Data mining

- Data → knowledge
- DBMS meets AI and statistics
- Usually complex statistical “queries” that are difficult to answer
 » Warehousing is a must if data needs to be integrated from various sources
 » Often done using specialized algorithms outside the DBMS
 - Some recent work on pushing mining inside DBMS
 (Sarawagi et al., SIGMOD 1998)

Data mining problems

- Clustering: group together similar items and separate dissimilar ones
- Prediction: predict values of some attributes from others based on training data
 - Classification: predict the “class label”
 - Regression: predict a numeric attribute value
- Association analysis: detect attribute-value conditions that occur frequently together
- Outlier analysis, evolution analysis, etc., etc.
Data mining applications

- **Business**
 - Marketing, finance, investment, insurance…
 - Urban legend: WalMart discovered that people who bought diapers tended to buy beer at the same time
- **Science**
 - Astronomy, environmental science, genomics…
- **Law enforcement**
 - Fraud detection, criminal profiling…

Association rule mining

A.k.a. market-basket analysis

- A transaction (market basket) contains a set of items bought together
- Given a lot of transactions, discover rules such as “diaper \Rightarrow beer” or “digital camera, scanner \Rightarrow graphics software”

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T001</td>
<td>diaper, milk, candy</td>
</tr>
<tr>
<td>T002</td>
<td>milk, egg</td>
</tr>
<tr>
<td>T003</td>
<td>milk, beer</td>
</tr>
<tr>
<td>T004</td>
<td>diaper, milk, egg</td>
</tr>
<tr>
<td>T005</td>
<td>diaper, beer</td>
</tr>
<tr>
<td>T006</td>
<td>milk, beer</td>
</tr>
<tr>
<td>T007</td>
<td>diaper, beer</td>
</tr>
<tr>
<td>T008</td>
<td>diaper, milk, beer, candy</td>
</tr>
<tr>
<td>T009</td>
<td>diaper, milk, beer</td>
</tr>
</tbody>
</table>

Association rules

- An association rule has the form $X \Rightarrow Y$, where X and Y are disjoint itemsets (sets of items)
 - Confidence $c\%$: $c\%$ of the transactions that contain X also contain Y
 - Support $s\%$: $s\%$ of all transactions contain both X and Y
 - Note: association rules are directional
 - “diaper \Rightarrow beer” and “beer \Rightarrow diaper” mean different things
- Problem: Given a set of transactions, find all association rules with confidence and support greater than or equal to specified thresholds $c_{\text{min}}\%$ and $s_{\text{min}}\%$
Mining association rules

• Step 1: Find frequent itemsets, and count the number of times they appear in transactions
 – An itemset X is frequent if no less than $s_{\text{min}}\%$ of all transactions contain X
 • That is, $\text{count}(X) \geq s_{\text{min}}\% \cdot \text{total \# of transactions}$

• Step 2: Mine association rules from frequent itemsets

Finding frequent itemsets

• First try: a brute-force approach
 – Keep a running count for each possible itemset
 – For each transaction T, and for each itemset X, if T contains X then increment the count for X
 – Return itemsets with large enough counts

• Problem: The number of itemsets is huge!
 – 2^n, where n is the number of items
• Think: How do you prune the search space?

The Apriori property

• All subsets of a frequent itemset must also be frequent
 – Because any transaction that contains X must also contains subsets of X

 » If you have already verified that X is infrequent, there is no need to count X’s supersets because they must be infrequent too
The Apriori algorithm
Agrawal & Srikant, VLDB 1994

- Multiple passes over the transactions
- Pass k finds all frequent k-itemsets (itemset of size k)
- Use the set of frequent $(k - 1)$-itemsets found in the previous pass to narrow the search for k-itemsets

Pseudo-code for Apriori
Scan the transactions to find L_1, the set of all frequent 1-itemsets, together with their counts;
for ($k = 2; L_{k-1} \neq \emptyset; k++)$
 - Generate C_k, the set of candidate k-itemsets, from L_{k-1}, the set of frequent $(k - 1)$-itemsets found in the previous step;
 - Scan the transactions to count the occurrences of itemsets in C_k;
 - Find L_k, a subset of C_k containing k-itemsets with counts no less than ($\min\% \cdot \text{total # of transactions}$);
Return $L_1 \cup L_2 \cup \ldots \cup L_k$;

