bit-sliced index

Search key values × tuples

<table>
<thead>
<tr>
<th>Search key values</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>n-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>108</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

1 means tuple has the particular search key value
0 means otherwise

- Looks familiar?

Bitmap index

- Value-list index—stores the matrix by rows
 - Traditionally list contains pointers to tuples
 - B*-tree: tuples with same search key values
 - Inverted list: documents with same keywords
- If there are not many search key values, and there are lots of 1’s in each row, pointer list is not space-efficient
 - How about a bitmap?
 - Still a B*-tree, except leaves have a different format
Technicalities

- How do we go from a bitmap index (0 to n – 1) to the actual tuple?
 - One more level of indirection solves everything
 - Or, given a bitmap index, directly calculate the physical block number and the slot number within the block for the tuple
- In either case, certain block/slot may be invalid
 - Because of deletion, or variable-length tuples
 - Keep an existence bitmap: bit set to 1 if tuple exists

Bitmap versus traditional value-list

- Operations on bitmaps are faster than pointer lists
 - Bitmap AND: bit-wise AND
 - Value-list AND: sort-merge join
- Bitmap is more efficient when the matrix is sufficiently dense; otherwise, pointer list is more efficient
 - Smaller means more in memory and fewer I/O’s
- Really the same idea of storing rows in the matrix
 - Generalized value-list index: with both bitmap and pointer list as alternatives

Projection index

- Just store $\pi_A(R)$ and use it as an index!
Why projection index?

- Idea: still a table scan, but we are scanning a much smaller table (project index)
 - Savings could be substantial for long tuples with lots of attributes
- Looks familiar?

Bit-sliced index

- If a column stores binary numbers, then slice their bits vertically
 - Basically a projection index by slices

Aggregate query processing example

```sql
SELECT SUM(dollar_sales)
FROM Sales
WHERE condition;
```
- Already found B_f (a bitmap or a sorted list of TID’s that point to Sales tuples that satisfy condition)
 - Probably used a secondary index
- Now, need to compute $\text{SUM}(\text{dollar_sales})$ for tuples in B_f
SUM without any index

- For each tuple in B_f, go fetch the actual tuple, and add dollar_sales to a running sum
- I/O’s: number of Sales blocks with B_f tuples
 - Assuming we fetch them in sorted order

SUM with a value-list index

- Assume a value-list index on Sales(dollar_sales)
- Idea: the index contains dollar_sales values and their counts
- sum = 0;
 - Scan index—for each indexed value v with value-list B_v:
 - sum += $v \times count-1-bits(B_v \text{ AND } B_f)$;
- I/Os: number of blocks taken by the value-list index
- Bitmaps can possibly speed up AND and reduce the size of the index

SUM with a projection index

- Assume a project index on Sales(dollar_sales)
- Idea: merge join B_f and the projection index, add joining tuples’ dollar_sales to a running sum
 - Assuming both B_f and the index are sorted on TID
- I/O’s: number of blocks taken by the projection index
 - Compared with a value-list index, the projection index is more compact (no empty space or pointers), but it does store duplicate dollar_sales values
 - Also: simpler algorithm, fewer CPU operations
SUM with a bit-sliced index

- Assume a bit-sliced index on Sales(dollar_sales), with slices $B_1, B_2, ..., B_{k-1}$
- $\text{sum} = 0$
 - for $i = 0$ to $k - 1$
 - $\text{sum} += 2^i \times \text{count-1-bits}(B_i \text{ AND } B_f)$
- I/O’s: number of blocks taken by the bit-sliced index
- Conceptually a bit-sliced index contains the same information as a projection index
 - But the bit-sliced index doesn’t keep TID!
 - Bitmap AND is faster

Summary of SUM

- Best: bit-sliced index
 - Index is small
 - B_f can be applied fast!
- Good: projection index
- Not bad: value-list index
 - Full-fledged index carries a bigger overhead
 - The fact that we have counts of values helped
 - But we didn’t really need values to be ordered

MEDIAN

```
SELECT MEDIAN(dollar_sales)
FROM Sales
WHERE condition;
```

- Same deal: already found B_f (a bitmap or a sorted list of TID’s that point to Sales tuples that satisfy condition)
- Now, need to find the dollar_sales value that is greater than or equal to $\frac{1}{2} \times \text{count-1-bits}(B_f)$ dollar_sales values among B_f tuples
MEDIAN with an ordered value-list index

- Idea: take advantage of the fact that the index is ordered by dollar_sales
- Scan the index in order, count the number of tuples that appeared in B_f until the count reaches $\frac{1}{2} \times \text{count-1-bits}(B_f)$
- I/O's: roughly half of the index

MEDIAN with a projection index

- In general, need to sort the index by dollar_sales
 - Well, when you sort, you more or less get back an ordered value-list index!
- Not useful unless B_f is small

MEDIAN with a bit-sliced index

- Tough at the first glance—index is not sorted
- Think of it as sorted!
 - We won’t actually take advantage of the this fact

<table>
<thead>
<tr>
<th>B_{k-1}: 0 0 1...</th>
<th>Yes; continue searching for median here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look at B_{k-1} first</td>
<td></td>
</tr>
<tr>
<td>More than half are 0's?</td>
<td></td>
</tr>
<tr>
<td>1 0 0... No; continue searching for median here</td>
<td></td>
</tr>
<tr>
<td>1 0 1...</td>
<td></td>
</tr>
<tr>
<td>1 1 1...</td>
<td></td>
</tr>
</tbody>
</table>
MEDIAN Using a bit-sliced index

- median = 0;
 - which tuples we are considering
 - number of values that are less
- B\text{current} = B_f; // than what we are considering
-sofar = 0; // number of values that are less
 - than what we are considering

for i = k - 1 to 0:
 - Is the median not with the 0’s?
 - if (sofar + count-1-bits(B\text{current} AND NOT(B_i)) ≤ \frac{1}{2} \times \text{count-1-bits}(B_f)):
 - B\text{current} = B\text{current} AND B_i; Median is with the 1’s
 - sofar += count-1-bits(B\text{current} AND NOT(B_i));
 - median += 2^i;
 - else:
 - B\text{current} = B\text{current} AND NOT(B_i); Median is with the 0’s

- I/O’s: still need to scan the entire index

Summary of MEDIAN

- Best: ordered value-list index
 - It helps to be ordered!
- Pretty good: bit-sliced index
 - Could beat ordered value-list index if B_f is “clustered”
 - Only need to retrieve the corresponding segment

More variant indexes

- O’Neil and Quass, “Improved Query Performance with Variant Indexes,” SIGMOD 97
 - MIN/MAX
 - And fun with range query using bit-sliced index!