Candidate generation
From L_{k-1} to C_k
- Join: combine frequent $(k - 1)$-itemsets to form candidate k-itemsets
- Prune: ensure every size-$(k - 1)$ subset of a candidate is frequent
Candidate generation: join

- Combine almost-matching pairs of frequent \((k - 1)\)-itemsets
 - \[
 \text{SELECT } p.\text{item}_1, p.\text{item}_2, \ldots, p.\text{item}_{k-1}, q.\text{item}_{k-1} \\
 \text{FROM } L_{k-1} \ p, L_{k-1} \ q \\
 \text{WHERE } p.\text{item}_1 = q.\text{item}_1 \\
 \text{AND } p.\text{item}_2 = q.\text{item}_2 \text{ AND } \ldots \\
 \text{AND } p.\text{item}_{k-2} = q.\text{item}_{k-2} \\
 \text{AND } p.\text{item}_{k-1} < q.\text{item}_{k-1};
 \]
 - The last conjunct ensures no duplicates
 - Can you justify why \(p\) and \(q\) should almost match?

Candidate generation: prune

- Remove candidates with an infrequent size-\((k - 1)\) subset
 - for each itemset \(c\) in \(C_k\):
 - for each item \(x\) in \(c\):
 - if \(c - \{x\}\) is not in \(L_{k-1}\) then:
 - delete \(c\) from \(C_k\)

Example: pass 1

<table>
<thead>
<tr>
<th>ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>A, B, E</td>
</tr>
<tr>
<td>102</td>
<td>B, D</td>
</tr>
<tr>
<td>103</td>
<td>B, C</td>
</tr>
<tr>
<td>104</td>
<td>A, B, D</td>
</tr>
<tr>
<td>105</td>
<td>A, C</td>
</tr>
<tr>
<td>106</td>
<td>B, C</td>
</tr>
<tr>
<td>107</td>
<td>A, C</td>
</tr>
<tr>
<td>108</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>109</td>
<td>A, B, C</td>
</tr>
<tr>
<td>110</td>
<td>F</td>
</tr>
</tbody>
</table>

Transactions

\(\min\% = 20\%\)

\(L_1\)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>8</td>
</tr>
<tr>
<td>(B)</td>
<td>7</td>
</tr>
<tr>
<td>(C)</td>
<td>8</td>
</tr>
<tr>
<td>(D)</td>
<td>2</td>
</tr>
</tbody>
</table>

Itemset \(\{F\}\) is infrequent
Example: pass 2

Generate candidates → Scan and count → Check min. support

L_1 → C_2 → C_3 → L_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>6</td>
</tr>
<tr>
<td>(B)</td>
<td>7</td>
</tr>
<tr>
<td>(C)</td>
<td>6</td>
</tr>
<tr>
<td>(D)</td>
<td>2</td>
</tr>
<tr>
<td>(E)</td>
<td>2</td>
</tr>
</tbody>
</table>

Transactions

TID Name

1001 A, B, E
1002 B, D
1003 B, C
1004 A, B, D
1005 A, C
1006 B, C
1007 A, C
1008 A, B, C, E
1009 A, B, C
1010 F

Example: pass 3

Generate candidates → Scan and count → Check min. support

L_2 → C_3 → C_4 → L_3

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, B)</td>
<td>4</td>
</tr>
<tr>
<td>(A, C)</td>
<td>4</td>
</tr>
<tr>
<td>(A, E)</td>
<td>2</td>
</tr>
<tr>
<td>(B, C)</td>
<td>2</td>
</tr>
<tr>
<td>(B, D)</td>
<td>2</td>
</tr>
<tr>
<td>(B, E)</td>
<td>2</td>
</tr>
<tr>
<td>(C, D)</td>
<td>1</td>
</tr>
<tr>
<td>(C, E)</td>
<td>1</td>
</tr>
<tr>
<td>(D, E)</td>
<td>1</td>
</tr>
</tbody>
</table>

Transactions

TID Name

1001 A, B, E
1002 B, D
1003 B, C
1004 A, B, D
1005 A, C
1006 B, C
1007 A, C
1008 A, B, C, E
1009 A, B, C
1010 F

Example: pass 4

Generate candidates

L_3 → C_4 → C_4 and L_4 are empty

Transactions

TID Name

1001 A, B, E
1002 B, D
1003 B, C
1004 A, B, D
1005 A, C
1006 B, C
1007 A, C
1008 A, B, C, E
1009 A, B, C
1010 F
Example: final answer

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>6</td>
</tr>
<tr>
<td>{B}</td>
<td>7</td>
</tr>
<tr>
<td>{C}</td>
<td>6</td>
</tr>
<tr>
<td>{D}</td>
<td>2</td>
</tr>
<tr>
<td>{E}</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B}</td>
<td>4</td>
</tr>
<tr>
<td>{A, C}</td>
<td>4</td>
</tr>
<tr>
<td>{A, E}</td>
<td>2</td>
</tr>
<tr>
<td>{B, D}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>2</td>
</tr>
<tr>
<td>{B, C}</td>
<td>4</td>
</tr>
<tr>
<td>{B, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

L1

L2

L3

Mining rules from frequent itemsets

- for each frequent itemset l:
 - for each nonempty proper subset s of l:
 - if confidence = $\frac{\text{count}(l)}{\text{count}(s)} \geq c_{\min}$% then:
 - output $s \Rightarrow (l - s)$;
- Example: rules from $l = \{A, B, E\}$ are
 - $A, B \Rightarrow E$ (confidence 2/4 = 50%)
 - $A, E \Rightarrow B$ (confidence 2/2 = 100%)
 - $B, E \Rightarrow A$ (confidence 2/2 = 100%)
 - $A \Rightarrow B, E$ (confidence 2/6 = 33%)
 - $B \Rightarrow A, E$ (confidence 2/7 = 29%)
 - $E \Rightarrow A, B$ (confidence 2/2 = 100%)

Data structure for counting itemsets

- Problem: Given a transaction, determine which itemsets in C_k it contains
- Idea: Build a tree structure from C_k
- Example: $C_2 = \{ \{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\} \}$

Transaction: A, D, E, F

- Remember all nodes visited
- If item matches any outgoing edge, follow it
- At a leaf node, increment count
Hash tree

- What if the tree may too big or imbalanced?
- Merge edges using a hash function
- Leaves must now store the exact itemset

```
A | B C | D
A | B C | D E
```

A and B hash to the same key
C and D hash to the same key

Other tricks and extensions

- Transaction reduction
 - If a transaction does not contain any frequent k-itemset, remove it from further consideration
 - AprioriTid, AprioriHybrid, from the same paper
- Dynamic itemset counting
 - Why only introduce candidate itemsets at the end of a scan?
 - Start counting them whenever there is enough support from smaller itemsets
 - Fewer passes over data
 - Brin et al., SIGMOD 1997
- Parallelization, sampling, incremental mining, etc.

End-semester logistics

- Project demo
 - You should already have received an email about your scheduled 30-minute slot
- Final exam
 - Thursday, December 13, 9:00am – 12:00pm
 - In this room
 - Comprehensive, emphasis on the latter half
 - Open book, open notes
- TA and instructor office hours
 - Same as regular office hours
Some points to remember from 216

- Declarativeness is good
 - Relational model, relational algebra, SQL, …
- Redundancy is bad
 - Normal forms, decomposition, …
- Redundancy is good (for performance, as long as you can hide it)
 - Replication, warehousing, materialized views, indexes, …
- One more level of indirection solves lots of things
 - Secondary indexes, wrappers, …
- Query optimizer is really "query goodifier"
 - Assumptions and heuristics to narrow the search space…
- Think beyond tables
 - Bitmap indexes, wavelet histograms, data cube, MOLAP, …

Next semester

- CPS 296.1: Advanced topics in databases
 - Data mining
 - XML and Web data processing
 - Incremental and approximate query evaluation
 - Materialized views for caching and warehousing